Database Management
Systems

Transaction, Concurrency and
Recovery

Adapted from Lecture notes by Goldberg @ Berkeley

Introduction

What is Concurrent Process (CP)?

Multiple users access databases and use computer
systems simultaneously.

Example: Airline reservation system.

— An airline reservation system is used by hundreds of travel
agents and reservation clerks concurrently.

Why Concurrent Process?
Better transaction throughput and response time
Better utilization of resource

Transaction

What is Transaction?

e A sequence of many actions which are
considered to be one atomic unit of work.
® Basic operations a transaction can include
“actions”:
— Reads, writes
— Special actions: commit, abort

ACID Properties of transaction

Atomicity: Transaction is either performed in its
entirety or not performed at all, this should be DBMS’
responsibility

Consistency: Transaction must take the database

from one consistent state to another if it is executed in
isolation. It is user’s responsibility to insure consistency

Isolation: Transaction should appear as though it is
being executed in isolation from other transactions

Durability: changes applied to the database by a
committed transaction must persist, even if the system
fail before all changes reflected on disk

Concurrent Transactions

B ! B

I CPU,

A : :

| CPU, A

1 CPU,

time
¢, t, % 1)
interleaved processing parallel processing

Schedules

What is Schedules

— Aschedule S of n transactions T1,T2,..Tn is an ordering of the
operations of the transactions subject to the constraint that, for each
transaction Ti that participates in S, the operations of Ti in S must
appear in the same order in which they occur in Ti.

— Example: S,: r1(A),r2(A),w1(A),w2(A), al,c2;

T1 T2
Read(A)

Read(A)
Write(A)

Write(A)
Abort T1

Commit T2

Oops, something’s wrong

Reserving a seat for a flight

If concurrent access to data in DBMS, two users
may try to book the same seat simultaneously

Agent 1 finds
time seat 35G empty
Agent 2 finds
seat 35G empty
Agent 1 sets
seat 35G occupied

Agent 2 sets
seat 35G occupied

Another example

Problems can occur when concurrent transactions execute in an
uncontrolled manner.
Examples of one problem.

— A original equals to 100, after execute T1 and T2, A is supposed to be
100+10-8=102

Add 10 ToA Minus 8 from A Value of A on
T1 ™ the disk
Read(A) 100
A=A+10 100

Read(A) 100

A=A-8 100
Write(A) iy

Write(A) 92

What Can Go Wrong?

Concurrent process may end up violating Isolation
property of transaction if not carefully scheduled

Transaction may be aborted before committed
- undo the uncommitted transactions

- undo transactions that sees the uncommitted change before
the crash

Conflict operations

Two operations in a schedule are said to be conflictif they
satisfy all three of the following conditions:

(1) They belong to different transactions

(2) They access the same item A;

(3) at least one of the operations is a write(A)

Example in Sa: r1(A),r2(A),wi(A)w2(A), al,c2;
r1(A),w2(A) conflict, so do r2(A),w1(A),
r1(A), wi(A) do not conflict because they belong to the same
transaction,
r1(A),r2(A) do not conflict because they are both read operations.

Serializability of schedules

Serial

— Aschedule S is serial if, for every transaction T participating in the
schedule, all the operations of T are executed consecutively in the
schedule.(No interleaving occurs in a serial schedule)

Serializable

— Aschedule S of n transactions is serializable if it is eguivalent to some
serial schedule of the same n transactions.

schedules are conflict equivalent if:

— they have the same sets of actions, and

— each pair of conflicting actions is ordered in the same way
Conflict Serializable

— A schedule is said to be conflict serializable if it is conflict equivalent to
a serial schedule

Characterizing Schedules

Yes
1. Avoid cascading abort(ACA) T T2 T T2
Aborting T1 requires aborting T2! Read(A) Read(A)
— Cascading Abort Write(A) Write(A)
An ACA (avoids cascading abort) Read(A) commit
— AXact only reads data from Write(A) Read(A)
committed X acts. Abort Write(A)
2. recoverable Lo 2 ;; aa) =
Aborting T1 requires aborting T2! "::ai::a)) Write(A)
— But T2 has already committed! Read(A) Read(A)
A recoverable schedule is one in which Write(A) Write(A)
this cannot happen. Commit | Commit
—i.e. a X act commits only after all the Commit
X acts it “depends on” (i.e. it reads from)
commit. T T2
— ACA implies recoverable (but not Read(A)
vice-versal). Write(A)
Commit
3. strict schedule Read(A)
Write(A)

