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Rules for polymorphic typing

Lambda for types
Remember the basic idea: abstract over types

Quantified types:

(forall ('a1 ... 'an) type)

Type abstraction: 

(type-lambda ('a1 ... 'an) exp)

Type application: 

(@ exp type1 ... typen)
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∀α1, . . . ,αn . τ

tylambda(α1, . . . ,αn, e)

tyapply(e, τ1, . . . , τn)

Type expressions versus types
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Our language of types is getting fairly complex:

datatype tyex = TYCON  of name (* constructor *)
              | TYVAR  of name (* type variable *)
              | CONAPP of tyex * tyex list    
                      (* apply a constructor *)
              | FORALL of name list * tyex                          
                      (* polymorphic type *)

Type constructors are things like list, function, pair, and so on

Constructors are applied to other types to obtain types, e.g. 
(list int)

Polymorphic types are not applied; but the values they 
describe are applied to types



Classifying type expressions
Instead of having a set of "type-formation" rules like

we have a kind system "on top of" our type system, 
to classify our type expressions.

This is used to ensure that types are well formed
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τ1 and τ2 are types

τ1 → τ2 is a type

Kinds
A kind environment classifies our types:

and constructors:

To extend the language we can add to the kind 
environment:
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int :: ∗, bool :: ∗, unit :: ∗

list :: ∗ ⇒ ∗,→:: ∗ × ∗ ⇒ ∗, array :: ∗ ⇒, . . .

pair :: ∗ × ∗ ⇒ ∗, sum :: ∗ × ∗ ⇒ ∗

Using kinds
Kinding rules tell when type expressions are well 
formed

E.g., 
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µ ∈ dom ∆

∆ " tycon(µ) :: ∆(µ)

list ∈ dom ∆

∆ " tycon(list) :: ∗ ⇒ ∗

Constructor applications
This kinding rule is the twin of the typing rule for 
function application:

We can use this rule to check that (list int) is 
a properly formed type.
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∆ ! τ :: κ1 × . . .× κn ⇒ κ
∆ ! τ1 :: κ1 . . .∆ ! τn :: κn

∆ ! conapp(τ, [τ1, . . . , τn]) :: κ



A special case: tuples
The tuple type constructor has variable arity:
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∆ ! τi :: ∗, 1 ≤ i ≤ n

∆ ! conapp(tycon(tuple, [τ1, . . . , τn]) :: ∗

Quantified types
Where the polymorphism action is:

This rule is the "twin" of the typing rule for 
functions!

We look up type variables in the kind environment
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α ∈ dom ∆

∆ " tyvar(α) :: ∆(α)

∆{α1 :: ∗, . . . ,αn :: ∗} " τ :: ∗

∆ " forall(〈α1, . . . ,αn〉, τ) :: ∗

An important restriction
Type variables must have kind *
...so we can't quantify over, say, type constructors

We can say "for any type", but not "for any type 
constructor"

Other type systems (e.g. Haskell's) relax this 
restriction
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A side excursion
The word "pair" in the typed uScheme interpreter is 
heavily overloaded

"pair" is a type constructor (in the full language)

"pair" is a polymorphic function that constructs 
pairs

"PAIR" is an ML type constructor used to represent 
values of both list and pair (Scheme) types in the 
interpreter
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The uScheme type system
The typing rules are much like typed Impcore, but

only one type environment

a kind environment is needed for type 
constructors and type variables

no special rules for constructors like array
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Typing let-binders
Let and let*, no letrec

We view let* as syntactic sugar for nested let
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∆,Γ ! ei : τi, 1 ≤ i ≤ n
∆,Γ{x1 #→ τ1, . . . , xn #→ τn} ! e : τ

∆,Γ ! let(〈x1, e1, . . . , xn, en〉, e) : τ

∆,Γ ! let(〈x1, e1〉, letstar(〈x2, e2, . . . , xn, en〉, e)) : τ, n > 0

∆,Γ ! letstar(〈x1, e1, . . . , xn, en〉, e) : τ

∆,Γ ! e : τ

∆,Γ ! letstar(〈〉, e) : τ

Typing lambda
We check that the declared parameter types are 
well formed

Then assume that the variables have these types 
while type-checking the body.
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∆ ! τi :: ∗, 1 ≤ i ≤ n
∆,Γ{x1 $→ τ1, . . . , xn $→ τn} ! e : τ

∆,Γ ! lambda(〈x1 : τ1, . . . , xn : τn〉, e) : τ1 × . . .× τn → τ

Typing APPLY
Same as for Impcore, except that the type of the 
function is no longer stored in a function 
environment
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∆,Γ ! ei : τi, 1 ≤ i ≤ n
∆,Γ ! e : τ1 × . . .× τn → τ

∆,Γ ! apply(e, e1, . . . , en) : τ



Typing TYLAMBDA
Instead of putting new ordinary variables in the 
type environment, we put new type variables in 
the kind environment:
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∆{α1 :: ∗, . . . ,αn :: ∗},Γ " e : τ

