CS301
Session 7

Where are we?

+ We have an informal idea of the semantics of
uScheme

+ Plan: study the formal semantics and an
interpreter

+ But first we need a reading knowledge of
Standard ML

Overview of ML

+ Like Scheme:
+ A functional language with imperative features
+ First-class functions, recursion
+ Assignment, loops, sequencing
+ Unlike Scheme: many things, including
+ Static type checking and type inference

+ Polymorphic type system

Running it

+ Put it on your path, and

> mosml
Moscow ML version 2.01 (January 2004)
Enter “quit();' to quit.
- load "List.uo";
> val it = () : unit
- open List;
> datatype 'a list =
('a list,{con 'a nil : 'a list, con 'a :: : 'a *
'a list -> 'a list})
val 'a tabulate = fn : int * (int -> 'a) -> 'a
list
val 'a rev = fn : 'a list -> 'a list

Basics of ML interaction

+ Sample interaction

mosml

Moscow ML version 2.01 (January
2004)

Enter “quit();
- hd [1,2,3];
> val it = 1 : int

- tl1 [1,2,3];

> val it = [2, 3] : int 1list

to quit.

Novel features

+ Things to notice
- hd [1,2,3];
> val it = 1 : int
+ Function application is notated by juxtaposition
f x
+ The compiler (yes!) infers the type and prints it
+ The special identifier it is bound to the most recent

result

Built-in types

+ Integers, reals, strings, tuples, lists, records
1, ~1, .5, "hello", (1,2,3),
[1,2,3], 1::2::3::nil,
{color="red",length=5}

Patterns

+ Used to take apart compound values

- val record = {color="red",length=5};
> val record = {color = "red", length =
5} : {color : string, length : int}
- val {color=x, length=y} = record;
> val x = "red" : string

val y = 5 : int
- val {length = y, color=x} = record;
>val y =5 : int

val x = "red" : string

More patterns

+ Taking apart a list

- val xs = ["heads", "or", "tails"];
> val xs = ["heads", "or",
"tails"] : string list

- val y::ys = xs;

> val y = "heads" : string
val ys = ["or", "tails"] : string
list

Wild cards

+ If we don't care about part of the structure

- val ::ys = xs;
> val ys = ["or", "tails"] : string
list

Deep patterns

+ We can match "into" a structure:

- val x = ([1,2],"hi");
>val x = ([1, 2], "hi") : int 1list
* string
- val (y::ys,s) = x;
>val y =1 : int
val ys = [2] : int list
val s = "hi" : string

Layered patterns

+ ...and we can bind identifiers to parts of a structure:

- val x = ([1,2],"hi");

- val (1 as y::ys, s) = X;
>wval 1 =11, 2] : int list
val y = 1 : int
val ys = [2] : int list
val s = "hi" : string

Defining functions

+ Keyword "fun"

fun fact x =
if x=0 then 1 else x*fact (x-1);
> val fact = fn : int -> int

+ Binds identifier just as val does

+ Note the function type!

Defining functions by

pattern matching
+ Our old friend "append"

fun append (nil,l) =1
| append (x::xs, 1) =
X::append(xs,1l);
> val 'a append = fn :
'a list * 'a list -> 'a list
append ([1,2],[3,4,5]);
val it = [1, 2, 3, 4, 5] : int list

\%

Parametric polymorphism

+ What's that 'a thing?

'a list * 'a list -> 'a list
+ A type variable (often pronounced "alpha")
+ Our append function is polymorphic.

- append ([Ilall,llb”,llcll],[Ildll,llell]);
> Val it = [lla", llb", llc", lldll,
"e"] : string list

Beware!

+ "Parametric" means (roughly) that we must be able
to substitute some type for 'a everywhere:

append ([Ilall,"bll,llcll],[1,2]);
Toplevel input:
append (["a","b"’"c”]’[1,2]);

int
cannot have type

|
|
|
! Type clash: expression of type
|
!
! string

L ocal functions

+ Much like Scheme

fun reverse xs =
let fun revapp (nil,zs) = zs
| revapp (y::ys,zs) =
revapp(ys,y::zs)
in
revapp(xs,nil)
end;
> val 'a reverse = fn : 'a list -> 'a list
- reverse [1,2,3];
> val it = [3, 2, 1] : int list

Higher-order functions

+ You've seen it all before, but with different syntax

+ Example:

- fun curry £ = fn x => fn y => £(x,y);
>val ('a, 'b, 'c) curry = fn : ('a * 'b ->
-> 'a => 'b -> 'c

- val pos = curry op < 0;

> val pos = fn : int -> bool

- filter pos [1, ~1, ~2, 3];

> val it = [1, 3] : int list

c)

Defining data types

+ Enumeration types

- datatype color = Yellow | Magenta | Cyan;
> New type names: =color

datatype color =

(color, {con Cyan : color, con Magenta :
color, con Yellow : color})

con Cyan = Cyan : color

con Magenta = Magenta : color

con Yellow = Yellow : color

+ The "con's are constructors, or in this case, since
they have no parameters, constants

Parameters of constructors

- datatype money = nomoney | Coin of int | Bill of int;
> New type names: =money
datatype money
(money,
{con Bill : int -> money, con Coin : int -> money,
con nomoney : money})
con Bill : int -> money
con Coin : int -> money
con nomoney = nomoney : money
val dime = Coin 10;
val dime = Coin 10 : money
- val dollar = Bill 1;
val dollar Bill 1 : money
- nomoney;
> val it = nomoney : money

