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Interpreting the algorithmic type inference rules
Type inference for variables
Type inference for lambdas

Examples

What it's all about

The issue is how to turn nondeterministic rules
into a deterministic type inference algorithm

The algorithm is presented in terms of inference
rules that "return" a substitution as well as a type!

Unification is the way we find substitutions

Type inference judgment

In 6T I e : 7, the substitution theta and the type
tau are outputs

The type may contain type variables

The typing context contains type schemes




Type inference for APPLY

+ Typechecking: The:m x...x7, =7
F'kFei:m, 1<i<n

' APPLY (e, €1,...,ep,) 1 T

+ Inference:

O e,er,....en T T1,...,Tn
0'(7) =60 (1 X ...x 1, — a),where « is fresh

(0" 0 )T = APPLY (e, €1,...,6,) : 0

Operational interpretation

+ Infer types 7, 71,...,7, for €,e1,...,¢€n,
yielding substitution ¢

+ Pick fresh type var « and unify 7 with
TlyeooyTn — Q) yielding 0’

+ Answer type is 6'«, answer substitution is ¢’ o 6

Soundness

+ Soundhness of the type inference rules means that
if we infer a type for e using the type inference
system, then e has that type according to the type
checking system.

+ Soundness can be proved by induction on the
structure of a type inference.

Example

+ Let's infer a type for (car '(1))

APPLY(PRIM(car), LITERAL(PAIR(NUM(T),NIL)))

+ Type scheme Yo.a 1ist — «afor car is found in
environment, and we take its most general
instance, or o list — «; for the literal we use the
rule on p. 236 to get int list; our substitution is
still "empty", or id.

+ So now we have types for the function and for its
argument, and we want to match them up.




Example (cont'd)

+ We pick a fresh type variable 5 and unify
a list — a with int 1ist — 3; the answer
substitution is 0" = {a + int, 3 + int}

+ So the answer type is '3 = int
+ and the answer substitution is

0’ oid = {a +— int, 3 — int}

+ Notice how unification implicitly filled in the type
application (@ car int)

Type inference for variables

+ The typing rule for variables is nondeterministic:
INz)=0 T<0

I'Fx:71

+ To make it algorithmic, we use the most general
instance of the type scheme:

I'(z) =0 7 = freshinstance(o)

I'Fx:7

Most general instance

+ If o is a type scheme and T is a most general
instance of o, what could T be?

+ Example: g is V&, B.axB— () list

could T be BixBa—(B1xP2) list?
how about B1xB1—=(B1xB1) list?
intxbool— (intxbool) list?

Type inference for lambda

+ Again the typing rule is nondeterministic:

My —1,...,ep—Th} e T

['F LAMBDA((Z1,...,Zpn),€) i T4 X ... X Tpy — T

+ We introduce fresh type variables:

a1, ...,qn, are fresh
I"=T{x1 — V.aq,...,z, — V.a,}
ol te: T

O = LAMBDA((x1,...,Zp),€) : Oag X ... X Oa, — T




Operational interpretation

+ Pick n fresh type variables and form type schemes
V.«

+ Bind the x; to V.t to form the new typing
environment [

+ Infer a type T for e in "', yielding substitution 6

+ The answer substitution is 8 and the answer type
is Oxix...x00,— T

Example

+ Let's infer a type for (lambda (x) (+ x 1))
LAMBDA(<x>,APPLY (PRIM(+),VAR(x), LITINUM(1)))

+ Pick a fresh type variable o and bind x to V.«

+ Infer a type for the body in the new environment

+ Use the rule for APPLY

Example (cont'd)

+ Environment: {x = V.x}

+ Infer types for PRIM(+), VAR(x), and LITINUM(1)),
getting intxint—=int, &, and int; the substitution is
6=id

+ Pick a fresh type variable B, and unify intxint—=int
with axint—=B, yielding substitution 0' =
{xw>int, P> int}

+ Answer: 0'B =int, and 8'-6 = 0'

Example (cont'd)

+ Now we have typed the body of the lambda, so
the answer substitution is 8', which is
{oc=int,fwint}, and the answer type is 8'a—int,
which is int—int.

+ In this example the algorithm has "filled in" the
unstated type of the formal parameter x in
(lambda (x) (+ x 1))




Let-binding

+ Your homework is to work out a type inference
example involving let. You need to understand
free variables and the generalize operation.

Free variables

The free type variables of a type scheme are those
not bound by V

For instance, in Vo.ac— B, B is free (and o is
bound)

How about in V.x?

Generalization

+ To type let-binding, we generalize an inferred
type t to create a type scheme, by "closing over"
the variables that are free in t, but not over the
variables free in the typing environment.

+ E.g., generalize(x— B, {x=V.a}) is VB.x—p