∆,Γ " tylambda(α1, . . . ,αn, e) : ∀α1 . . .αn.τ

Typing TYAPPLY
We check that the applied term has a 
polymorphic type and that the arguments are all 
types 

The resulting type is constructed by substituting 
the arguments for the type variables in the body of 
the polymorphic type.
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∆ ! τi :: ∗, 1 ≤ i ≤ n
∆,Γ ! e : ∀α1 . . .αn.τ

∆,Γ ! tyapply(e, τ1, . . . , τn) : τ [α1 %→ τ1, . . . ,αn %→ τn]

Typing VAL and VAL-REC
Note the different handling of the environment!
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∆,Γ ! e : τ

∆,Γ ! val(x, e)→ Γ{x #→ τ}

∆,Γ{x !→ τ} # e : τ

∆,Γ # val-rec(x, τ, e)→ Γ{x !→ τ}

Evaluation
No extra work is needed to interpret typed 
uScheme!  After type checking, types are "thrown 
away" and the evaluator works as before - except 
for error handling.

But we need to specify the semantics of the new 
constructs - type application and abstraction, and 
VAL-REC

And we need to be careful with VAL!
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Type application & abstraction

Forget the types
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〈e, ρ, σ〉 ⇓ 〈v,σ′〉

〈tyapply(e, τ1, . . . , τn), ρ, σ〉 ⇓ 〈v,σ′〉

〈e, ρ,σ〉 ⇓ 〈v,σ′〉

〈tylambda(〈α1, . . . ,αn〉, e), ρ, σ〉 ⇓ 〈v,σ′〉

VAL - a pitfall
Suppose VAL doesn't always create a new binding

> uscheme
-> (val x 1)
1
-> (define f (n) (+ x n))
f
-> (f 2)
3
-> (val x '(a b))
(a b)
-> (f 2)
error: in (+ x n), expected an integer, but got (a b)
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VAL pitfall (2)
Since typed uScheme has no run-time type 
checking, VAL must create a new variable, not 
assign to an old one!

> tuscheme
-> (val x 1)
1 : int
-> (define int f ((int n)) (+ x n))
f : (function (int) int)
-> (f 2)
3 : int
-> (val x '(a b))
(a b) : (list sym)
-> (f 2)
3 : int
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Evaluating VAL and VAL-REC

Note different handling of environment

This one's for recursive definitions!
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l !∈ dom σ 〈e, ρ,σ〉 ⇓ 〈v,σ′〉

〈val(x, e), ρ, σ〉 → 〈ρ{x '→ l},σ′〉

l !∈ dom σ
〈e, ρ{x $→ l},σ{l $→ unspecified〉 ⇓ 〈v,σ′〉

〈val-rec(x, τ, e), ρ, σ〉 → 〈ρ{x $→ l},σ′〉
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A look at where we are

µML: an introduction

Taking stock
We've built up typed µScheme from Impcore:

Imperative features (assignment, loops, 
sequencing, output)

First-class functions, local bindings

Static type checking

Polymorphic types
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A look ahead
This week: µML, nearly pure functional 
programming and type inference

Two weeks for µSmalltalk: object-oriented 
programming

Two weeks for µProlog: logic programming

One week for ?

Programming-in-the-large?

Parallel and distributed programming?
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Pure functional programming
a.k.a. applicative programming

Negatively, lack of mutation & related features 
(crudely: "no side effects")

Positively, referential transparency: the value of an 
expression depends only on the values of its 
subexpressions.

In particular, the value doesn't depend on the 
context of the expression!

5

Referential transparency on the web

Google it, but

Beware Wikipedia!  (Read it, but read the 
dispute as well if you do)

Good: http://foldoc.org/?referential+transparency
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Benefits of r.t.
Simple semantics

Predictability and provability of programs

Easy compiler optimizations

Easy thread safety

...
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A seriously r.t. language
Haskell, which also has lazy evaluation, monads, 
type classes, and other cool features
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Back to µML
ML proper does have assignment, but µML does 
not.

µML has output and error exit (imperative), and 
loops and sequencing (only interesting in the 
presence of imperative features).

So the only side effects are output and early 
termination.
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Abstract syntax of µML
Same as µScheme, 

but leaving out SET (assignment), WHILE (loops)

and adding in VALREC as in typed µScheme

Values are the same, but subject to a type system

numbers, booleans, and symbols

pairs

closures and primitive functions
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Operational semantics
No locations - why not?

The only result of expression evaluation is a value

The only result of top-level evaluation is a new 
environment

Rule for "begin" shows we don't care about order
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Contrasting begin rules
µML

µScheme
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〈begin(), ρ〉 ⇓ nil

〈e1, ρ〉 ⇓ v1

〈e2, ρ〉 ⇓ v2
...
〈en, ρ〉 ⇓ vn

〈begin(e1, e2, . . . , en), ρ〉 ⇓ vn

〈e1, ρ, σ0〉 ⇓ 〈v1,σ1〉
〈e2, ρ, σ1〉 ⇓ 〈v2,σ2〉
...
〈en, ρ, σn−1〉 ⇓ 〈vn,σn〉

〈begin(e1, e2, . . . , en), ρ, σ0〉 ⇓ 〈vn,σn〉

〈begin(), ρ, σ〉 ⇓ 〈bool(#f),σ〉



Closures
As in Scheme, a lambda expression evaluates to a 
closure containing the current environment.

