CS301
Session 5

Where are we?

+ We've added S-expressions (and booleans) to
Impcore

+ We've seen how to use them to implement

+ sets
+ dictionaries

+ We've introduced lambda and the idea of first-
class functions

Where are we going?

+ A look at how functions can be treated as values

+ A long look at how to exploit first-class functions

Lambda

+

Creates unnamed function
(lambda (x) (* x 3))
+ ... the function that multiplies its argument by 3
+ In
(lambda (x) (+ x y))

+ ... xis bound, buty is free

Uses of lambda

+

Define nested functions using letrec

+

Pass functions as parameters

Return functions as results

+

+

Store them in data structures

Nested functions for
mutual recursion

+ From problem set 2:

(define preord (t)

(letrec

((pre* (lambda (ts)

(if (null? ts '()
(append (preord (car ts))
(pre* (cdr ts))))))

)

(if (leaf? t) (listl t)
(cons (label t) (pre* (cdr t))))))

Nested functions

+ Free variables

(define contig-sublist? (11 12)
(letrec
((prefix
(lambda (f s)
(if (null? £f) #t
(if (null? s) #£
(if (equal? (car f) (car s))
(prefix (cdr f) (cdr s))
(prefix 11 (cdr s))))))))
(prefix 11 12)))

+ Free variable 11 used to "reset" the search!

Implementing nesting

+ Easy: keep stack of "displays" at run time

+ not the call stack!
+ location of free variable known at compile time

+ Familiar "static scoping" rule

Functions as arguments

(define twice (f x) (f (f x)))

(define nsg*m(n m)
(twice (lambda (x) (* n x))
m))
-> (nsgq*m 3 2)
18

What are the bound and free variables?

Implementation

+ Still straightforward: n and m are on the call stack
while the lambda is being called in twice

+ At runtime, maintain links backward in the call
stack to find the values of free variables

Lambda: the great escape

+ Things are different when we return functions as
results or store them in data structures!

+ The free variables "escape" their original
environment

+ Now we need closures: in our interpreters a
lambda evaluates to a pair containing the code
and the current environment

Example
-> (define mult-by (n) (lambda (x) (* n x)))
mult-by
-> ((mult-by 3) 4)
12

+ Question: after (mult-by 3)returns, what does n mean?
+ In a naive implementation the parameter context is gone!

+ ...thus closures!

Application: Function
composition

Application: currying

-> (define put-head (x) ((curry cons) X))

) put-head
(define o (f g) -> (val put-a (put-head 'a))
(lambda (x) (f (g9 x)))) <procedure>
-> (put-a '(b c d))
-> (val caddr (o car (o cdr «cdr))) (a b cd)
<procedure> -> (put-a '(b 1 e))
-> (caddr '(a b c d)) (a ble)
c
13 14
.. iables" H-O functions in th
own variables -O tunctions In the
(define lock-box (key open) Standard bas I S
(lambda (k)
if 1? k ki .
 Fepen + Besides compose and curry...
(begin (set open #f) '(you have locked the box))
e e e b ker o ave unlocked the box))) + Applying predicates to lists via filter, exists?, all?
-> (val boxl (lock-box 42 #f))
< d: > M M M
e hox? (Lock-box 7 #t)) + Transforming lists via map
<procedure>
-> (boxl 42) : H
e) ecked the box) + General list catamorphisms foldl and foldr
-> (boxl 42)
(you have locked the box)
-> (box2 42)
(that is not the right key)
-> (box2 7)
(you have locked the box
-> (box2 7)

(you have unlocked the box)

Predicates

+ Predicate: a function that returns a boolean

(val pos ((curry <) 0))
-> (filter pos '(-3 3 -4 4 -1 0 5))
(3 4 5)

+ Let's implement filter on the board

The list transformer map

+ Apply a function of one argument to each element

-> (map pos '(-3 3 -4 4 -1 0 5))
(#£ #t #£ #t #£ #f #t)

-> (map
(lambda (x)
(cons x "()))
"(a b c))
((a) (b) (c))

