
CS301
Session 5

1

Where are we?

2

We've added S-expressions (and booleans) to
Impcore

We've seen how to use them to implement

sets

dictionaries

We've introduced lambda and the idea of first-
class functions

Where are we going?
A look at how functions can be treated as values

A long look at how to exploit first-class functions

3

Lambda

4

Creates unnamed function

(lambda (x) (* x 3))

... the function that multiplies its argument by 3

In

(lambda (x) (+ x y))

... x is bound, but y is free

Uses of lambda
Define nested functions using letrec

Pass functions as parameters

Return functions as results

Store them in data structures

5

Nested functions for
mutual recursion

From problem set 2:

(define preord (t)

 (letrec

((pre* (lambda (ts)

 (if (null? ts '()

 (append (preord (car ts))

 (pre* (cdr ts))))))

)

(if (leaf? t) (list1 t)

(cons (label t) (pre* (cdr t))))))

6

Nested functions
Free variables

(define contig-sublist? (l1 l2)

 (letrec

 ((prefix

 (lambda (f s)

 (if (null? f) #t

 (if (null? s) #f

 (if (equal? (car f) (car s))

 (prefix (cdr f) (cdr s))

 (prefix l1 (cdr s))))))))

 (prefix l1 l2)))

Free variable l1 used to "reset" the search!

7

Implementing nesting
Easy: keep stack of "displays" at run time

not the call stack!

location of free variable known at compile time

Familiar "static scoping" rule

8

Functions as arguments
(define twice (f x) (f (f x)))

(define nsq*m(n m)

 (twice (lambda (x) (* n x))

 m))

-> (nsq*m 3 2)

18

9

What are the bound and free variables?

Implementation
Still straightforward: n and m are on the call stack
while the lambda is being called in twice

At runtime, maintain links backward in the call
stack to find the values of free variables

10

Lambda: the great escape
Things are different when we return functions as
results or store them in data structures!

The free variables "escape" their original
environment

Now we need closures: in our interpreters a
lambda evaluates to a pair containing the code
and the current environment

11

Example
-> (define mult-by (n) (lambda (x) (* n x)))

mult-by

-> ((mult-by 3) 4)

12

Question: after (mult-by 3)returns, what does n mean?

In a naive implementation the parameter context is gone!

...thus closures!

12

Application: Function
composition

(define o (f g)

(lambda (x) (f (g x))))

-> (val caddr (o car (o cdr cdr)))

<procedure>

-> (caddr '(a b c d))

c

13

Application: currying
-> (define put-head (x) ((curry cons) x))

put-head

-> (val put-a (put-head 'a))

<procedure>

-> (put-a '(b c d))

(a b c d)

-> (put-a '(b l e))

(a b l e)

14

"own variables"
(define lock-box (key open)

 (lambda (k)

 (if (equal? k key)

 (if open

 (begin (set open #f) '(you have locked the box))

 (begin (set open #t) '(you have unlocked the box)))

 '(that is not the right key))))

-> (val box1 (lock-box 42 #f))

<procedure>

-> (val box2 (lock-box 7 #t))

<procedure>

-> (box1 42)

(you have unlocked the box)

-> (box1 42)

(you have locked the box)

-> (box2 42)

(that is not the right key)

-> (box2 7)

(you have locked the box

-> (box2 7)

(you have unlocked the box)

15

H-O functions in the
standard basis

Besides compose and curry...

Applying predicates to lists via filter, exists?, all?

Transforming lists via map

General list catamorphisms foldl and foldr

16

Predicates
Predicate: a function that returns a boolean

(val pos ((curry <) 0))

-> (filter pos '(-3 3 -4 4 -1 0 5))

(3 4 5)

Let's implement filter on the board

17

The list transformer map
Apply a function of one argument to each element

-> (map pos '(-3 3 -4 4 -1 0 5))

(#f #t #f #t #f #f #t)

-> (map

 (lambda (x)

(cons x '()))

 '(a b c))

((a) (b) (c))

18

Fold operators
As a result of

(foldr f z '(1 2 3))

... the input

(cons 1 (cons 2 (cons 3 '())))

