CS301
Session 15

Agenda

Interpreting the algorithmic type inference rules
Type inference for variables
Type inference for lambdas

Examples

What it's all about

The issue is how to turn nondeterministic rules
into a deterministic type inference algorithm

The algorithm is presented in terms of inference
rules that "return" a substitution as well as a type!

Unification is the way we find substitutions

Type inference judgment

In 6T I e : 7, the substitution theta and the type
tau are outputs

The type may contain type variables

The typing context contains type schemes

Type inference for APPLY

+ Typechecking: The:m x...x7, =7
F'kFei:m, 1<i<n

' APPLY (e, €1,...,ep,) 1 T

+ Inference:

O e,er,....en T T1,...,Tn
0'(7) =60 (1 X ...x 1, — a),where « is fresh

(0" 0)T = APPLY (e, €1,...,6,) : 0

Operational interpretation

+ Infer types 7, 71,...,7, for €,e1,...,¢€n,
yielding substitution ¢

+ Pick fresh type var « and unify 7 with
TlyeooyTn — Q) yielding 0’

+ Answer type is 6'«, answer substitution is ¢’ o 6

Soundness

+ Soundhness of the type inference rules means that
if we infer a type for e using the type inference
system, then e has that type according to the type
checking system.

+ Soundness can be proved by induction on the
structure of a type inference.

Example

+ Let's infer a type for (car '(1))

APPLY(PRIM(car), LITERAL(PAIR(NUM(T),NIL)))

+ Type scheme Yo.a 1ist — «afor car is found in
environment, and we take its most general
instance, or o list — «; for the literal we use the
rule on p. 236 to get int list; our substitution is
still "empty", or id.

+ So now we have types for the function and for its
argument, and we want to match them up.

Example (cont'd)

+ We pick a fresh type variable 5 and unify
a list — a with int 1ist — 3; the answer
substitution is 0" = {a + int, 3 + int}

+ So the answer type is '3 = int
+ and the answer substitution is

0’ oid = {a +— int, 3 — int}

+ Notice how unification implicitly filled in the type
application (@ car int)

Type inference for variables

+ The typing rule for variables is nondeterministic:
INz)=0 T<0

I'Fx:71

+ To make it algorithmic, we use the most general
instance of the type scheme:

I'(z) =0 7 = freshinstance(o)

I'Fx:7

Most general instance

+ If o is a type scheme and T is a most general
instance of o, what could T be?

+ Example: g is V&, B.axB— () list

could T be BixBa—(B1xP2) list?
how about B1xB1—=(B1xB1) list?
intxbool— (intxbool) list?

Type inference for lambda

+ Again the typing rule is nondeterministic:

My —1,...,ep—Th} e T

['F LAMBDA((Z1,...,Zpn),€) i T4 X ... X Tpy — T

+ We introduce fresh type variables:

a1, ...,qn, are fresh
I"=T{x1 — V.aq,...,z, — V.a,}
ol te: T

O = LAMBDA((x1,...,Zp),€) : Oag X ... X Oa, — T

Operational interpretation

+ Pick n fresh type variables and form type schemes
V.«

+ Bind the x; to V.t to form the new typing
environment [

+ Infer a type T for e in "', yielding substitution 6

+ The answer substitution is 8 and the answer type
is Oxix...x00,— T

Example

+ Let's infer a type for (lambda (x) (+ x 1))
LAMBDA(<x>,APPLY (PRIM(+),VAR(x), LITINUM(1)))

+ Pick a fresh type variable o and bind x to V.«

+ Infer a type for the body in the new environment

+ Use the rule for APPLY

Example (cont'd)

+ Environment: {x = V.x}

+ Infer types for PRIM(+), VAR(x), and LITINUM(1)),
getting intxint—=int, &, and int; the substitution is
6=id

+ Pick a fresh type variable B, and unify intxint—=int
with axint—=B, yielding substitution 0' =
{xw>int, P> int}

+ Answer: 0'B =int, and 8'-6 = 0'

Example (cont'd)

+ Now we have typed the body of the lambda, so
the answer substitution is 8', which is
{oc=int,fwint}, and the answer type is 8'a—int,
which is int—int.

+ In this example the algorithm has "filled in" the
unstated type of the formal parameter x in
(lambda (x) (+ x 1))

Let-binding

+ Your homework is to work out a type inference
example involving let. You need to understand
free variables and the generalize operation.

Free variables

The free type variables of a type scheme are those
not bound by V

For instance, in Vo.ac— B, B is free (and o is
bound)

How about in V.x?

Generalization

+ To type let-binding, we generalize an inferred
type t to create a type scheme, by "closing over"
the variables that are free in t, but not over the
variables free in the typing environment.

+ E.g., generalize(x— B, {x=V.a}) is VB.x—p

