Introduction to SQL

Select-From-Where Statements
Subqueries
Grouping and Aggregation
By Prof. Ullman @ Stanford

1

Why SQL?

©SQL is a very-high-level language.
+ Say “what to do” rather than “how to do it.”
+ Avoid a lot of data-manipulation details
needed in procedural languages like C++ or
Java.
@ Database management system figures
out “best” way to execute query.
+ Called “query optimization.”

Select-From-Where Statements

SELECT desired attributes
FROM one or more tables
WHERE condition about tuples of

Our Running Example

@ All our SQL queries will be based on the
following database schema.
+ Underline indicates key attributes.

Beers(name, manf)

the tables Bars(name, addr, city, phone, license)
Drinkers(name, addr, city, phone)
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)
Example Result of Query
@ Using Beers(name, manf), what beers are name
made by Anheuser-Busch? Bud

SELECT nane Bud Lite

FROM Beer s Michelob

VWHERE manf = ' Anheuser - Busch’;

Notice SQL uses single-quotes for strings.
SQL is case-insensitive, except inside strings.

The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Anheuser-Busch, such as Bud.

6

Meaning of Single-Relation Query

@ Begin with the relation in the FROM
clause.

@ Apply the selection indicated by the
WHERE clause.

@ Apply the extended projection indicated
by the SELECT clause.

Operational Semantics

name manf

Include tv.name
in the result

Check if
Anheuser-Busch

\ Bud | Anheuser-Busch

Operational Semantics

@ To implement this algorithm think of a
tuple variable ranging over each tuple
of the relation mentioned in FROM.

@ Check if the “current” tuple satisfies the
WHERE clause.

@ If so, compute the attributes or
expressions of the SELECT clause using
the components of this tuple.

* In SELECT clauses

@ When there is one relation in the FROM
clause, * in the SELECT clause stands for
“all attributes of this relation.”

@ Example using Beers(name, manf):
SELECT *
FROM Beer s
WHERE manf = ' Anheuser - Busch’ ;

10

Result of Query:
name manf
Bud Anheuser-Busch
Bud Lite Anheuser-Busch
Michelob Anheuser-Busch

Now, the result has each of the attributes
of Beers.

1

Renaming Attributes

@ If you want the result to have different
attribute names, use “AS <new name>" to
rename an attribute.

@ Example based on Beers(name, manf):
SELECT nanme AS beer, manf
FROM Beer s
WHERE manf = ' Anheuser - Busch’

12

Result of Query:

beer manf

Bud

Anheuser-Busch

Expressions in SELECT Clauses

@ Any expression that makes sense can
appear as an element of a SELECT clause.

Bud Lite Anheuser-Busch @ Example: from Sells(bar, beer, price):
Michelob Anheuser-Busch SELECT bar, beer,
price * 114 AS pricel nYen
FROM Sel | s;
Another Example: Constant
bar beer priceInYen ®From Likes(drinker, beer) :
Joe’s Bud 285

Sue’s Miller 342

15

SELECT dri nker,

"li kes Bud’ AS wholLi kesBud
FROM Li kes
WHERE beer = ' Bud’;

16

Result of Query

drinker| wholikesBud

Sally
Fred

likes Bud
likes Bud

17

Complex Conditions in WHERE
Clause

@ From Sells(bar, beer, price), find the price
Joe's Bar charges for Bud:

Notice how we
SELECT price get a single-quote
in strings.
FROM Sel | s
VWHERE bar = 'Joe’’s Bar’ AND
beer = ’'Bud’;

18

Patterns

© WHERE clauses can have conditions in
which a string is compared with a
pattern, to see if it matches.

@ General form:
<Attribute> LIKE <pattern> or
<Attribute> NOT LIKE <pattern>

@ Pattern is a quoted string with % =
“any string”; _ = “any character.”

19

Example

@ From Drinkers(name, addr, phone) find
the drinkers with exchange 555:

SELECT nane
FROM Dri nkers
VWHERE phone LIKE ’9%55-_ _ _ _’;

20

NULL Values

@ Tuples in SQL relations can have NULL
as a value for one or more components.

