CS301 Session 11

Agenda

- Discussion: midterm exam take-home or inclass?
- ◆ Interlude: common type constructors
- Type soundness

2

Common type constructors

Things we *could* add to Impcore

- ◆ Array is a *type constructor*, not a single type
- We're familiar with other type constructors from the garden-variety programming languages we use all the time
- ...but now is a good time to analyze them in a language-independent way
- ◆ Our typing rules will assume just one type environment □

Three common type constructors

- ◆ (First-class) functions
- Products
- + Sums

First-class functions

- Type constructor →
 - Infix, two arguments: $\tau_1 \rightarrow \tau_2$
- ◆ Formation rule:

$$\tau_1$$
 and τ_2 are types $\tau_1 \to \tau_2$ is a type

Typing rules for functions

◆ Introduction

$$\Gamma\{x \mapsto \tau\} \vdash e : \tau'$$

$$\Gamma \vdash \text{LAMBDA}(x : \tau, e) : \tau \to \tau'$$

→ Elimination

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{APPLY}(e_1, e_2) : \tau'}$$

Products (pairs)

- Constituent types need not be the same
- ◆ Variously, "tuple", "struct", "record"
- ◆ Can be used to model objects (in the OO sense)
- **→** Formation

$$\frac{\tau_1 \text{ and } \tau_2 \text{ are types}}{\tau_1 \times \tau_2 \text{ is a type}}$$

7

Typing rules for products

Introduction

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash PAIR(e_1, e_2) : \tau_1 \times \tau_2}$$

→ Elimination

$$\Gamma \vdash e : \tau_1 \times \tau_2$$

$$\Gamma \vdash \text{FST}(e) : \tau_1$$

(and similarly for the second element)

An elegant elim rule

◆ Like a pattern match

$$\Gamma \vdash e : \tau_1 \times \tau_2 \quad \Gamma\{x_1 \mapsto \tau_1, x_2 \mapsto \tau_2\} \vdash e' : \tau$$

$$\Gamma \vdash \text{LETPAIR}(x_1, x_2, e, e') : \tau$$

10

Generalizing pairs

- In ML and related languages pairs are generalized to records with named fields
- Your homework contains a similar problem about sum types
- Formation:

$$au_1 \dots au_n$$
 are types $au_1 \dots au_n = au_n$ is a type

Typing records

Introduction

$$\{\mathsf{name}_1 : \tau_1, \dots, \mathsf{name}_n : \tau_n\}$$
 is a type $\Gamma \vdash e_1 : \tau_1, \dots, \Gamma \vdash e_n : \tau_n$

 $\Gamma \vdash \mathtt{RECORD}(\mathsf{name}_1 = e_1, \dots, \mathsf{name}_n = e_n) : \{\mathsf{name}_1 : \tau_1, \dots, \mathsf{name}_n : \tau_n\}$

+ Elimination

$$\begin{split} \Gamma \vdash e : \{\mathsf{name}_1 : \tau_1, \dots, \mathsf{name}_n : \tau_n\} \\ \mathsf{name} &= \mathsf{name}_i, 1 \leq i \leq n \\ \\ \Gamma \vdash \mathsf{GETFIELD}(\mathsf{name}, e) : \tau_i \end{split}$$

-13

More elegant elim rule

◆ Again like a pattern match

$$\Gamma \vdash e : \{\mathsf{name}_1 : \tau_1, \dots, \mathsf{name}_n : \tau_n\}$$

$$\Gamma\{x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \vdash e' : \tau$$

$$\Gamma \vdash \mathsf{LETRECORD}(x_1, \dots, x_n, e, e') : \tau$$

Sum types

- ◆ A type that unions other types together
- Like C unions, but safer because you can always tell what's there
- ◆ Like simple ML datatypes (no recursion)
- + Formation rule

$$\tau_1$$
 and τ_2 are types $\tau_1 + \tau_2$ is a type

13

14

Typing rules for unions

Introduction

$$\Gamma \vdash e : \tau_1 \quad \tau_2 \text{ is a type}$$

$$\Gamma \vdash \text{LEFT}_{\tau_2}(e) : \tau_1 + \tau_2$$

$$\Gamma \vdash e : \tau_2 \quad \tau_1 \text{ is a type}$$

$$\Gamma \vdash \text{RIGHT}_{\tau_1}(e) : \tau_1 + \tau_2$$

Typing rules for unions(2)

→ Elimination: like case or switch

$$\Gamma \vdash e : \tau_1 + \tau_2$$

$$\Gamma\{x_1 \mapsto \tau_1\} \vdash e_1 : \tau$$

$$\Gamma\{x_2 \mapsto \tau_2\} \vdash e_2 : \tau$$

$$\Gamma \vdash \mathsf{case}\ e\ \mathsf{of}\ \mathsf{LEFT}(x_1) \Rightarrow e_1 \mid \mathsf{RIGHT}(x_2) \Rightarrow e_2 : \tau$$

15

About type soundness

Why trust a type system?

