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Where are we?
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We've added S-expressions (and booleans) to 
Impcore

We've seen how to use them to implement

sets

dictionaries

We've introduced lambda and the idea of first-
class functions

Where are we going?
A look at how functions can be treated as values

A long look at how to exploit first-class functions
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Lambda
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Creates unnamed function

(lambda (x) (* x 3))

... the function that multiplies its argument by 3

In

(lambda (x) (+ x y))

... x is bound, but y is free



Uses of lambda
Define nested functions using letrec

Pass functions as parameters

Return functions as results

Store them in data structures
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Nested functions for 
mutual recursion 

From problem set 2:

(define preord (t)

  (letrec 

((pre* (lambda (ts)

         (if (null? ts '()

                 (append (preord (car ts))

                         (pre* (cdr ts))))))

    )

(if (leaf? t) (list1 t)

(cons (label t) (pre* (cdr t))))))
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Nested functions
Free variables

(define contig-sublist? (l1 l2)

  (letrec 

      ((prefix 

        (lambda (f s)

          (if (null? f) #t

              (if (null? s) #f

                  (if (equal? (car f) (car s))

                      (prefix (cdr f) (cdr s))

                      (prefix l1 (cdr s))))))))

    (prefix l1 l2)))

Free variable  l1 used to "reset" the search!
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Implementing nesting
Easy: keep stack of "displays" at run time

not the call stack!

location of free variable known at compile time

Familiar "static scoping" rule
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Functions as arguments
(define twice (f x) (f (f x)))

(define nsq*m(n m)

  (twice (lambda (x) (* n x)) 

         m))

-> (nsq*m 3 2)

18
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What are the bound and free variables?

Implementation
Still straightforward: n and m are on the call stack 
while the lambda is being called in twice

At runtime, maintain links backward in the call 
stack to find the values of free variables
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Lambda: the great escape
Things are different when we return functions as 
results or store them in data structures!

The free variables "escape" their original 
environment

Now we need closures: in our interpreters a 
lambda evaluates to a pair containing the code 
and the current environment
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Example
-> (define mult-by (n) (lambda (x) (* n x)))

mult-by

-> ((mult-by 3) 4)
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Question: after (mult-by 3)returns, what does n mean? 

In a naive implementation the parameter context is gone!

...thus closures!
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Application: Function 
composition

(define o (f g)

(lambda (x) (f (g x))))

-> (val caddr (o car (o cdr  cdr)))

<procedure>

-> (caddr '(a b c d))

c
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Application: currying
-> (define put-head (x) ((curry cons) x))

put-head

-> (val put-a (put-head 'a))

<procedure>

-> (put-a '(b c d))

(a b c d)

-> (put-a '(b l e))

(a b l e)
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"own variables"
(define lock-box (key open)

  (lambda (k)

    (if (equal? k key) 

        (if open

            (begin (set open #f) '(you have locked the box))

            (begin (set open #t) '(you have unlocked the box)))

        '(that is not the right key))))

-> (val box1 (lock-box 42 #f))

<procedure>

-> (val box2 (lock-box 7 #t))

<procedure>

-> (box1 42)

(you have unlocked the box)

-> (box1 42)

(you have locked the box)

-> (box2 42)

(that is not the right key)

-> (box2 7)

(you have locked the box

-> (box2 7)

(you have unlocked the box)
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H-O functions in the 
standard basis

Besides compose and curry...

Applying predicates to lists via filter, exists?, all?

Transforming lists via map

General list catamorphisms foldl and foldr
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Predicates
Predicate: a function that returns a boolean

(val pos ((curry <) 0))

-> (filter pos '(-3 3 -4 4 -1 0 5))

(3 4 5)

Let's implement filter on the board
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The list transformer map
Apply a function of one argument to each element

-> (map pos '(-3 3 -4 4 -1 0 5))

(#f #t #f #t #f #f #t)

-> (map 

   (lambda (x)

(cons x '()))

   '(a b c))

((a) (b) (c))
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Fold operators
As a result of

(foldr f z '(1 2 3))

... the input

(cons 1 (cons 2 (cons 3 '())))

... is transformed into the value of

(f    1 (f    2 (f    3 z  )))
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Using fold
(define countall (x xs)