@ Meaning depends on context. Two
common cases:

* Missing value : e.g., we know Joe’s Bar has
some address, but we don‘t know what it is.

* Inapplicable : e.g., the value of attribute
spouse for an unmarried person.

21

Comparing NULL's to Values

@ The logic of conditions in SQL is really 3-
valued logic: TRUE, FALSE, UNKNOWN.

#® When any value is compared with NULL,
the truth value is UNKNOWN.

@ But a query only produces a tuple in the
answer if its truth value for the WHERE
clause is TRUE (not FALSE or UNKNOWN).

22

Three-Valued Logic

To understand how AND, OR, and NOT
work in 3-valued logic, think of TRUE =
1, FALSE = 0, and UNKNOWN = -,

@ AND = MIN; OR = MAX, NOT(x) = 1-x.

@®Example:

TRUE AND (FALSE OR NOT(UNKNOWN))
= MIN(1, MAX(0, (1 -2))) =
MIN(1, MAX(0, 2) = MIN(1, 2) = -.

23

Surprising Example

@ From the following Sells relation:

bar beer price
Joe's Bar| Bud NULL
SELECT bar
FROM Sells
WHERE price < 2.00 OR price >= 2.00;
UNKNOWN UNKNOWN

UNKNOWN 2

Reason: 2-Valued Laws !=
3-Valued Laws
© Some common laws, like commutativity
of AND, hold in 3-valued logic.

€ But not others, e.g., the “law of the
excluded middle”: p OR NOT p = TRUE.

+ When p = UNKNOWN, the left side is
MAX(Y2, (1 - 12)) = V2 I= 1.

25

Multirelation Queries

@ Interesting queries often combine data
from more than one relation.

@ We can address several relations in one
query by listing them all in the FROM
clause.

@ Distinguish attributes of the same name
by “<relation>.<attribute>"

26

Example

@ Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked
by at least one person who frequents Joe’s
Bar.

SELECT beer
FROM Li kes, Frequents
VWHERE bar = 'Joe’’s Bar’ AND

Frequents. dri nker =
Li kes. dri nker;

27

Formal Semantics

@ Almost the same as for single-relation
queries:

1. Start with the product of all the relations
in the FROM clause.

2. Apply the selection condition from the
WHERE clause.

3. Project onto the list of attributes and
expressions in the SELECT clause.

28

Operational Semantics

@ Imagine one tuple-variable for each
relation in the FROM clause.

+ These tuple-variables visit each
combination of tuples, one from each
relation.

@ If the tuple-variables are pointing to
tuples that satisfy the WHERE clause,
send these tuples to the SELECT clause.

29

Example
drinker bar drinker | beer
tvi | tv2
\ Sally Bud |—
Sally ~ | Joe's
check .
for Joe Likes
Frequents
check these to output

are equal

30

Explicit Tuple-Variables

@ Sometimes, a query needs to use two
copies of the same relation.

@ Distinguish copies by following the
relation name by the name of a tuple-
variable, in the FROM clause.

@ It's always an option to rename
relations this way, even when not
essential.

31

Example

@ From Beers(name, manf), find all pairs
of beers by the same manufacturer.
+ Do not produce pairs like (Bud, Bud).

+ Produce pairs in alphabetic order, e.g.
(Bud, Miller), not (Miller, Bud).

SELECT b1l. nane, b2.nane

FROM Beers bl, Beers b2

VWHERE bl. manf = b2. manf AND
bl. nanme < b2. nane;

32

Subqueries

@ A parenthesized SELECT-FROM-WHERE
statement (svbguery) can be used as a
value in a number of places, including
FROM and WHERE clauses.

@®Example: in place of a relation in the
FROM clause, we can place another
query, and then query its result.

+ Better use a tuple-variable to name tuples
of the result.

Subqueries That Return One Tuple

@ If a subquery is guaranteed to produce
one tuple, then the subquery can be
used as a value.

