CS301 Session 13

Agenda

2

4

Rules for polymorphic typing

Lambda for types

Т

3

- + Remember the basic idea: abstract over types
- Quantified types: $\forall \alpha_1, \ldots, \alpha_n \, . \, \tau$
 - (forall ('al ... 'an) type)
- + Type abstraction: TYLAMBDA $(\alpha_1, \ldots, \alpha_n, e)$

(type-lambda ('al ... 'an) exp)

- Type application: $TYAPPLY(e, \tau_1, \dots, \tau_n)$
 - (@ exp type1 ... typen)

Type expressions versus types

+ Our language of types is getting fairly complex:

- ← Type constructors are things like list, function, pair, and so on
- Constructors are *applied* to other types to obtain types, e.g. (list int)
- Polymorphic types are not applied; but the values they describe are applied to types

Classifying type expressions Instead of having a set of "type-formation" rules like τ_1 and τ_2 are types $\tau_1 \rightarrow \tau_2$ is a type we have a kind system "on top of" our type system, to classify our type expressions. This is used to ensure that types are well formed 5 Using kinds Kinding rules tell when type expressions are well formed $\mu \in \text{dom } \Delta$ $\Delta \vdash \text{TYCON}(\mu) :: \Delta(\mu)$ ← E.g., list $\in \text{dom } \Delta$

7

Kinds

6

8

+ A kind environment classifies our types:

int :: *, bool :: *, unit :: *

and constructors:

list :: $* \Rightarrow *, \rightarrow :: * \times * \Rightarrow *, array :: * \Rightarrow, \dots$

 To extend the language we can add to the kind environment:

pair :: $* \times * \Rightarrow *, sum :: * \times * \Rightarrow *$

 $\Delta \vdash \text{TYCON}(\texttt{list}) :: * \Rightarrow *$

Constructor applications

 This kinding rule is the twin of the typing rule for function application:

> $\Delta \vdash \tau :: \kappa_1 \times \ldots \times \kappa_n \Rightarrow \kappa$ $\Delta \vdash \tau_1 :: \kappa_1 \dots \Delta \vdash \tau_n :: \kappa_n$

 $\Delta \vdash \text{CONAPP}(\tau, [\tau_1, \ldots, \tau_n]) :: \kappa$

• We can use this rule to check that (list int) is a properly formed type.

A special case: tuples

• The tuple type constructor has variable arity:

 $\Delta \vdash \tau_i :: *, \quad 1 \le i \le n$

 $\Delta \vdash \text{CONAPP}(\text{TYCON}(\texttt{tuple}, [\tau_1, \dots, \tau_n]) :: *$

An important restriction

9

П

- Type variables must have kind *
 ...so we can't quantify over, say, type constructors
- We can say "for any type", but not "for any type constructor"
- Other type systems (e.g. Haskell's) relax this restriction

Quantified types

+ Where the polymorphism action is:

 $\frac{\Delta\{\alpha_1 :: *, \dots, \alpha_n :: *\} \vdash \tau :: *}{\Delta \vdash \text{FORALL}(\langle \alpha_1, \dots, \alpha_n \rangle, \tau) :: *}$

This rule is the "twin" of the typing rule for functions!

• We look up type variables in the kind environment $\frac{\alpha \in \text{dom } \Delta}{\Delta \vdash \text{TYVAR}(\alpha) :: \Delta(\alpha)}$

A side excursion

- The word "pair" in the typed uScheme interpreter is heavily overloaded
- "pair" is a type constructor (in the full language)
- "pair" is a polymorphic function that constructs pairs
- "PAIR" is an ML type constructor used to represent values of both list and pair (Scheme) types in the interpreter

The uScheme type system The typing rules are much like typed Impcore, but only one type environment • a kind environment is needed for type constructors and type variables no special rules for constructors like array 13 Typing lambda • We check that the declared parameter types are well formed $\Delta \vdash \tau_i :: *, 1 \le i \le n$

 $\Delta \vdash \tau_i \dots *, 1 \ge i \ge n$ $\Delta, \Gamma\{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n\} \vdash e : \tau$

 $\Delta, \Gamma \vdash \text{LAMBDA}(\langle x_1 : \tau_1, \dots, x_n : \tau_n \rangle, e) : \tau_1 \times \dots \times \tau_n \to \tau$

15

• Then assume that the variables have these types while type-checking the body.