Fold operators

+ As aresult of

(foldr £ z '(1 2 3))

+ ... the input
(cons 1 (cons 2 (cons 3 '())))
+ ... is transformed into the value of

(f 1 (f 2 (f 3z)))

Using fold

(define countall (x xs)
(foldl
(lambda (y sum)
(+ sum (if (equal? x y)
1
(1f (pair? y)
(countall x vy)

0))))
0 xs8))

20

Using fold

(define preord (t)
(if (leaf? t)
(listl t)

(cons (label t)
(foldr
(lambda (t 1)
(append (preord t) 1))
()
(cdr t)))))

21

Folding from the left

+ As aresult of

(foldl £ z '(1 2 3))

... the input
(cons 1 (cons 2 (cons 3 '())))
.. is transformed into the value of

(f 3 (f 2 (f 1z)))

22

foldl versus foldr

-> (foldr cons '() '(1 2 3))
(1 2 3)

-> (foldl cons '() '(1 2 3))
(3 2 1)

23

Next time

+ Using higher-order functions

+ polymorphism
+ continuations

24

CS301
Session 6

Where are we?

+ We've seen how Scheme's first-class functions
can be used

+ for local function definitions
+ to pass functions as parameters
+ to return functions as results

+ We've looked at the standard basis functions
o curry all? exists? filter map
foldl foldr

Where are we going?

+ Higher-order functions for polymorphism

+ Higher-order functions and continuation-passing
style

Polymorphism - the
problem

+ Sets, yes, but sets of what?

-> (val emptyset ’())
-> (define member? (x s)

(exists? ((curry equal?) x) s))
-> (define add-element (x s)

(if (member? x s) s (cons x s)))
-> (define union (sl s2) (foldl add-element sl s2))
-> (define set-from-list (1)

(foldl add-element ' () 1))

-> (union (1 2 3 4) '(2 4 6 8))
(86123 4)

Wanted: generality

+ What if we want sets of a-lists?
+ The predicate equal? isn't the right thing!

(equal? '((U Thant)(I Ching)(E coli))
"((E coli)(I Ching) (U Thant)))
#£

+ ...but that's what's used in member?

Equality for a-lists

+ The right test:

(define sub-alist? (dl d2)
(allz
(lambda (pair)
(equal? (cadr pair) (find (car pair) d2)))
d1))

(define =alist? (dl d2)
(if (sub-alist? dl d2)
(sub-alist? d2 dl)
#£))

Clunky polymorphism

+ Redefine set ops to expect equality test as parameter

(define member? (x s egfun)
(exists? ((curry eqfun) x) s))
(define add-element (x s eqfun)
(if (member? x s egfun) s (cons X s)))

+ But then we have to redefine all the set ops! And to use:

(member x s =alist)
(member y s' equal?)

Critique

+ We have to pass the equality predicate around
wherever we use the set - wordy, awkward, and
error-prone

+ Better idea: make the predicate part of the set

Polymorphism version 2

+ Represent set as pair of function and data (like a
simple object in an OO language)

(define mk-set (eqgfun elements)
(cons eqgfun elements))

(define eqgfun-of (set) (car set))

(define elements-of (set) (cdr set))

(val emptyset (lambda (eqfun) (mk-set egfun '())))
(define member? (X s)
(exists? ((curry (eqfun-of s)) x) (elements-of s)))
(define add-element (x s)
(if (member? x s) s
(mk-set (eqgfun-of s) (cons x (elements-of s)))))

Critique

Now we can use the set without explicitly
mentioning the equality predicate - good!

And there's no danger of using the wrong predicate
- good!

But every set we have contains an extra cons cell -
even when there are many sets and only a few
different equality predicates - which might be bad!