+ Usually, the tuple has one component.

+ A run-time error occurs if there is no tuple
or more than one tuple.

Example

€ From Sells(bar, beer, price), find the
bars that serve Miller for the same price
Joe charges for Bud.

€ Two queries would surely work:
1. Find the price Joe charges for Bud.
2. Find the bars that serve Miller at that price.

35

Query + Subquery Solution

SELECT bar
FROM Sells
WHERE beer = 'Miller’ AND
price =
The price at

which Joe
sells Bud

36

The IN Operator

@ <tuple> IN <relation> is true if and
only if the tuple is a member of the
relation.

+ <tuple> NOT IN <relation> means the
opposite.

@ IN-expressions can appear in WHERE
clauses.

@ The <relation> is often a subquery.

37

Example

@ From Beers(name, manf) and Likes(drinker,
beer), find the name and manufacturer of each
beer that Fred likes.

SELECT *
FROM Beers

WHERE name IN

The set of
beers Fred /

likes

(SELECT beer
FROM Likes
WHERE drinker = Fred");

38

The Exists Operator

@ EXISTS(<relation>) is true if and only
if the <relation> is not empty.

@ Example: From Beers(name, manf) ,
find those beers that are the unique
beer by their manufacturer.

39

Example Query with EXISTS

SELECT name
FROM Beers b1l

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute.

WHERE NOT EXISTS(

Set of SELECT &

beers

Notice the

with the FROM Beers | SQL ot
same equals”
manfas | WHERE manf = bl. operator

b1, but
not the

name <> bl.name);

same
beer

The Operator ANY

@ x = ANY(<relation>) is a boolean
condition true if x equals at least one tuple
in the relation.

@ Similarly, = can be replaced by any of the
comparison operators.

@®Example: x> ANY(<relation>) means xis
not the smallest tuple in the relation.

+ Note tuples must have one component only.

41

The O

@ Similarly, x <>
true if and only

perator ALL

ALL(<relation>) is
if for every tuple £ in

the relation, xis not equal to &

+ That is, xis not a member of the relation.
€ The <> can be replaced by any

comparison operator.

@®Example: x >=
means there is
the relation.

ALL(<relation>)
no tuple larger than x in

42

Example

@®From Sells(bar, beer, price), find the
beer(s) sold for the highest price.

SELECT beer _
FROM Sells sl
WHERF less than any price.
SELECT price
FROM Sells);

Union, Intersection, and Difference

@ Union, intersection, and difference of
relations are expressed by the following
forms, each involving subqueries:

+ (subquery) UNION (subquery)
+ (subquery) INTERSECT (subquery)
+ (subquery) EXCEPT (subquery)

Example

@ From relations Likes(drinker, beer),
Sells(bar, beer, price), and
Frequents(drinker, bar), find the
drinkers and beers such that:

1. The drinker likes the beer, and

2. The drinker frequents at least one bar
that sells the beer.

45

Solution
The drinker frequents
(SELECT * FROM Likes) Eet:: that sells the

INTERSECT

46

Bag Semantics

@ Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference is set semantics.

+ That is, duplicates are eliminated as the
operation is applied.

47

Motivation: Efficiency

©® When doing projection, it is easier to
avoid eliminating duplicates.
+ Just work tuple-at-a-time.
@ For intersection or difference, it is most
efficient to sort the relations first.
+ At that point you may as well eliminate the
duplicates anyway.

Controlling Duplicate Elimination

@ Force the result to be a set by
SELECT DISTINCT . ..

@ Force the result to be a bag (i.e., don't
eliminate duplicates) by ALL, as in
... UNION ALL . ..

49

Example: DISTINCT

@®From Sells(bar, beer, price), find all the
different prices charged for beers:
SELECT DI STINCT price
FROM Sel | s;
@ Notice that without DISTINCT, each
price would be listed as many times as
there were bar/beer pairs at that price.