Typing let-binders

Let and let*, no letrec

 $\Delta, \Gamma \vdash e_i : \tau_i, \quad 1 \le i \le n$ $\Delta, \Gamma\{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n\} \vdash e : \tau$

 $\Delta, \Gamma \vdash \operatorname{LET}(\langle x_1, e_1, \dots, x_n, e_n \rangle, e) : \tau$

We view let* as syntactic sugar for nested let

 $\Delta, \Gamma \vdash \operatorname{let}(\langle x_1, e_1 \rangle, \operatorname{letstar}(\langle x_2, e_2, \dots, x_n, e_n \rangle, e)) : \tau, \quad n > 0$

 $\Delta, \Gamma \vdash \text{LETSTAR}(\langle x_1, e_1, \dots, x_n, e_n \rangle, \overline{e}) : \tau$

 $\frac{\Delta,\Gamma\vdash e:\tau}{\Delta,\Gamma\vdash\operatorname{letstar}(\langle\rangle,e):\tau}$

Typing APPLY

14

16

 Same as for Impcore, except that the type of the function is no longer stored in a function environment

> $\Delta, \Gamma \vdash e_i : \tau_i, 1 \le i \le n$ $\Delta, \Gamma \vdash e : \tau_1 \times \ldots \times \tau_n \to \tau$

$$\Delta, \Gamma \vdash \operatorname{APPLY}(e, e_1, \dots, e_n) : \tau$$

Typing TYLAMBDA

17

19

 Instead of putting new ordinary variables in the type environment, we put new type variables in the kind environment:

 $\Delta\{\alpha_1 :: *, \dots, \alpha_n :: *\}, \Gamma \vdash e : \tau$

 $\Delta, \Gamma \vdash \text{tylambda}(\alpha_1, \dots, \alpha_n, e) : \forall \alpha_1 \dots \alpha_n . \tau$

Typing VAL and VAL-REC

Note the different handling of the environment!

 $\frac{\Delta, \Gamma \vdash e : \tau}{\Delta, \Gamma \vdash \operatorname{VAL}(x, e) \to \Gamma\{x \mapsto \tau\}}$

$$\frac{\Delta, \Gamma\{x \mapsto \tau\} \vdash e : \tau}{\Delta, \Gamma \vdash \mathsf{VAL-REC}(x, \tau, e) \to \Gamma\{x \mapsto \tau\}}$$

Typing TYAPPLY

 We check that the applied term has a polymorphic type and that the arguments are all types

 $\Delta \vdash \tau_i :: *, 1 \le i \le n$ $\Delta, \Gamma \vdash e : \forall \alpha_1 \dots \alpha_n. \tau$

$\Delta, \Gamma \vdash \mathrm{TYAPPLY}(e, \tau_1, \dots, \tau_n) : \tau[\alpha_1 \mapsto \tau_1, \dots, \alpha_n \mapsto \tau_n]$

• The resulting type is constructed by *substituting* the arguments for the type variables in the body of the polymorphic type.

Evaluation

- No extra work is needed to interpret typed uScheme! After type checking, types are "thrown away" and the evaluator works as before - except for error handling.
- But we need to specify the semantics of the new constructs - type application and abstraction, and VAL-REC
- + And we need to be careful with VAL!

Type application & abstraction VAL - a pitfall Forget the types Suppose VAL doesn't always create a new binding $\langle e, \rho, \sigma \rangle \Downarrow \langle v, \sigma' \rangle$ > uscheme \rightarrow (val x 1) $\langle \text{TYAPPLY}(e, \tau_1, \ldots, \tau_n), \rho, \sigma \rangle \Downarrow \langle v, \sigma' \rangle$ 1 \rightarrow (define f (n) (+ x n)) f -> (f 2) $\langle e, \rho, \sigma \rangle \Downarrow \langle v, \sigma' \rangle$ 3 -> (val x '(a b)) $\overline{\langle \text{TYLAMBDA}(\langle \alpha_1, \dots, \alpha_n \rangle, e), \rho, \sigma \rangle \Downarrow \langle v, \sigma' \rangle}$ (a b) -> (f 2) error: in (+ x n), expected an integer, but got (a b) 21 VAL pitfall (2)