... is transformed into the value of

(f 1 (f 2 (f 3 z)))

19

Using fold
(define countall (x xs)

 (foldl

 (lambda (y sum)

 (+ sum (if (equal? x y)

 1

 (if (pair? y)

 (countall x y)

 0))))

 0 xs))

20

Using fold

(define preord (t)

 (if (leaf? t)

 (list1 t)

 (cons (label t)

 (foldr

 (lambda (t l)

 (append (preord t) l))

 '()

 (cdr t)))))

21

Folding from the left
As a result of

(foldl f z '(1 2 3))

... the input

(cons 1 (cons 2 (cons 3 '())))

... is transformed into the value of

(f 3 (f 2 (f 1 z)))

22

!"#$# versus !"#$%
-> (foldr cons '() '(1 2 3))

(1 2 3)

-> (foldl cons '() '(1 2 3))

(3 2 1)

23

Next time
Using higher-order functions

polymorphism

continuations

24

CS301
Session 6

1

Where are we?

2

We've seen how Scheme's first-class functions
can be used

for local function definitions

to pass functions as parameters

to return functions as results

We've looked at the standard basis functions
o curry all? exists? filter map

foldl foldr

Where are we going?
Higher-order functions for polymorphism

Higher-order functions and continuation-passing
style

3

Polymorphism - the
problem

Sets, yes, but sets of what?

-> (val emptyset ’())

-> (define member? (x s)

 (exists? ((curry equal?) x) s))

-> (define add-element (x s)

 (if (member? x s) s (cons x s)))

-> (define union (s1 s2) (foldl add-element s1 s2))

-> (define set-from-list (l)

 (foldl add-element ’() l))

-> (union ’(1 2 3 4) ’(2 4 6 8))

(8 6 1 2 3 4)

4

Wanted: generality
What if we want sets of a-lists?

The predicate equal? isn't the right thing!

(equal? '((U Thant)(I Ching)(E coli))

 '((E coli)(I Ching)(U Thant)))

#f

...but that's what's used in member?

5

Equality for a-lists
The right test:

(define sub-alist? (d1 d2)

 (all?

 (lambda (pair)

 (equal? (cadr pair) (find (car pair) d2)))

 d1))

(define =alist? (d1 d2)

 (if (sub-alist? d1 d2)

 (sub-alist? d2 d1)

 #f))

6

Clunky polymorphism
Redefine set ops to expect equality test as parameter

(define member? (x s eqfun)

 (exists? ((curry eqfun) x) s))

(define add-element (x s eqfun)

 (if (member? x s eqfun) s (cons x s)))

...

But then we have to redefine all the set ops! And to use:

(member x s =alist)

(member y s' equal?)

7

Critique
We have to pass the equality predicate around
wherever we use the set - wordy, awkward, and
error-prone

Better idea: make the predicate part of the set

8

Polymorphism version 2
Represent set as pair of function and data (like a
simple object in an OO language)

(define mk-set (eqfun elements)

(cons eqfun elements))

(define eqfun-of (set) (car set))

(define elements-of (set) (cdr set))

(val emptyset (lambda (eqfun) (mk-set eqfun ’())))

(define member? (x s)

 (exists? ((curry (eqfun-of s)) x) (elements-of s)))

(define add-element (x s)

 (if (member? x s) s

 (mk-set (eqfun-of s) (cons x (elements-of s)))))

9

Critique
Now we can use the set without explicitly
mentioning the equality predicate - good!

And there's no danger of using the wrong predicate
- good!

But every set we have contains an extra cons cell -
even when there are many sets and only a few
different equality predicates - which might be bad!

To avoid the cons cell, package the set ops as a
closure over the predicate

10

Polymorphism version 3
(val mk-set-ops

 (lambda (eqfun)

 (list2

! (lambda (x s)

 (exists? ((curry eqfun) x) s))

! (lambda (x s)

! (if (exists? ((curry eqfun) x) s) s

! (cons x s))))))

(val al-nullset ’())

(val list-of-al-ops (mk-set-ops =alist?))

(val al-member? (car list-of-al-ops))

(val al-add-element (cadr list-of-al-ops))

11

Critique
We got rid of the cons cell - good!