Commit

Venn Diagram for Schedules

All Schedules

View Serializable

Conflict Serializable
Recoverable [1]

I

N I
Strict

N I

[I

Example

T1:W(X), T2:R(Y), T1:R(Y), T2:R(X), C2, C1
serializable: Yes, equivalent to T1,T2

conflict-serializable: Yes, conflict-
equivalent to T1,T2

recoverable: No. Yes, if C1 and C2 are
switched.

ACA: No. Yes, if T1 commits before T2
reads X.

Sample Transaction (informal)

Example: Move $40 from checking to savings
account
To user, appears as one activity
To database:
— Read balance of checking account: read(X)
— Read balance of savings account: read (Y)
— Subtract $40 from X
—Add $40to Y
— Write new value of X back to disk
— Write new value of Y back to disk

Sample Transaction (Formal)

T1

b read_item(X);
read_item(Y);
X:=X-40;
Y:=Y+40;
write _item(X);

t v write_item(Y);

Focus on concurrency control

Real DBMS does not test for serializability

. Ver_y_ inefficient since transactions are continuously
arriving

— Would require a lot of undoing

Solution: concurrency protocols

If followed by every transaction, and
enforced by transaction processing system,
guarantee serializability of schedules

Concurrency Control Through Locks

_I'.:ock: variable associated with each data

item

— Describes status of item wrt operations that can
be performed on it

Binary locks: Locked/unlocked

Multiple-mode locks: Read/write

Three operations

- read_lock(X)

— write_lock(X)

— unlock(X)

Each data item can be in one of three lock

states

Two Transactions

T1

T2

read_lock(Y);
read_item(Y);

read_lock(X);
read_item(X);

Locks Alone Don’t Do the Trick!

Let’s run T1 and T2 in interleafed fashion
Schedule S T1

unlock(Y); unlock(X); 12
write_lock(X); write_lock(Y); read_lock(Y);

: 3 : D read_item(Y); read_lock(X);
read_item(X); read_item(Y); unlock(Y): read_item(X);
X:=X+Y; Y:=X+Y; unlock(X);
write_item(X); write_item(Y); / write_lock(Y);

read_item(Y);
unIock(X); unIock(Y); unlockedtoo early! Yi=X+Y;
write_lock(X); write_item(Y);
Let’s assume serial schedule S1: T1;T2 re.ad_itelm(X); unlock(Y);
Initial values: X=20, Y=30 — Result: X=50, Y=80 e, Non-serializable!
unlock(X); Result: X=50, Y=50
Example
T T2

Two-Phase Locking (2PL)

Def.: Transaction is said to follow the
two-phase-locking protocol if all locking

read_lock(Y);
read_item(Y);
write_lock(X);

read_lock(X);
read_item(X);
write_lock(Y);

operations precede the first unlock

operation

unlock(Y); unlock(X);
read_item(X); read_item(Y);
X:=X+Y; Y:=X+Y;
write_item(X); write_item(Y);
unlock(X); unlock(Y);

Both T1’ and T2’ follow the 2PL protocol
Any schedule including T1’ and T2’ is guaranteed to be serializable
Limits the amount of concurrency

Deadlock in 2PL

Dead |0Ck Twlrite toA B ::ad fromA, B
—T1 waits for write_lock(A)

T2 to unlock B

write_lock(B)

}. read_lock(B)

= T2 waits for read_lock(A)
T1tounlock A write(a)
H write(B
— Neither can (8) .
proceed! write(B)
A deadlock! unlock(A)
unlock(B)
unlock(A)

unlock(B)

Variations to the Basic Protocol

Previous technique knows as basic 2PL

Conservative 2PL (static) 2PL: Lock all

items needed BEFORE execution begins

by predeclaring its read and write set

— If any of the items in read or write set is
already locked (by other transactions),
transaction waits (does not acquire any
locks)

