
CS301
Session 13

1

Agenda

2

Rules for polymorphic typing

Lambda for types
Remember the basic idea: abstract over types

Quantified types:

(forall ('a1 ... 'an) type)

Type abstraction:

(type-lambda ('a1 ... 'an) exp)

Type application:

(@ exp type1 ... typen)

3

∀α1, . . . ,αn . τ

tylambda(α1, . . . ,αn, e)

tyapply(e, τ1, . . . , τn)

Type expressions versus types

4

Our language of types is getting fairly complex:

datatype tyex = TYCON of name (* constructor *)
 | TYVAR of name (* type variable *)
 | CONAPP of tyex * tyex list
 (* apply a constructor *)
 | FORALL of name list * tyex
 (* polymorphic type *)

Type constructors are things like list, function, pair, and so on

Constructors are applied to other types to obtain types, e.g.
(list int)

Polymorphic types are not applied; but the values they
describe are applied to types

Classifying type expressions
Instead of having a set of "type-formation" rules like

we have a kind system "on top of" our type system,
to classify our type expressions.

This is used to ensure that types are well formed

5

τ1 and τ2 are types

τ1 → τ2 is a type

Kinds
A kind environment classifies our types:

and constructors:

To extend the language we can add to the kind
environment:

6

int :: ∗, bool :: ∗, unit :: ∗

list :: ∗ ⇒ ∗,→:: ∗ × ∗ ⇒ ∗, array :: ∗ ⇒, . . .

pair :: ∗ × ∗ ⇒ ∗, sum :: ∗ × ∗ ⇒ ∗

Using kinds
Kinding rules tell when type expressions are well
formed

E.g.,

7

µ ∈ dom ∆

∆ " tycon(µ) :: ∆(µ)

list ∈ dom ∆

∆ " tycon(list) :: ∗ ⇒ ∗

Constructor applications
This kinding rule is the twin of the typing rule for
function application:

We can use this rule to check that (list int) is
a properly formed type.

8

∆ ! τ :: κ1 × . . .× κn ⇒ κ
∆ ! τ1 :: κ1 . . .∆ ! τn :: κn

∆ ! conapp(τ, [τ1, . . . , τn]) :: κ

A special case: tuples
The tuple type constructor has variable arity:

9

∆ ! τi :: ∗, 1 ≤ i ≤ n

∆ ! conapp(tycon(tuple, [τ1, . . . , τn]) :: ∗

Quantified types
Where the polymorphism action is:

This rule is the "twin" of the typing rule for
functions!

We look up type variables in the kind environment

10

α ∈ dom ∆

∆ " tyvar(α) :: ∆(α)

∆{α1 :: ∗, . . . ,αn :: ∗} " τ :: ∗

∆ " forall(〈α1, . . . ,αn〉, τ) :: ∗

An important restriction
Type variables must have kind *
...so we can't quantify over, say, type constructors

We can say "for any type", but not "for any type
constructor"

Other type systems (e.g. Haskell's) relax this
restriction

11

A side excursion
The word "pair" in the typed uScheme interpreter is
heavily overloaded

"pair" is a type constructor (in the full language)

"pair" is a polymorphic function that constructs
pairs

"PAIR" is an ML type constructor used to represent
values of both list and pair (Scheme) types in the
interpreter

12

The uScheme type system
The typing rules are much like typed Impcore, but

only one type environment

a kind environment is needed for type
constructors and type variables

no special rules for constructors like array

13

Typing let-binders
Let and let*, no letrec

We view let* as syntactic sugar for nested let

14

∆,Γ ! ei : τi, 1 ≤ i ≤ n
∆,Γ{x1 #→ τ1, . . . , xn #→ τn} ! e : τ

∆,Γ ! let(〈x1, e1, . . . , xn, en〉, e) : τ

∆,Γ ! let(〈x1, e1〉, letstar(〈x2, e2, . . . , xn, en〉, e)) : τ, n > 0

∆,Γ ! letstar(〈x1, e1, . . . , xn, en〉, e) : τ

∆,Γ ! e : τ

∆,Γ ! letstar(〈〉, e) : τ

Typing lambda
We check that the declared parameter types are
well formed

Then assume that the variables have these types
while type-checking the body.

15

∆ ! τi :: ∗, 1 ≤ i ≤ n
∆,Γ{x1 $→ τ1, . . . , xn $→ τn} ! e : τ

∆,Γ ! lambda(〈x1 : τ1, . . . , xn : τn〉, e) : τ1 × . . .× τn → τ

Typing APPLY
Same as for Impcore, except that the type of the
function is no longer stored in a function
environment

16

∆,Γ ! ei : τi, 1 ≤ i ≤ n
∆,Γ ! e : τ1 × . . .× τn → τ

∆,Γ ! apply(e, e1, . . . , en) : τ

Typing TYLAMBDA
Instead of putting new ordinary variables in the
type environment, we put new type variables in
the kind environment:

17

∆{α1 :: ∗, . . . ,αn :: ∗},Γ " e : τ

∆,Γ " tylambda(α1, . . . ,αn, e) : ∀α1 . . .αn.τ

Typing TYAPPLY
We check that the applied term has a
polymorphic type and that the arguments are all
types

The resulting type is constructed by substituting
the arguments for the type variables in the body of
the polymorphic type.

