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Interpreting the algorithmic type inference rules

Type inference for variables

Type inference for lambdas

Examples

What it's all about
The issue is how to turn nondeterministic rules 
into a deterministic type inference algorithm

The algorithm is presented in terms of inference 
rules that "return" a substitution as well as a type!

Unification is the way we find substitutions
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Type inference judgment
In               , the substitution theta and the type 
tau are outputs

The type may contain type variables

The typing context contains type schemes
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θΓ ! e : τ



Type inference for APPLY
Type checking:

Inference:
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θΓ ! e, e1, . . . , en : τ̂ , τ1, . . . , τn

θ′(τ̂) = θ′(τ1 × . . .× τn → α),where α is fresh

(θ′ ◦ θ)Γ ! apply(e, e1, . . . , en) : θ′α

Γ ! e : τ1 × . . .× τn → τ
Γ ! ei : τi, 1 ≤ i ≤ n

Γ ! apply(e, e1, . . . , en) : τ

Operational interpretation
Infer types                     for                    , 
yielding substitution 

Pick fresh type var     and unify    with
                       , yielding 

Answer type is      , answer substitution is 
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τ̂ , τ1, . . . , τn e, e1, . . . , en

θ

α τ̂

τ1, . . . , τn → α θ′

θ′α θ′ ◦ θ

Soundness
Soundness of the type inference rules means that 
if we infer a type for e using the type inference 
system, then e has that type according to the type 
checking system.

Soundness can be proved by induction on the 
structure of a type inference.
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Example
Let's infer a type for (car '(1))
APPLY(PRIM(car),LITERAL(PAIR(NUM(1),NIL)))

Type scheme                          for car is found in 
environment, and we take its most general 
instance, or                    ; for the literal we use the 
rule on p. 236 to get                ; our substitution is 
still "empty", or id.

So now we have types for the function and for its 
argument, and we want to match them up.
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int list

∀α.α list→ α

α list→ α



Example (cont'd)
We pick a fresh type variable    and unify
                    with                       ; the answer 
substitution is 

So the answer type is 

and the answer substitution is 

Notice how unification implicitly filled in the type 
application (@ car int)
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β
α list→ α int list→ β

θ′ = {α !→ int,β !→ int}

θ′β = int

θ′ ◦ id = {α "→ int,β "→ int}

Type inference for variables
The typing rule for variables is nondeterministic:

To make it algorithmic, we use the most general 
instance of the type scheme:
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Γ(x) = σ τ <: σ

Γ ! x : τ

Γ(x) = σ τ = freshinstance(σ)

Γ ! x : τ

Most general instance
If ! is a type scheme and " is a most general 
instance of !, what could " be?

Example: ! is ∀#,$.#!$%(#!$) list

  could " be $1!$2%($1!$2) list?
  how about $1!$1%($1!$1) list?
  int!bool%(int!bool) list?
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Type inference for lambda
Again the typing rule is nondeterministic:

We introduce fresh type variables:

12

Γ{x1 !→ τ1, . . . , xn !→ τn} # e : τ

Γ # lambda(〈x1, . . . , xn〉, e) : τ1 × . . .× τn → τ

α1, . . . ,αn are fresh
Γ′ = Γ{x1 !→ ∀.α1, . . . , xn !→ ∀.αn}
θΓ′ $ e : τ

θΓ $ lambda(〈x1, . . . , xn〉, e) : θα1 × . . .× θαn → τ



Operational interpretation
Pick n fresh type variables and form type schemes
∀.#i

Bind the xi to ∀.#i to form the new typing 

environment ''

Infer a type " for e in '', yielding substitution &

The answer substitution is & and the answer type 
is &#1!...!&#n% "
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Example
Let's infer a type for (lambda (x) (+ x 1))
LAMBDA(<x>,APPLY(PRIM(+),VAR(x),LIT(NUM(1)))

Pick a fresh type variable # and bind x to ∀.#

Infer a type for the body in the new environment

Use the rule for APPLY

14

Example (cont'd)
Environment: {x % ∀.#}

Infer types for PRIM(+), VAR(x), and LIT(NUM(1)), 
getting int!int%int, #, and int; the substitution is 
& = id

Pick a fresh type variable $, and unify int!int%int 
with #!int%$, yielding substitution &' = 
{#!int,$!int}

Answer: &'$ = int, and &'"& = &'
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Example  (cont'd)
Now we have typed the body of the lambda, so  
the answer substitution is &', which is  
{#!int,$!int}, and the answer type is &'#%int, 
which is int%int.

In this example the algorithm has "filled in" the 
unstated type of the formal parameter x in 
(lambda (x) (+ x 1))
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Let-binding
Your homework is to work out a type inference 
example involving let.  You need to understand 
free variables and the generalize operation.
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Free variables
The free type variables of a type scheme are those 
not bound by ∀

For instance, in ∀#.#%$, $ is free (and # is 

bound)

How about in ∀.#?
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Generalization
To type let-binding, we generalize an inferred 
type t to create a type scheme, by "closing over" 
the variables that are free in t, but not over the 
variables free in the typing environment.

E.g., generalize(#%$,{x!∀.#}) is ∀$.#%$
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