— Deadlock free but not very realistic

Variations to the Basic Protocol

Strict 2PL: Transaction does not

release its write locks until AFTER it

aborts/commits

— Not deadlock free but guarantees
recoverable schedules (strict schedule:
transaction can neither read/write X until
last transaction that wrote X has
committed/aborted)

— Most popular variation of 2PL

The Phantom Problem

The concurrency (EEaIE
control problem for acc_num branch amount
insertion and deletion ?zo Eﬁsmt” iégg
. lentown
in database 190 Easton $200
Example: A local bank
Assets
branch assets
Easton $300
Allentown $500

Two Transactions

T1 wants to verify that the accounts at the
Easton branch add up to be equal to the
total assets of the Easton branch

T2 wants to add a new account (150,
‘Easton’, $50) to the accounts table

Write schedules for both transaction
following the 2-phase locking protocol

Schedule following 2PL

T1 T2
read_lock(Accounts[99]); write_lock(Accounts[150]);
read_lock(Accounts[190]); write_item(Accounts[150, ‘Easton’, $50]);
read_item(Accounts[99]); write_lock(Assets[Easton]);
read_item(AccounE[lQOy/ write_item(Assets[Easton, $350);

unlock(Accounts[150]);

read_lock(AsseE[Easton‘% unlock(Assets[Easton]);
read_item(Assets[Easton]);
unlock(Accounts[99]);
unlock(Accounts[190]);
unlock(Assets[Easton]);

When Will the Phantom Problem
Occur?

When T1 and T2 are interleaved, the Phantom
Problem may occur

— See previous slide
Does it mean 2PL is not suitable for insertion
and deletion in database?

— No. The phantom problem occurs because the control
information of the table account was not locked

— Solution: Lock the control information (e.g., the
index) when insertion/deletion happens

Index Locking

Suppose access to a table is controlled by
a B-tree
Should we use 2PL on B-tree?

— 2PL says that a transaction must acquire all
the locks before it can release any

—Thus, the root of the B-tree must stay locked
until all the locks of a transaction are acquired

— Locking the root of a B-tree has the same
effect as locking the whole tree

Tree Locking Protocol

A transaction’s first lock is at the root of the B-
tree

Subsequent locks may only be acquired if the
transaction currently has a lock on the parent
node

Node may be unlocked at any time

A transaction may not relock a node on which it

has released a lock, even if it still holds a lock on
the node’s parent

B-Tree Locking

Search: start with a readlock at the root, request
a readlock on a child node while holding a lock
on the parent, after the lock on the child node is
received, release the lock on the parent

Insertion (or): start with a writelock at
the root, request a writelock on a child node
while holding a lock on the parent, after the lock
on the child node is received, release the lock on
the parent only if the child node still has room
for insertion (or)

Tree Locking Protocol

Why the tree locking protocol work?
— Let’s redo the bank accounts example

Concluding Remarks

Concurrency control subsystem is responsible for
inserting locks at right places into your
transaction

— Strict 2PL is widely used

— Requires use of waiting queue

All 2PL locking protocols guarantee serializability
Does not permit all possible serial schedules

Why Recovery Is Needed

Any system will fail
Type of failures:
— A computer failure
System crash, ...
— Transaction or system error
Integer overflow, divide by zero, logical error, ...
— Local error or exception
Data not found, Insufficient balance,

Types of Failures

— Concurrency control enforcement
Request for lock denied, deadlock ...

— Disk failure
Disk malfunction, head crash, ...

— Physical problems and catastrophes
Power/air-conditioning failure, fire, flood, ...

Why “Database Recovery Technigues”?