 Since typed uScheme has no run-time type checking, VAL must create a new variable, not assign to an old one!

```
> tuscheme
\rightarrow (val x 1)
1 : int
-> (define int f ((int n)) (+ x n))
f : (function (int) int)
-> (f 2)
3 : int
-> (val x '(a b))
(a b) : (list sym)
-> (f 2)
3 : int
```

Evaluating VAL and VAL-REC

Note different handling of environment

 $l \not\in \mathrm{dom}\ \sigma \qquad \langle e, \rho, \sigma \rangle \Downarrow \langle v, \sigma' \rangle$ $\langle \operatorname{VAL}(x, e), \rho, \sigma \rangle \to \langle \rho \{ x \mapsto l \}, \sigma' \rangle$

+ This one's for recursive definitions!

 $l \not\in \operatorname{dom} \sigma$ $\langle e, \rho \{ x \mapsto l \}, \sigma \{ l \mapsto \text{unspecified} \rangle \Downarrow \langle v, \sigma' \rangle$ $\langle \text{VAL-REC}(x, \tau, e), \rho, \sigma \rangle \rightarrow \langle \rho \{ x \mapsto l \}, \sigma' \rangle$

23

CS301 Session 14

Agenda

- A look at where we are
- + μML: an introduction

Taking stock

- We've built up typed µScheme from Impcore:
 - Imperative features (assignment, loops, sequencing, output)
 - First-class functions, local bindings
 - Static type checking
 - Polymorphic types

A look ahead

- This week: µML, nearly pure functional programming and type inference
- Two weeks for µSmalltalk: object-oriented programming
- Two weeks for µProlog: logic programming
- One week for ?
 - Programming-in-the-large?
 - Parallel and distributed programming?

Pure functional programming

- + a.k.a. *applicative* programming
- Negatively, lack of mutation & related features (crudely: "no side effects")
- Positively, referential transparency: the value of an expression depends only on the values of its subexpressions.
 - In particular, the value doesn't depend on the context of the expression!

Referential transparency on the web

- + Google it, but
 - Beware Wikipedia! (Read it, but read the dispute as well if you do)
 - + Good: http://foldoc.org/?referential+transparency

Benefits of r.t.

- Simple semantics
- Predictability and provability of programs
- Easy compiler optimizations
- Easy thread safety
- + ...

A seriously r.t. language

 Haskell, which also has lazy evaluation, monads, type classes, and other cool features

Back to µML

- ML proper does have assignment, but µML does not.
- µML has output and error exit (imperative), and loops and sequencing (only interesting in the presence of imperative features).
- + So the only side effects are output and early termination.

Abstract syntax of µML

- Same as µScheme,
 - but leaving out SET (assignment), WHILE (loops)
 - and adding in VALREC as in typed µScheme
- + Values are the same, but subject to a type system
 - numbers, booleans, and symbols
 - pairs
 - closures and primitive functions

Operational semantics

- No locations why not?
- The only result of expression evaluation is a value
- The only result of top-level evaluation is a new environment
- Rule for "begin" shows we don't care about order

Contrasting begin rules

	$(e_{-}, 0) \parallel v_{-}$	
BEC	$(e_n, \rho) \Downarrow e_n$ $\operatorname{HN}(e_1, e_2, \dots, e_n), \rho \rangle \Downarrow v_n$	$\overline{\langle \text{BEGIN}(), \rho \rangle \Downarrow \text{NIL}}$
µSchem	$ \begin{array}{c} \mathbf{e} \ \langle e_1, \rho, \sigma_0 \rangle \Downarrow \langle v_1, \sigma_1 \rangle \\ \langle e_2, \rho, \sigma_1 \rangle \Downarrow \langle v_2, \sigma_2 \rangle \end{array} $	
	$\vdots \\ \langle e_n, \rho, \sigma_{n-1} \rangle \Downarrow \langle v_n, \sigma_n \rangle$	$\langle \operatorname{BEGIN}(), \rho, \sigma \rangle \Downarrow \langle \operatorname{BOOL}(\#\mathbf{f}), \sigma \rangle$
BEG	$\operatorname{IN}(e_1, e_2, \dots, e_n), \rho, \sigma_0 \rangle \Downarrow \langle v \rangle$	$\langle \sigma_n, \sigma_n \rangle$