  (foldl

   (lambda (y sum) 

     (+ sum (if (equal? x y)

                1

                (if (pair? y)

                    (countall x y)

                    0))))

   0 xs)) 
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Using fold

(define preord (t) 

  (if (leaf? t)

      (list1 t)

      (cons (label t)

            (foldr

             (lambda (t l)

               (append (preord t) l))

             '()

             (cdr t)))))
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Folding from the left
As a result of

(foldl f z '(1 2 3))

... the input

(cons 1 (cons 2 (cons 3 '())))

... is transformed into the value of

(f    3 (f    2 (f    1 z  )))

22

!"#$# versus !"#$%
-> (foldr cons '() '(1 2 3))

(1 2 3)

-> (foldl cons '() '(1 2 3))

(3 2 1)
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Next time
Using higher-order functions

polymorphism

continuations
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CS301
Session 6

1

Where are we?

2

We've seen how Scheme's first-class functions 
can be used

for local function definitions

to pass functions as parameters

to return functions as results

We've looked at the standard basis functions 
o curry all? exists? filter map 

foldl foldr

Where are we going?
Higher-order functions for polymorphism

Higher-order functions and continuation-passing 
style
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Polymorphism -  the 
problem

Sets, yes, but sets of what?

-> (val emptyset ’()) 

-> (define member? (x s) 

                    (exists? ((curry equal?) x) s)) 

-> (define add-element (x s) 

                   (if (member? x s) s (cons x s))) 

-> (define union (s1 s2) (foldl add-element s1 s2)) 

-> (define set-from-list (l)

                         (foldl add-element ’() l)) 

-> (union ’(1 2 3 4) ’(2 4 6 8)) 

(8 6 1 2 3 4) 
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Wanted: generality
What if we want sets of a-lists?

The predicate equal? isn't the right thing!

(equal? '((U Thant)(I Ching)(E coli))

         '((E coli)(I Ching)(U Thant)))

#f

...but that's what's used in member?  
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Equality for a-lists
The right test:

(define sub-alist? (d1 d2)

  (all?

   (lambda (pair)

     (equal? (cadr pair) (find (car pair) d2)))

   d1))

(define =alist? (d1 d2)

      (if (sub-alist? d1 d2) 

          (sub-alist? d2 d1)     

          #f))
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Clunky polymorphism
Redefine set ops to expect equality test as parameter

(define member? (x s eqfun) 

  (exists? ((curry eqfun) x) s)) 

(define add-element (x s eqfun) 

  (if (member? x s eqfun) s (cons x s))) 

...

But then we have to redefine all the set ops!  And to use:

(member x s =alist)

(member y s' equal?)
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Critique 
We have to pass the equality predicate around 
wherever we use the set - wordy, awkward, and 
error-prone

Better idea: make the predicate part of the set
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Polymorphism version 2
Represent set as pair of function and data (like a 
simple object in an OO language)

(define mk-set (eqfun elements)

(cons eqfun elements)) 

(define eqfun-of (set) (car set)) 

(define elements-of (set) (cdr set))

(val emptyset (lambda (eqfun) (mk-set eqfun ’()))) 

(define member? (x s) 

  (exists? ((curry (eqfun-of s)) x) (elements-of s))) 

(define add-element (x s) 

  (if (member? x s) s 

      (mk-set (eqfun-of s) (cons x (elements-of s))))) 
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Critique
Now we can use the set without explicitly 
mentioning the equality predicate - good!

And there's no danger of using the wrong predicate 
- good!

But every set we have contains an extra cons cell - 
even when there are many sets and only a few 
different equality predicates - which might be bad!

To avoid the cons cell, package the set ops as a 
closure over the predicate
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Polymorphism version 3
(val mk-set-ops 

 (lambda (eqfun) 

  (list2 

!  (lambda (x s)

     (exists? ((curry eqfun) x) s)) 

!  (lambda (x s) 

!     (if (exists? ((curry eqfun) x) s) s 

!         (cons x s)))))) 

(val al-nullset ’()) 

(val list-of-al-ops (mk-set-ops =alist?)) 

(val al-member? (car list-of-al-ops)) 

(val al-add-element (cadr list-of-al-ops)) 
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Critique
We got rid of the cons cell - good!