= fn
= fn

A\ |

\%

20

Recursive datatypes

- datatype 'a bintree = Leaf of 'a
| Tree of 'a * 'a bintree * 'a bintree;
> New type names: =bintree
datatype 'a bintree =
('a bintree,
{con 'a Leaf

a -> 'a bintree,

con 'a Tree : 'a * 'a bintree * 'a bintree -> 'a
bintree})
con 'a Leaf = fn : 'a -> 'a bintree
con 'a Tree = fn : 'a * 'a bintree * 'a bintree -> 'a

bintree
val t = Tree(5,Tree(2,Leaf 1,Leaf 4),Tree(9,
Tree(7,Leaf 6,Leaf 8),Leaf 10));
>val t =
Tree(5, Tree(2, Leaf 1, Leaf 4), Tree(9, Tree(7,
Leaf 6, Leaf 8), Leaf 10))
int bintree

Functions over datatypes

fun inord (Leaf x) = [Xx]
| inord (Tree(x,left,right)) =
(inord left)@x::(inord right);
> val 'a inord = fn : 'a bintree -> 'a list

- inord t;
> val it = [1, 2, 4, 5, 6, 7, 8, 9, 10] : int list

Note the infix "append" notation @

22

CS301
Session 8

Agenda

+ Review ml exercises
+ Formal semantics of uScheme

+ Introduction to the interpreter

Abstract syntax: top level

datatype toplevel = EXP of exp
| DEFINE of name * lambda
| vAL of name * exp
| USE of name

Abstract syntax: expressions

datatype
exp = LITERAL of value
| VAR of name
SET of name * exp
IFX of exp * exp * exp

BEGIN of exp list
LETX of let kind *
(name * exp) list * exp
| LAMBDA of lambda
| APPLY of exp * exp list
and let _kind = LET | LETREC | LETSTAR

|
|
| WHILEX of exp * exp
|
|

Abstract syntax: values

and value =

NIL
| BOOL of bool
| NUM of int
| syM of name
| PAIR of value * value
|

CLOSURE of lambda * value ref env
| PRIMITIVE of primitive
withtype primitive value list -> value
and lambda name list * exp

Semantics of uScheme

+ Top-level judgment:
(t,p,0) = (0, 0)

+ Expression evaluation judgment:

{e,p,0) |} (v,&')

What a rule means

+ Operationally we read a rule as having inputs,
possibly some subgoals, and outputs

+ Inputs: initial state of abstract machine
+ Subgoals: what the machine must do
+ Outputs: final state of abstract machine

+ Note that metavariables x and x' and x; are all
different!

Variables and assignment

+ Variable lookup
x € dom p p(x) € dom o
(VAR(x),p,0) I (o(p(x)),0

+ Assignment

xedomp pkx)=1 (ep,0)| (vd)
(SET(x,e),p,0) || (v,0'{l—v})

Let-binding
+ Simultaneous binding

li,..., I, & dom o

<617p7 U> ‘U <'U170'1>

<€n7p-, 0'71,71> U <'Un70'n>
(e,p{z1—l1,...,zn — ln}yon{li — v1,..., ln = o}y | (v,0")
<LET(<H;17 €15---,Tn, en>7 6)7 Ps U> ‘U’ </U70—/>

Let* binding
+ Sequential binding

li,..., ln & dom o

(e1,p,0) I (v1,0") pr=p{e1— UL} o1 =0{li— v}

<e'na Pn—1; O',,,,,1> U <Una U»/nfl> Pn = p’n,fl{xn g ln} On = Uéfl{ln = vn,}

<€7 Pns U'n,> U« <U, O'/>
(LETSTAR((Z1, €1, .., Zn, €n),€),p,0) 4 (v,0’)

Letrec binding

+ Left as an exercise for the reader

Functions

+ Lambdas evaluate to closures

r1,...,T, all distinct

(LAMBDA((21,...,Zpn),€), p,0) I (((LAMBDA({(z1,...,2,),€),p)),0)

Functions
+ Function applications
l,..., ln & dom o
(e,p,0) I (({LAMBDA({Z1,...,Zn),€c)s Pe)),00)

<617 Ps UO> ‘U’ </U17 Ul)

<€n7 12 Unfl> iL <U7z 5 Un>

<€c,ﬂc{I1 = 117 ey Ip ln}»gn{ll = V1, .. ~-,ln g vn}> U <U’U,>
(APPLY (e, €1, ..., 6n),p,0) | (v,0')

Impcore-like

+ Literals
+ Control flow

+ Primitives

Global variables

+ Note the two rules:

+ one for the case where a global is bound
already (in which case we do an assignment),

+ one for the case where the global is new (in
which case we extend the environment)

Top-level functions

+ "define" is just syntactic sugar for a val binding to
a lambda expression

An interpreter in ML

Environment and store

+ ML types for generic environments

type name = string
type 'a env = (name * 'a) list

+ Instantiate to get a mapping from names to
locations:

value ref env

+ We're using the ML store to represent the uScheme
store!

Structure of interpreter

+ Create initial environment binding the primitives
and initial basis

+ Enter a read-eval-print loop
+ repeatedly read and eval top-level item

+ evaluation code is structured just like the
operational semantics

Assignment

+ Read Ramsey & Kamin, Chapter 5

+ Do exercise 5.9 on page 196. Note that this
requires a significant (in the sense of
understanding, not lines of code!) change to the
interpreter; also note that you must answer the
question as well as implementing the change and
testing it thoroughly

20

	session7-4up.pdf
	session8-4up.pdf

