CS301
Session 11

Agenda

+ Discussion: midterm exam - take-home or in-
class?

+ Interlude: common type constructors

+ Type soundness

Common type
constructors

Things we could add to Impcore

+ Array is a type constructor, not a single type

+ We're familiar with other type constructors from
the garden-variety programming languages we
use all the time

+ ..but now is a good time to analyze them in a
language-independent way

+ Our typing rules will assume just one type
environment I’




Three common type constructors

+ (First-class) functions
+ Products

+ Sums

First-class functions

+ Type constructor —»

+ Infix, two arguments: 71 — T2

+ Formation rule:

71 and 7o are types

T1 — To 1s a type

Typing rules for functions

+ Introduction
M{ex—T1}Ee: 7

' LAMBDA(z : Ty€) : 7 — 7'

+ Elimination
ke :7—7 Tley:T

[+ APPLY(eq,62) : 7'

Products (pairs)

Constituent types need not be the same

+

Variously, "tuple", "struct", "record"

<+

+

Can be used to model objects (in the OO sense)

+

Formation
71 and 7 are types

T1 X T9 is a type




Typing rules for products

+ Introduction
I'tei:mm I'kFeg:m

I' - PAIR(€1,€2) T1 X Ty

+ Elimination ke m xr
1T X T

I'FFst(e):m

(and similarly for the second element)

An elegant elim rule

+ Like a pattern match

/
FFe:mxmn T{ey—m,z0—mntbe T

[' b LETPAIR (71, T2, €,€’) : T

Generalizing pairs

+ In ML and related languages pairs are generalized
to records with named fields

+ Your homework contains a similar problem about
sum types

+ Formation:
T1...Tp are types

{namey : 71,...,name, : 7, } is a type

Typing records

+ Introduction

{name; : 74,...,name, : 7,,} is a type

I'kte :im,....,0Fe, ™

I' - RECORD(name; = eq,...,name, = ¢e,) : {namey : 71,...,name, : 7, }

+ Elimination

I'te:{name; : 7y,...,name, : 7, }
name = name;, 1 <1< n

I' - GETFIELD(name,e) : 7;




More elegant elim rule

+ Again like a pattern match

'k e:{name; : 71,...,name, : 7, }
Mey—1,..,zp— 1 e T
I' F LETRECORD(Z1,...,ZTn,€,€ ) : T

Sum types

A type that unions other types together

+

+

Like C unions, but safer because you can always
tell what's there

+

Like simple ML datatypes (no recursion)

+ Formation rule
71 and Ty are types

T1 + T2 is a type

Typing rules for unions

+ Introduction

I'Fe:m 7 is atype

'k LEFT,(e) : 71 + T2

I'Fe:m™ 7 isatype

' RIGHT,, (€) : 71 + T2

Typing rules for unions(2)

+ Elimination: like case or switch

I'kFe:m +m1
My —mlhe:r
NHazg — ke T

[t case e of LEFT(x1) = €1 | RIGHT(z2) = €3 : T




About type soundness

Why trust a type system?

+ Given a complex enough type system, we might
be unable to see whether it behaves reasonably

+ Language designers prove type soundness both to
increase trust and to be explicit about what
guarantees the type system provides

What is type soundness?

+ A kind of claim we make about the relationship
between the typing rules and the evaluation rules

+ Loosely, "well-typed programs don't go wrong"

+ Sample corollaries:

+ Functions always receive the right number and
kind of arguments

+ No array access is out of bounds (a more
advanced kind of type system)

Machinery needed for soundness

+ The meaning of a type 7] is a set of values

+ Examples
+ [INT] = {NUMBER(n) | n is an integer}
+ [BoOL] = {BOOL(#t), BOOL(#f)}

+ This gives us a notation for the set of things a well
typed expression is allowed to evaluate to

20




Proper environments

+ If T and p are typing and value environments, re-
spectively, we say p agrees with I" whenever, for
every x in dom (I'),

1. z is also in dom (p), and

2. p(z) € [I'(2)]

21

A soundness claim
+ If

1. T" and p are typing and value environments,
and

2. p agrees with I'; and
3. 'ke:7and (p,e) | v,

then v € 7]

22




Agenda

+ Side trip: the semantics of defining and applying

C83 01 recursive functions

. + Introduction to polymorphic type systems
SeSS 1on 1 2 + A polymorphic type system for uScheme

Recursive functions




How can recursion work?