But we might use the wrong set op for our set -
bad!

And we have to define named functions for each
type of set - which we might not like.

Later we'll study language features to give us real
polymorphism directly.

12

Continuation passing
Scheme's major innovation: the notion of
continuation

Full Scheme has a built-in construct for
continuation handling: call/cc

The granddaddy of throwing/catching exceptions

In uScheme we will program this explicitly with
higher-order functions

13

Continuations for errors
A-list find confuses unbound keys with keys
bound to '()

Clunky solution: special return values

Elegant solution: client of find passes two
functions: a success continuation and a failure
continuation

14

find with continuations
(define find-c (key alist success failure)

 (letrec

 ((search (lambda (alist)

! (if (null? alist)

! (failure)

! (if (equal? key (caar alist))

! ! (success (cadar alist))

! ! (search (cdr alist)))))))

 (search alist)))

(define find-default (key table default)

 (find-c key table (lambda (x) x)

! (lambda() default)))

15

Backtracking
We can use continuations to implement a
backtracking search

16

The SAT problem
NP-complete, but lots of practical apps

Problem: find an assignment of booleans to
variables that satisfies a CNF formula

Example formula:

Structure: conjuncts, disjuncts, literals

Some satisfying assignments:

17

(x∨ y∨¬z)∧ (w∨ y)∧ (w∨ z)

{x !→ T,y !→ F,z !→ T,w !→ T}
{x !→ F,y !→ T,z !→ T,w !→ F}

A basic search module
succeed, fail, and resume are continuations

succeed takes a resume continuation to allow
backtracking in case of failure in later module

Instantiate the module for each node of the search
tree

18

start succeed

resumefail

Backtracking for SAT
To solve a conjunction:

(define solve-conjunction (conjuncts cur fail succeed)

 (if (null? conjuncts)

 (succeed cur fail)

 (solve-disjunction (car conjuncts) cur fail

 (lambda (cur resume)

 (solve-conjunction (cdr conjuncts)

 cur resume succeed)))))

On backtrack, fail

If the first conjunct is solved, continue with the rest
of the conjuncts

19

The disjunction solver
Now an empty list is UNsatisfiable!

(define solve-disjunct (disjuncts cur fail succeed)

 (if (null? disjuncts)

 (fail)

 (solve-literal (car disjuncts) cur

 (lambda ()

 (solve-disjunct (cdr disjuncts) cur fail

 succeed))

 succeed)))

One satisfiable literal is all we need

On backtrack, look at the rest of the disjuncts

20

Solving a literal
Bind if possible/needed

(define solve-literal (lit cur fail succeed)

 (if (satisfies? lit cur)

 (succeed cur fail) ;fail on backtrack

 (if (binds? lit cur)

 (fail)

 (succeed (bind (variable-of lit)

 (satisfying-value lit)) cur)

 fail)))) ;fail on backtrack

No backtracking possible at this level, so we pass
the failure continuation as the "resume"
continuation

21

Watch the backtracking:
-> (one-solution f1)

(conjunction: ((x y) ((not x)) (y z)) soln: ())

(disjunction: (x y) soln: ())

success

(conjunction: (((not x)) (y z)) soln: ((x #t)))

(disjunction: ((not x)) soln: ((x #t)))

fail

(disjunction: () soln: ((x #t)))

fail

(disjunction: (y) soln: ())

success

(conjunction: (((not x)) (y z)) soln: ((y #t)))

(disjunction: ((not x)) soln: ((y #t)))

success

(conjunction: ((y z)) soln: ((y #t) (x #f)))

(disjunction: (y z) soln: ((y #t) (x #f)))

success

(conjunction: () soln: ((y #t) (x #f)))

((y #t) (x #f))

22

So what?
Treating functions as first-class values is a simple
idea with far-reaching consequences

Programs can create functions on the fly,
capturing the current environment in closures

When you have a language with this feature, use
functions freely for control structure, data
encapsulation, and whatever else you might
dream up

23

What next?
An interpreter for uScheme written in ML

... so next week's mission is to acquire a
rudimentary knowledge of ML

24

	session5-4up.pdf
	session6-4up.pdf