- Given a complex enough type system, we might be unable to see whether it behaves reasonably
- Language designers prove type soundness both to increase trust and to be explicit about what guarantees the type system provides

17

What is type soundness?

- ◆ A kind of claim we make about the relationship between the typing rules and the evaluation rules
- ◆ Loosely, "well-typed programs don't go wrong"
- Sample corollaries:
 - Functions always receive the right number and kind of arguments
 - No array access is out of bounds (a more advanced kind of type system)

Machinery needed for soundness

- The meaning of a type $\llbracket \tau \rrbracket$ is a set of values
- Examples
 - $[INT] = \{NUMBER(n) \mid n \text{ is an integer}\}$
 - ♦ $[BOOL] = \{BOOL(\#t), BOOL(\#f)\}$
- This gives us a notation for the set of things a well typed expression is allowed to evaluate to

Proper environments

- If Γ and ρ are typing and value environments, respectively, we say ρ agrees with Γ whenever, for every x in dom (Γ) ,
 - 1. x is also in dom (ρ) , and
 - 2. $\rho(x) \in \llbracket \Gamma(x) \rrbracket$

A soundness claim

- **◆** If
- 1. Γ and ρ are typing and value environments, and
- 2. ρ agrees with Γ , and
- 3. $\Gamma \vdash e : \tau \text{ and } \langle \rho, e \rangle \Downarrow v$,

then $v \in [\![\tau]\!]$

21

CS301 Session 12

Agenda

- ◆ Side trip: the semantics of defining and applying recursive functions
- ◆ Introduction to polymorphic type systems
- ◆ A polymorphic type system for uScheme

2

Recursive functions

How can recursion work?

- → Rule: all names are evaluated by looking them up in an environment
- How do we arrange for the name f to be meaningful in:

```
(define f (n e)

(if (= e 0) 1

(* n (f n (- e 1)))))
```

Simple case: Impcore

- Functions are not first-class; special function environment
- We just bind the function name to a piece of abstract syntax

```
\frac{x_1,\ldots,x_n \text{ all distinct}}{\langle \mathsf{DEFINE}(f,\langle x_1,\ldots,x_n\rangle,e),\xi,\phi\rangle \to \langle \xi,\phi\{f\mapsto \mathsf{USER}(\langle x_1,\ldots,x_n\rangle,e)\}\rangle}
```

5

Impcore function application

◆ By the time we use a recursive function, its definition is already in the function environment

```
\phi(f) = \text{USER}(\langle x_1, \dots, x_n \rangle, e)
x_1, \dots, x_n \text{ all distinct}
\langle e_1, \xi_0, \phi, \rho_0 \rangle \Downarrow \langle v_1, \xi_1, \phi, \rho_1 \rangle
\vdots
\langle e_n, \xi_{n-1}, \phi, \rho_{n-1} \rangle \Downarrow \langle v_n, \xi_n, \phi, \rho_n \rangle
\langle e, \xi_n, \phi, \{x_1 \mapsto v_1, \dots x_n \mapsto v_n\} \rangle \Downarrow \langle v, \xi', \phi, \rho_n \rangle
\langle \text{APPLY}(f, e_1, e_2, \dots, e_n), \xi_0, \phi, \rho_0 \rangle \Downarrow \langle v, \xi', \phi, \rho_n \rangle
```

First-class functions

→ What about uScheme? How do we make sure the name of the recursive function is properly bound in the body?

Functions

П

Lambdas evaluate to closures

$$\frac{x_1, \dots, x_n \text{ all distinct}}{\langle \text{LAMBDA}(\langle x_1, \dots, x_n \rangle, e), \rho, \sigma \rangle \Downarrow \langle \langle \langle \text{LAMBDA}(\langle x_1, \dots, x_n \rangle, e), \rho \rangle \rangle, \sigma \rangle}$$