18

∆ ! τi :: ∗, 1 ≤ i ≤ n
∆,Γ ! e : ∀α1 . . .αn.τ

∆,Γ ! tyapply(e, τ1, . . . , τn) : τ [α1 %→ τ1, . . . ,αn %→ τn]

Typing VAL and VAL-REC
Note the different handling of the environment!

19

∆,Γ ! e : τ

∆,Γ ! val(x, e)→ Γ{x #→ τ}

∆,Γ{x !→ τ} # e : τ

∆,Γ # val-rec(x, τ, e)→ Γ{x !→ τ}

Evaluation
No extra work is needed to interpret typed
uScheme! After type checking, types are "thrown
away" and the evaluator works as before - except
for error handling.

But we need to specify the semantics of the new
constructs - type application and abstraction, and
VAL-REC

And we need to be careful with VAL!

20

Type application & abstraction

Forget the types

21

〈e, ρ, σ〉 ⇓ 〈v,σ′〉

〈tyapply(e, τ1, . . . , τn), ρ, σ〉 ⇓ 〈v,σ′〉

〈e, ρ,σ〉 ⇓ 〈v,σ′〉

〈tylambda(〈α1, . . . ,αn〉, e), ρ, σ〉 ⇓ 〈v,σ′〉

VAL - a pitfall
Suppose VAL doesn't always create a new binding

> uscheme
-> (val x 1)
1
-> (define f (n) (+ x n))
f
-> (f 2)
3
-> (val x '(a b))
(a b)
-> (f 2)
error: in (+ x n), expected an integer, but got (a b)

22

VAL pitfall (2)
Since typed uScheme has no run-time type
checking, VAL must create a new variable, not
assign to an old one!

> tuscheme
-> (val x 1)
1 : int
-> (define int f ((int n)) (+ x n))
f : (function (int) int)
-> (f 2)
3 : int
-> (val x '(a b))
(a b) : (list sym)
-> (f 2)
3 : int

23

Evaluating VAL and VAL-REC

Note different handling of environment

This one's for recursive definitions!

24

l !∈ dom σ 〈e, ρ,σ〉 ⇓ 〈v,σ′〉

〈val(x, e), ρ, σ〉 → 〈ρ{x '→ l},σ′〉

l !∈ dom σ
〈e, ρ{x $→ l},σ{l $→ unspecified〉 ⇓ 〈v,σ′〉

〈val-rec(x, τ, e), ρ, σ〉 → 〈ρ{x $→ l},σ′〉

CS301
Session 14

1

Agenda

2

A look at where we are

µML: an introduction

Taking stock
We've built up typed µScheme from Impcore:

Imperative features (assignment, loops,
sequencing, output)

First-class functions, local bindings

Static type checking

Polymorphic types

3

A look ahead
This week: µML, nearly pure functional
programming and type inference

Two weeks for µSmalltalk: object-oriented
programming

Two weeks for µProlog: logic programming

One week for ?

Programming-in-the-large?

Parallel and distributed programming?

4

Pure functional programming
a.k.a. applicative programming

Negatively, lack of mutation & related features
(crudely: "no side effects")

Positively, referential transparency: the value of an
expression depends only on the values of its
subexpressions.

In particular, the value doesn't depend on the
context of the expression!

5

Referential transparency on the web

Google it, but

Beware Wikipedia! (Read it, but read the
dispute as well if you do)

Good: http://foldoc.org/?referential+transparency

6

Benefits of r.t.
Simple semantics

Predictability and provability of programs

Easy compiler optimizations

Easy thread safety

...

7

A seriously r.t. language
Haskell, which also has lazy evaluation, monads,
type classes, and other cool features

8

Back to µML
ML proper does have assignment, but µML does
not.

µML has output and error exit (imperative), and
loops and sequencing (only interesting in the
presence of imperative features).

So the only side effects are output and early
termination.

9

Abstract syntax of µML
Same as µScheme,

but leaving out SET (assignment), WHILE (loops)

and adding in VALREC as in typed µScheme

Values are the same, but subject to a type system

numbers, booleans, and symbols

pairs

closures and primitive functions

10

Operational semantics
No locations - why not?

The only result of expression evaluation is a value

The only result of top-level evaluation is a new
environment

Rule for "begin" shows we don't care about order

11

Contrasting begin rules
µML

µScheme

12

〈begin(), ρ〉 ⇓ nil

〈e1, ρ〉 ⇓ v1

〈e2, ρ〉 ⇓ v2
...
〈en, ρ〉 ⇓ vn

〈begin(e1, e2, . . . , en), ρ〉 ⇓ vn

〈e1, ρ, σ0〉 ⇓ 〈v1,σ1〉
〈e2, ρ, σ1〉 ⇓ 〈v2,σ2〉
...
〈en, ρ, σn−1〉 ⇓ 〈vn,σn〉

〈begin(e1, e2, . . . , en), ρ, σ0〉 ⇓ 〈vn,σn〉

〈begin(), ρ, σ〉 ⇓ 〈bool(#f),σ〉

Closures
As in Scheme, a lambda expression evaluates to a
closure containing the current environment.