System crash

Transaction error
System error
T] e Local error
T) e, Disk failure

T3 Catastrophe
Time

ACID
Database system should guarantee

- Durability : Applied changes by transactions
must not be lost. ~ T3

- Atomicity : Transactions can be aborted.
~T1, T2

Basic Idea : “Logging”
Backup Checkpoint

System Log

- keeps info of changes
applied by transactions

2 %
T3 ————d

Undo/Redo by the Log
- recover Non-catastrophic failure

Full DB Backup .
> Differential Backup } Catastrophic failure

> (Transaction) Log

Physical View - How they work - (1)

DBMS cache
(buffers)

Directo
(address:A,a,1)
(address:B,b,0)

Action :
1) Check the directory whether in the cache
2) If none, copy from disk pages to the cache

3) For the copy, old buffers needs to be flushed
from the cache to the disk pages

Physical View - How they work - (2)

DBMS cache
(buffers)

update
Ll
(address:B,b,0)
4) Flush only if a dirty bit is 1

Dirty bit : (in the directory) whether there is
a change after copy to the cache
1 — updated in the cache
0 — not updated in the cache (no need to flush)

Physical View - How they work - (3)

Memory

DBMS cache
(buffers)

A-a : “in-place updating”
- when flushing, overwrite at the same location
- logging is required

B-b : “shadowing”

Physical View - How they work - (4)

DBMS cache

(1) copy (from the disk to the cache)
(2) update the cached data, record it in the log

(3) flush the log and the data
(from the cache to the disk)

WAL : Write-Ahead Logging (1)
in-place updating - A log is necessary
— overwrite —

Log entries flushed before overwriting main data
Memory

=— UNDO-type log record

WAL : Write-Ahead Logging (2)
WAL protocol requires and

BFIM cannot be overwritten by AFIM on disk
until all have force-written to disk.

The commit operation cannot be completed
until all have force-written.

1
commit

Time

Steal & No-Force (1)
Typical DB employs a steal/no-force strategy

Steal strategy : a transaction can be written to disk
commit before it commits

T commit

T2
T3 =

Time

i E R Can be Used for

i~ other transactions
Updated (T3)

data by T2 L4

D ©

before T2 commits

Steal & No-Force (2)

No-Force strategy : a transaction need not to be
written to disk immediately
when it commits

commit
T e T
T2
T3

Time

] cache [1 cache
AAE If T3 needs the same data,

Updatedl it must be copied again

data by T2 L4

% %ﬂ < Force strategy

when T2 commits

Checkpointing
Checkpoint
- All DMBS buffers modified are wrote out to disk.
- A record is written into the log. ([checkpoint])
- Periodically done
(e.g. every n min. or every n transaction

Checkpoint

Time

Transaction Rollback (1)
Rollback / Roll foward

Recovery method

T1 : 1 : Not necesary
T2 — : Roll foward

2
T3= 3 : Rollback
T4 4 : Roll forward
T5 5 : Roll back
: Time
Checkpoint

Steal : transaction may be written on disk
before it commits

Transaction Rollback (2)
example :

read(A) write(A) read(B), write(B)
T1— | i

read(A) write(A) read(C) write(C)
T2 f } f—+

Time

Checkpoint Crash’

i) transfer $2,000 to Mr. A’s account
ii) transfer $2,500 to Mr B’s account ...

i) withdraw $1,500 from Mr.A’s account
i) transfer $1,500 to Mr.C'’s account

Transaction Rollback (3)

Cascading Rollback

-T1 is interrupted
(needs rollback)

System Log

[checkpoint]
[start_transaction, T1]
[read_item, T1, A]
[write_item, T1, A, 10, 2010]
[start_transaction, T2]

[read_item, T2, A]

[write_item, T2, A, 2010, 510]
[read_item, T1, B]

[read_item, T2, C]

[write_item, T2, C, 1500, 31500]

~rn CRASH wvnn

/‘\
r(A) WEA) / r (B)
T1—+ |

(A WA O wd
25 } —ti

Checkpoint Crash

$10 | $30,000

-T2 uses value
modified by T1
(also needs

430,000 rollback)
$31,500

Categorization of Recovery Algorithm

Deferred update

— Do not physically update the database on disk
until after a transaction reaches its commit point

—Known as the No-UNDO/REDO algorithm

Immediate update

— The database may be updated before a
transaction reaches its commit point

—Both UNDO and REDO are required

—Known as the UNDO/REDO algorithm