To apply a lambda we use the environment when 
evaluating the body:
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〈e, ρ〉 ⇓ 〈〈lambda(〈x1, . . . , xn〉, ec), ρc〉〉
〈e1, ρ〉 ⇓ v1 . . . 〈en, ρ〉 ⇓ vn

〈ec, ρc{x1 $→ v1, . . . , xn $→ vn}〉 ⇓ v

〈apply(e, e1, . . . , en), ρ〉 ⇓ v

Recursion (1)
Up to now we handled semantics of recursion by 
early binding and mutation to install a circular 
reference in an environment

No mutation - so we simply state the requirement 
for a circular reference

We guarantee that we can do it by restricting 
recursion to lambda!
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Recursion (2)
Simple, but tricky: we create an environment that 
contains references to itself!

15

e1, . . . , en are all lambda epressions
ρ′ = ρ{x1 !→ v1, . . . , xn !→ vn}
〈e1, ρ′〉 ⇓ v1 . . . 〈en, ρ′〉 ⇓ vn

〈e, ρ′〉 ⇓ v

〈letrec(〈x1, e1, . . . , xn, en〉, e), ρ〉 ⇓ v

Recursion (3)
Implementation uses a simple trick: an ML function 
captures the environment in an ML closure

datatype  value = NIL
          ...
          | CLOSURE   of lambda * (unit -> value env)
fun eval(e, rho) = let fun ...
    | ev(LETX (LETREC, bs, body)) =
        let fun makeRho' () =
          let fun step ((n, e), rho) =
           (case e
              of LAMBDA l => bind(n, CLOSURE (l, makeRho'), rho)
                      | _ => raise RuntimeError "non-lambda in letrec")
          in  foldl step rho bs
          end
         in  eval(body, makeRho'())
         end

Shallow embedding again!
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Recursion for lambda only!
In µScheme:

(letrec ((odd-even (list2
  (lambda (n) (let ((even (cadr odd-even)))
    (if (< n 0) (even (+ n 1)) 
        (if (> n 0) (even (- n 1)) #f))))
  (lambda (n) (let ((odd (car odd-even))) 
    (if (< n 0) (odd (+ n 1))
        (if (> n 0) (odd (- n 1)) #t)))))))

(list2 ((car odd-even) 3) ((cadr odd-even) 4)))
(#t #t)

In µML: 

run-time error: non-lambda in letrec
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Type system
Once again we have type expressions of

variables !

constructors "

applications of constructors (#1,...,#n)#

note postfix notation

quantification ∀ #1,...,#n.# but quantification is 
restricted to the top level or outside

No kinds - the programmer never writes a type
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Type schemes
In typed µScheme quantifiers are fully general:

-> (val not-too-poly 
     (lambda (((forall ('a) (list 'a)) nil)) 
      ((@ pair (list int) (list bool)) 
        ((@ cons int) 1 (@ nil int)) 
        ((@ cons bool) #t (@ nil bool)))))
not-too-poly : (function ((forall ('a) (list 'a))) 
                         (pair (list int) (list bool)))
-> (not-too-poly '())
((1) #t) : (pair (list int) (list bool))

Not allowed in µML:

-> (val too-poly (lambda (nil) 
                  (pair (cons 1 nil) (cons #t nil))))

type error: Cannot unify int and bool
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Type system
We can give a straightforward - but 
nondeterministic! - set of typing rules.

Rules for if, begin, apply, etc. are familiar from 
typed µScheme (but no kind environment needed)

Rules for variables and lambda are nondeterministic

Rules for let/letrec infer type schemes
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Variables
A variable can have any type that's an instance of its 
type scheme!

E.g. if $(x) = ∀!.!%!, then x can have types 

int%int, bool%bool, etc.

This allows for "automatic instantiation" during type 
inference.
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Γ(x) = σ τ <: σ

Γ ! x : τ

Typing lambda
Parameter types are under-specified:

Next time we'll see how to find them using 
unification.
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Γ{x1 !→ τ1, . . . , xn !→ τn} # e : τ

Γ # lambda(〈x1, . . . , xn〉, e) : τ1 × . . .× τn → τ

Next time
Let-polymorphism

Unification

A taste of Hindley-Milner type inference
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CS301 - Spring 2006

Guide to the reading
The issue is how to turn nondeterministic rules into 
a deterministic type inference algorithm

The algorithm is presented in terms of inference 
rules that "return" a substitution as well as a type!

Unification is the way we find substitutions

Look at the operational interpretation on p. 265, 
and try to generate your own for the rules on p. 266

Try applying some rule to a tiny example
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