To apply a lambda we use the environment when
evaluating the body:

13

〈e, ρ〉 ⇓ 〈〈lambda(〈x1, . . . , xn〉, ec), ρc〉〉
〈e1, ρ〉 ⇓ v1 . . . 〈en, ρ〉 ⇓ vn

〈ec, ρc{x1 $→ v1, . . . , xn $→ vn}〉 ⇓ v

〈apply(e, e1, . . . , en), ρ〉 ⇓ v

Recursion (1)
Up to now we handled semantics of recursion by
early binding and mutation to install a circular
reference in an environment

No mutation - so we simply state the requirement
for a circular reference

We guarantee that we can do it by restricting
recursion to lambda!

14

Recursion (2)
Simple, but tricky: we create an environment that
contains references to itself!

15

e1, . . . , en are all lambda epressions
ρ′ = ρ{x1 !→ v1, . . . , xn !→ vn}
〈e1, ρ′〉 ⇓ v1 . . . 〈en, ρ′〉 ⇓ vn

〈e, ρ′〉 ⇓ v

〈letrec(〈x1, e1, . . . , xn, en〉, e), ρ〉 ⇓ v

Recursion (3)
Implementation uses a simple trick: an ML function
captures the environment in an ML closure

datatype value = NIL
 ...
 | CLOSURE of lambda * (unit -> value env)
fun eval(e, rho) = let fun ...
 | ev(LETX (LETREC, bs, body)) =
 let fun makeRho' () =
 let fun step ((n, e), rho) =
 (case e
 of LAMBDA l => bind(n, CLOSURE (l, makeRho'), rho)
 | _ => raise RuntimeError "non-lambda in letrec")
 in foldl step rho bs
 end
 in eval(body, makeRho'())
 end

Shallow embedding again!

16

Recursion for lambda only!
In µScheme:

(letrec ((odd-even (list2
 (lambda (n) (let ((even (cadr odd-even)))
 (if (< n 0) (even (+ n 1))
 (if (> n 0) (even (- n 1)) #f))))
 (lambda (n) (let ((odd (car odd-even)))
 (if (< n 0) (odd (+ n 1))
 (if (> n 0) (odd (- n 1)) #t)))))))

(list2 ((car odd-even) 3) ((cadr odd-even) 4)))
(#t #t)

In µML:

run-time error: non-lambda in letrec

17

Type system
Once again we have type expressions of

variables !

constructors "

applications of constructors (#1,...,#n)#

note postfix notation

quantification ∀ #1,...,#n.# but quantification is
restricted to the top level or outside

No kinds - the programmer never writes a type

18

Type schemes
In typed µScheme quantifiers are fully general:

-> (val not-too-poly
 (lambda (((forall ('a) (list 'a)) nil))
 ((@ pair (list int) (list bool))
 ((@ cons int) 1 (@ nil int))
 ((@ cons bool) #t (@ nil bool)))))
not-too-poly : (function ((forall ('a) (list 'a)))
 (pair (list int) (list bool)))
-> (not-too-poly '())
((1) #t) : (pair (list int) (list bool))

Not allowed in µML:

-> (val too-poly (lambda (nil)
 (pair (cons 1 nil) (cons #t nil))))

type error: Cannot unify int and bool

19

Type system
We can give a straightforward - but
nondeterministic! - set of typing rules.

Rules for if, begin, apply, etc. are familiar from
typed µScheme (but no kind environment needed)

Rules for variables and lambda are nondeterministic

Rules for let/letrec infer type schemes

20

Variables
A variable can have any type that's an instance of its
type scheme!

E.g. if $(x) = ∀!.!%!, then x can have types

int%int, bool%bool, etc.

This allows for "automatic instantiation" during type
inference.

21

Γ(x) = σ τ <: σ

Γ ! x : τ

Typing lambda
Parameter types are under-specified:

Next time we'll see how to find them using
unification.

22

Γ{x1 !→ τ1, . . . , xn !→ τn} # e : τ

Γ # lambda(〈x1, . . . , xn〉, e) : τ1 × . . .× τn → τ

Next time
Let-polymorphism

Unification

A taste of Hindley-Milner type inference

23

CS301 - Spring 2006

Guide to the reading
The issue is how to turn nondeterministic rules into
a deterministic type inference algorithm

The algorithm is presented in terms of inference
rules that "return" a substitution as well as a type!

Unification is the way we find substitutions

Look at the operational interpretation on p. 265,
and try to generate your own for the rules on p. 266

Try applying some rule to a tiny example

25

	session13-4up.pdf
	session14-4up.pdf