But we might use the wrong set op for our set - 
bad!

And we have to define named functions for each 
type of set - which we might not like.

Later we'll study language features to give us real 
polymorphism directly.
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Continuation passing
Scheme's major innovation: the notion of 
continuation

Full Scheme has a built-in construct for 
continuation handling: call/cc 

The granddaddy of throwing/catching exceptions

In uScheme we will program this explicitly with 
higher-order functions
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Continuations for errors
A-list find confuses unbound keys with keys 
bound to '()

Clunky solution: special return values

Elegant solution: client of find passes two 
functions: a success continuation and a failure 
continuation 
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find with continuations
(define find-c (key alist success failure) 

 (letrec 

  ((search (lambda (alist) 

!     (if (null? alist) 

!         (failure) 

!         (if (equal? key (caar alist)) 

! !          (success (cadar alist)) 

! !          (search (cdr alist))))))) 

    (search alist))) 

(define find-default (key table default) 

  (find-c key table (lambda (x) x) 

!   (lambda() default))) 
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Backtracking
We can use continuations to implement a 
backtracking search
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The SAT problem
NP-complete, but lots of practical apps

Problem: find an assignment of booleans to 
variables that satisfies a CNF formula

Example formula:

Structure: conjuncts, disjuncts, literals

Some satisfying assignments:
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(x∨ y∨¬z)∧ (w∨ y)∧ (w∨ z)

{x !→ T,y !→ F,z !→ T,w !→ T}
{x !→ F,y !→ T,z !→ T,w !→ F}

A basic search module
succeed, fail, and resume are continuations

succeed takes a resume continuation to allow 
backtracking in case of failure in later module

Instantiate the module for each node of the search 
tree
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start succeed

resumefail

Backtracking for SAT
To solve a conjunction:

(define solve-conjunction (conjuncts cur fail succeed)

     (if (null? conjuncts)

       (succeed cur fail)

       (solve-disjunction (car conjuncts) cur fail

          (lambda (cur resume)

             (solve-conjunction (cdr conjuncts) 

                                    cur resume succeed)))))

On backtrack, fail

If the first conjunct is solved, continue with the rest 
of the conjuncts
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The disjunction solver
Now an empty list is UNsatisfiable!

(define solve-disjunct (disjuncts cur fail succeed)

  (if (null? disjuncts)

   (fail)

   (solve-literal (car disjuncts) cur 

     (lambda () 

       (solve-disjunct (cdr disjuncts) cur fail 

                       succeed))

     succeed)))

One satisfiable literal is all we need

On backtrack, look at the rest of the disjuncts
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Solving a literal
Bind if possible/needed

(define solve-literal (lit cur fail succeed)

  (if (satisfies? lit cur)

   (succeed cur fail)  ;fail on backtrack

   (if (binds? lit cur) 

     (fail)

     (succeed (bind (variable-of lit)

                      (satisfying-value lit)) cur)

              fail)))) ;fail on backtrack

No backtracking possible at this level, so we pass 
the failure continuation as the "resume" 
continuation
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Watch the backtracking:
-> (one-solution f1)

(conjunction: ((x y) ((not x)) (y z)) soln: ())

(disjunction: (x y) soln: ())

success

(conjunction: (((not x)) (y z)) soln: ((x #t)))

(disjunction: ((not x)) soln: ((x #t)))

fail

(disjunction: () soln: ((x #t)))

fail

(disjunction: (y) soln: ())

success

(conjunction: (((not x)) (y z)) soln: ((y #t)))

(disjunction: ((not x)) soln: ((y #t)))

success

(conjunction: ((y z)) soln: ((y #t) (x #f)))

(disjunction: (y z) soln: ((y #t) (x #f)))

success

(conjunction: () soln: ((y #t) (x #f)))

((y #t) (x #f))
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So what?
Treating functions as first-class values is a simple 
idea with far-reaching consequences

Programs can create functions on the fly, 
capturing the current environment in closures

When you have a language with this feature, use 
functions freely for control structure, data 
encapsulation, and whatever else you might 
dream up
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What next?
An interpreter for uScheme written in ML

... so next week's mission is to acquire a 
rudimentary knowledge of ML
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