Functions

Function applications

$$l_1, \dots, l_n \not\in \text{dom } \sigma$$

$$\langle e, \rho, \sigma \rangle \Downarrow \langle \langle \langle \text{LAMBDA}(\langle x_1, \dots, x_n \rangle, e_c), \rho_c \rangle \rangle, \sigma_0 \rangle$$

$$\langle e_1, \rho, \sigma_0 \rangle \Downarrow \langle v_1, \sigma_1 \rangle$$

$$\vdots$$

$$\langle e_n, \rho, \sigma_{n-1} \rangle \Downarrow \langle v_n, \sigma_n \rangle$$

$$\underline{\langle e_c, \rho_c \{ x_1 \mapsto l_1, \dots, x_n \mapsto l_n \}, \sigma_n \{ l_1 \mapsto v_1, \dots, l_n \mapsto v_n \} \rangle \Downarrow \langle v, \sigma' \rangle}$$

$$\langle \text{APPLY}(e, e_1, \dots, e_n), \rho, \sigma \rangle \Downarrow \langle v, \sigma' \rangle$$

10

Local recursive definition

When a recursive function is applied, how/where is its name bound?

```
\begin{aligned} &l_1, \dots, l_n \not\in \text{dom } \sigma \\ &\rho' = \rho\{x_1 \mapsto l_1, \dots, x_n \mapsto l_n\} \\ &\sigma_0 = \sigma\{l_1 \mapsto \text{unspecified}, \dots, l_n \mapsto \text{unspecified}\} \\ &\langle e_1, \rho', \sigma_0 \rangle \Downarrow \langle v_1, \sigma_1 \rangle \\ & & \vdots \\ &\langle e_n, \rho', \sigma_{n-1} \rangle \Downarrow \langle v_n, \sigma_n \rangle \\ &\langle e, \rho', \sigma_n\{l_1 \mapsto v_1, \dots, l_n \mapsto v_n\} \rangle \Downarrow \langle v, \sigma' \rangle \end{aligned}
\langle \text{LETREC}(\langle x_1, e_1, \dots, x_n, e_n \rangle, e), \rho, \sigma \rangle \Downarrow \langle v, \sigma' \rangle
```

Top-level recursive definitions

◆ Left as an exercise…do it!

-13

Polymorphic type systems

Perspective

- Flexibility of dynamic typing (Scheme) both a blessing and a curse
- Great for small systems, prototypes, and god-like programmers
- Not so great for large systems, production code, trusted code, teams of ordinary mortals

13

14

Limitations of monomorphic typing

Example from typed Impcore: list processing functions

Where we're going

- Introduce polymorphic type system with static type checking
- ◆ Now we can write one version of length with type

```
\forall \alpha . \alpha \text{ list} \rightarrow \text{int} (forall ('a) (function ((list 'a)) int))
```

- → This will be flexible enough to type a lot of the programs we want - almost a "sweet spot"
- → ...but terribly verbose and impossible to use

15

Why?

- ◆ Why torture ourselves with this type system?
- ◆ To motivate type inference as in ML and related languages
- The real "sweet spot": polymorphic type system, plus type inference, yields a terse, flexible language with robust guarantees suitable for production programming
- ◆ Used in ML, OCaml, Haskell, etc. etc.

Type variables

- ◆ A new kind of variable that stands for an unknown type
- ◆ Actual types are supplied by type instantiation,
 a.k.a. type application
- Type variables are bound in types by ∀(abstractly),
 or forall (concretely)
- ◆ Bound in expressions by TYLAMBDA (abstractly), or type-lambda (concretely)

18

Idea: lambda for types

- ◆ You've seen this before: Java/C++ generics
- Quantified types: $\forall \alpha_1, \ldots, \alpha_n \cdot \tau$

(forall ('al ... 'an) type)

→ Type abstraction: TYLAMBDA $(\alpha_1, \ldots, \alpha_n, e)$

(type-lambda ('a1 ... 'an) exp)

• Type application: $\text{TYAPPLY}(e, \tau_1, \dots, \tau_n)$

(@ exp type1 ... typen)

Quantified types

```
-> length
cprocedure> : (forall ('a) (function ((list 'a)) int))
-> cons
cprocedure> : (forall ('a) (function ('a (list 'a)) (list 'a)))
-> car
cprocedure> : (forall ('a) (function ((list 'a)) 'a))
-> cdr
cprocedure> : (forall ('a) (function ((list 'a)) (list 'a)))
-> '()
() : (forall ('a) (list 'a))
```

Type instantiation

```
-> (val length-int (@ length int))
length-int : (function ((list int)) int)
-> (val length-bool (@ length bool))
length-bool : (function ((list bool)) int)
-> (val nil-bool (@ '() bool))
() : (list bool)
```

Instantiation *substitutes* actual types for type variables

Type abstraction

21