Closures

- + As in Scheme, a lambda expression evaluates to a closure containing the current environment.
- + To apply a lambda we use the environment when evaluating the body:

 $\begin{array}{l} \langle e, \rho \rangle \Downarrow \langle \langle \text{LAMBDA}(\langle x_1, \dots, x_n \rangle, e_c), \rho_c \rangle \rangle \\ \langle e_1, \rho \rangle \Downarrow v_1 \dots \langle e_n, \rho \rangle \Downarrow v_n \\ \langle e_c, \rho_c \{ x_1 \mapsto v_1, \dots, x_n \mapsto v_n \} \rangle \Downarrow v \end{array}$

 $\langle \operatorname{APPLY}(e, e_1, \dots, e_n), \rho \rangle \Downarrow v$

Recursion (1)

- Up to now we handled semantics of recursion by early binding and mutation to install a circular reference in an environment
- No mutation so we simply state the requirement for a circular reference
- + We guarantee that we can do it by restricting recursion to lambda!

Recursion (2)

+ Simple, but tricky: we create an environment that contains references to itself!

 $e_1, \dots, e_n \text{ are all LAMBDA epressions} \\ \rho' = \rho\{x_1 \mapsto v_1, \dots, x_n \mapsto v_n\} \\ \langle e_1, \rho' \rangle \Downarrow v_1 \dots \langle e_n, \rho' \rangle \Downarrow v_n \\ \langle e, \rho' \rangle \Downarrow v$

 $\langle \text{LETREC}(\langle x_1, e_1, \dots, x_n, e_n \rangle, e), \rho \rangle \Downarrow v$

Recursion (3)

 Implementation uses a simple trick: an ML function captures the environment in an ML closure

• Shallow embedding again!

datatype value = NIL

Recursion for lambda only!

In µScheme:

```
(letrec ((odd-even (list2
  (lambda (n) (let ((even (cadr odd-even)))
    (if (< n 0) (even (+ n 1))
        (if (> n 0) (even (- n 1)) #f))))
(lambda (n) (let ((odd (car odd-even)))
  (if (< n 0) (odd (+ n 1))
        (if (> n 0) (odd (- n 1)) #t))))))
```

(list2 ((car odd-even) 3) ((cadr odd-even) 4))) (#t #t)

+ In μML:

run-time error: non-lambda in letrec

Type system

- Once again we have type expressions of
 - variables α
 - constructors µ
 - applications of constructors (τ₁,...,τ_n)τ
 - note *postfix* notation
 - + quantification $\forall \tau_1,...,\tau_n.\tau$ but quantification is restricted to the top level or outside
- No kinds the programmer never writes a type

Type schemes

In typed µScheme quantifiers are fully general:

Not allowed in µML:

```
-> (val too-poly (lambda (nil)
(pair (cons 1 nil) (cons #t nil))))
type error: Cannot unify int and bool
```

Type system

- We can give a straightforward but nondeterministic! - set of typing rules.
- Rules for if, begin, apply, etc. are familiar from typed µScheme (but no kind environment needed)
- Rules for variables and lambda are nondeterministic
- Rules for let/letrec infer type schemes

Variables

+ A variable can have *any* type that's an instance of its type scheme! $\Gamma(x) = \sigma$ $\tau <: \sigma$

 $\Gamma \vdash x : \tau$ + E.g. if Γ(x) = ∀α.α→α, then x can have types

int \rightarrow int, bool \rightarrow bool, etc.

+ This allows for "automatic instantiation" during type inference.

Typing lambda

+ Parameter types are under-specified:

 $\Gamma\{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n\} \vdash e : \tau$

 $\Gamma \vdash \text{LAMBDA}(\langle x_1, \ldots, x_n \rangle, e) : \tau_1 \times \ldots \times \tau_n \to \tau$

Next time we'll see how to find them using unification.

Next time

- Let-polymorphism
- + Unification
- + A taste of Hindley-Milner type inference

Guide to the reading

- + The issue is how to turn *nondeterministic* rules into a *deterministic* type inference algorithm
- The algorithm is presented in terms of inference rules that "return" a substitution as well as a type!
- Unification is the way we find substitutions
- + Look at the *operational interpretation* on p. 265, and try to generate your own for the rules on p. 266
- Try applying some rule to a tiny example

CS301 - Spring 2006