Example: ALL

@ Using relations Frequents(drinker, bar) and
Likes(drinker, beer):
(SELECT dri nker FROM Frequents)
EXCEPT ALL
(SELECT drinker FROM Li kes);
@ Lists drinkers who frequent more bars than
they like beers, and does so as many times
as the difference of those counts.

51

Join Expressions

@ SQL provides several versions of (bag)
joins.

@ These expressions can be stand-alone
queries or used in place of relations in a
FROM clause.

52

Products and Natural Joins

@ Natural join:
R NATURAL JOIN S;
@ Product:
R CROSS JOIN S;
@ Example:
Li kes NATURAL JO N Serves;

@ Relations can be parenthesized subqueries, as
well.

Theta Join

@R JOIN S ON <condition>

@ Example: using Drinkers(name, addr) and
Frequents(drinker, bar):

Drinkers JON Frequents ON
nanme = dri nker;

gives us all (@, a, d, b) quadruples such
that drinker ¢ lives at address a and
frequents bar 5.

Outerjoins

@ R OUTER JOIN S is the core of an
outerjoin expression. It is modified by:
1. Optional NATURAL in front of OUTER.
2. Optional ON <condition> after JOIN.
3. Optional LEFT, RIGHT, or FULL before
OUTER.
@ LEFT = pad dangling tuples of R only.
@ RIGHT = pad dangling tuples of S only.
@ FULL = pad both; this choice is the default.

55

Aggregations

4 SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on
the column.

@ Also, COUNT(*) counts the number of
tuples.

Example: Aggregation

@®From Sells(bar, beer, price), find the
average price of Bud:
SELECT AVGQ pri ce)
FROM Sel | s
WHERE beer = ’'Bud’;

57

Eliminating Duplicates in an
Aggregation

@ Use DISTINCT inside an aggregation.
@®Example: find the number of different
prices charged for Bud:
SELECT COUNT(DI STI NCT pri ce)
FROM Sel | s
WHERE beer = ’'Bud’;

NULL's Ignored in Aggregation

@ NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column.

@ But if there are no non-NULL values in
a column, then the result of the
aggregation is NULL.

59

Example: Effect of NULL's

The number of bars
that sell Bud.

The number of bars
that sell Bud at a
known price.

10

Grouping

¢ We may follow a SELECT-FROM-
WHERE expression by GROUP BY and a
list of attributes.

@ The relation that results from the
SELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group.

61

Example: Grouping

@ From Sells(bar, beer, price), find the
average price for each beer:

SELECT beer, AV pri ce)
FROM Sel | s
GROUP BY beer;

62

Example: Grouping

@ From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each drinker
the average price of Bud at the bars they
frequent:

SELECT drinker, AVG(price)

Compute
drinker-bar-
price for Bud

tuples first,
then group
by drinker.

GROUP BY drinker;

Restriction on SELECT Lists
With Aggregation

@ If any aggregation is used, then each
element of the SELECT list must be
either:

1. Aggregated, or
2. An attribute on the GROUP BY list.

Illegal Query Example

@ You might think you could find the bar
that sells Bud the cheapest by:

@ But this query is illegal in SQL.

65

HAVING Clauses

@ HAVING <condition> may follow a
GROUP BY clause.

@ If so, the condition applies to each
group, and groups not satisfying the
condition are eliminated.

11

Example: HAVING

@ From Sells(bar, beer, price) and
Beers(name, manf), find the average
price of those beers that are either
served in at least three bars or are
manufactured by Pete’s.

67

Solution

Beer groups with at least

SELECT beer, AVG(price) 3 non-NULL bars and also

beer groups where the

FROM Sells manufacturer is Pete’s.
GROUP BY beer y
HAVING COUNT(bar) >= 3 OR
beer IN (SELECT name fBaecet[lsrergatT;_
FROM Beers Pete’s.

WHERE manf = 'Pete”s")

Requirements on HAVING
Conditions

@ These conditions may refer to any
relation or tuple-variable in the FROM
clause.

@ They may refer to attributes of those
relations, as long as the attribute makes
sense within a group; i.e., it is either:

1. A grouping attribute, or
2. Aggregated.

69

12