+ Rule: all names are evaluated by looking them up in
an environment

+ How do we arrange for the name £ to be
meaningful in:

(define £ (n e)
(if (= e 0) 1
(*n (fn (-el)))))

Simple case: Impcore

+ Functions are not first-class; special function
environment

+ We just bind the function name to a piece of
abstract syntax

(DEFINE(f, (x1, ..., xa),€),&,0) — (€,0{f — USER((x1,...,x.),¢)})

Impcore function application

+ By the time we use a recursive function, its
definition is already in the function environment

X1,...,Xx, all distinct

<€]7§09¢7p0> U <V17§17¢7p1>

<€n; énf] ) (ba pn71> U <VIH éil? (Ps pn>
<€7§I17¢7 {xl =V, .. Xy Vn}> U’ <V7 élvq)v pn>
<APPLY (f €1,€2,... 7611)7&)54)7 p0> u <V7 };/7 q) pn>

First-class functions

+ What about uScheme? How do we make sure the
name of the recursive function is properly bound
in the body?




Functions

+ Lambdas evaluate to closures

Z1,...,T, all distinct

(LAMBDA((21,...,2Zpn),€), p,0) I (((LAMBDA({(z1, ..., 2,),€),p)),0)

Functions

+ Function applications

(e,p,0) I (({LAMBDA({Z1,...,Zn),€c)s Pe)),00)
(e1,p,00) 4 (v1,01)

<€n7 P O'n71> 3 <U7L7 Un>
<ec’ pc{xl = ll-, ey Ip ln}-, Un{ll = V1,0, ln = vn}> ‘U’ <’U, U,>
(appPLY (e, €1, .. ., en),pyo) I (v,0')

L ocal recursive definition

+ When a recursive function is applied, how/where
is its name bound?

p=plei—li,... ¢z, — 1}
oo = o{ly — unspecified, ..., l,, — unspecified }
(e1,p',00) I (v1,01)

<6'na p/: O'nfl> U <Un~, Un>
(e, onf{ly —v1,....ln— v 1) I (v,0)

(LETREC((Z1,€1, .., Tn, en),€),p,0) | (v,0")

Top-level recursive definitions

+ Left as an exercise...do it!




Polymorphic type
systems

Perspective

+ Flexibility of dynamic typing (Scheme) both a

blessing and a curse

+ Great for small systems, prototypes, and god-like

programmers

+ Not so great for large systems, production code,

trusted code, teams of ordinary mortals

Limitations of
monomorphic typing

+ Example from typed Impcore: list processing
functions

+

<+

+

Where we're going

Introduce polymorphic type system with static type
checking

Now we can write one version of Llength with type

Va.a list — int
(forall ('a) (function ((list 'a)) int))

This will be flexible enough to type a lot of the
programs we want - almost a "sweet spot"

...but terribly verbose and impossible to use




Why?
Why torture ourselves with this type system?

To motivate type inference as in ML and related
languages

The real "sweet spot": polymorphic type system,
plus type inference, yields a terse, flexible language
with robust guarantees suitable for production
programming

Used in ML, OCaml, Haskell, etc. etc.

Type variables
A new kind of variable that stands for an unknown
type

Actual types are supplied by type instantiation,
a.k.a. type application

Type variables are bound in types by V(abstractly),
or forall (concretely)

Bound in expressions by TYLAMBDA (abstractly), or
type-lambda (concretely)

Idea: lambda for types

You've seen this before: Java/C++ generics
Quantified types: Vaq,...,q, .7
(forall ('al ... 'an) type)
Type abstraction: TYLAMBDA(q, ..., 0, €)
(type-lambda ('al ... 'an) exp)
Type application: TYAPPLY(e,7y,...,7y)

(@ exp typel ... typen)

Quantified types

-> length
<procedure> : (forall ('a) (function ((list 'a)) int))

-> cons

<procedure> : (forall ('a) (function ('a (list 'a)) (list 'a)))
-> car

<procedure> : (forall ('a) (function ((list 'a)) 'a))

-> cdr

<procedure> : (forall ('a) (function ((list 'a)) (list 'a)))

-> ()
() : (forall ('a) (list 'a))




Type instantiation

-> (val length-int (@ length int))
length-int : (function ((list int)) int)

-> (val length-bool (@ length bool))
length-bool : (function ((list bool)) int)

-> (val nil-bool (@ '() bool))
() ¢ (list bool)

Instantiation substitutes actual types for type variables

21

Type abstraction

-> (val-rec (forall ('a) (function ((list 'a)) int))
len (type-lambda ('a)
(lambda (((list 'a) 1))
(if ((@ null? 'a) 1) O
(+ 1 ((€ len 'a) ((€@ cdr 'a) 1)))))))

len : (forall ('a) (function ((list 'a)) int))
-> (@ len int)

<procedure> : (function ((list int)) int)

-> ((@ len int) '(1 2 3))

3 : int

22




	session11-4up.pdf
	session12-4up.pdf