To avoid the cons cell, package the set ops as a
closure over the predicate

Polymorphism version 3

(val mk-set-ops
(lambda (eqfun)
(list2
(lambda (x s)
(exists? ((curry eqfun) x) s))
(lambda (x s)
(1f (exists? ((curry eqfun) x) s) s
(cons x s))))))
(val al-nullset ’())
(val list-of-al-ops (mk-set-ops =alist?))
(val al-member? (car list-of-al-ops))
(val al-add-element (cadr list-of-al-ops))

Critique

+ We got rid of the cons cell - good!

+ But we might use the wrong set op for our set -

bad!

+ And we have to define named functions for each

type of set - which we might not like.

+ Later we'll study language features to give us real

polymorphism directly.

Continuation passing

Scheme's major innovation: the notion of
continuation

Full Scheme has a built-in construct for
continuation handling: call/cc

The granddaddy of throwing/catching exceptions

In uScheme we will program this explicitly with
higher-order functions

Continuations for errors
A-list £ind confuses unbound keys with keys
boundto ' ()

Clunky solution: special return values

Elegant solution: client of £ind passes two
functions: a success continuation and a failure
continuation

find with continuations

(define find-c (key alist success failure)
(letrec
((search (lambda (alist)
(if (null? alist)
(failure)
(if (equal? key (caar alist))
(success (cadar alist))
(search (cdr alist)))))))
(search alist)))

(define find-default (key table default)
(find-c key table (lambda (x) Xx)
(lambda() default)))

Backtracking

+ We can use continuations to implement a
backtracking search

The SAT problem

NP-complete, but lots of practical apps

Problem: find an assignment of booleans to
variables that satisfies a CNF formula

Example formula: (xVyV-z) A(wVy)A(wVz)
Structure: conjuncts, disjuncts, literals

Some satisfying assignments:
{x—T,y—Fz—T,w—T}

{x—Fy—Tz—T,w—F}

A basic search module

+ succeed, fail, and resume are continuations

start succeed

fail resume

+ succeed takes a resume continuation to allow
backtracking in case of failure in later module

+ Instantiate the module for each node of the search
tree

Backtracking for SAT

To solve a conjunction:

(define solve-conjunction (conjuncts cur fail succeed)
(if (null? conjuncts)
(succeed cur fail)
(solve-disjunction (car conjuncts) cur fail
(lambda (cur resume)
(solve-conjunction (cdr conjuncts)
cur resume succeed)))))

On backtrack, fail

If the first conjunct is solved, continue with the rest
of the conjuncts

The disjunction solver

+ Now an empty list is UNsatisfiable!

(define solve-disjunct (disjuncts cur fail succeed)

(if (null? disjuncts)
(fail)
(solve-literal (car disjuncts) cur

(lambda ()

(solve-disjunct (cdr disjuncts) cur fail
succeed))
succeed)))

+ One satisfiable literal is all we need

+ On backtrack, look at the rest of the disjuncts

20

Solving a literal

+ Bind if possible/needed

(define solve-literal (lit cur fail succeed)

(if (satisfies? 1lit cur)

(succeed cur fail) ;fail on backtrack

(if (binds? 1lit cur)
(fail)
(succeed (bind (variable-of 1lit)

(satisfying-value 1lit)) cur)
fail)))) ;fail on backtrack

+ No backtracking possible at this level, so we pass
the failure continuation as the "resume"
continuation

21

Watch the backtracking:

-> (one-solution f1)

(conjunction: ((x y) ((not x)) (y z)) soln: ())
(disjunction: (x y) soln: ())

success

(conjunction: (((not x)) (y z)) soln: ((x #t)))
(disjunction: ((not x)) soln: ((x #t)))

fail

(disjunction: () soln: ((x #t)))

fail

(disjunction: (y) soln: ())

success

(conjunction: (((not x)) (y z)) soln: ((y #t)))
(disjunction: ((not x)) soln: ((y #t)))

success

(conjunction: ((y 2z)) soln: ((y #t) (x #f)))
(disjunction: (y z) soln: ((y #t) (x #£)))
success

(conjunction: () soln: ((y #t) (x #£)))

((y #t) (x #£))

22

So what?

+ Treating functions as first-class values is a simple
idea with far-reaching consequences

+ Programs can create functions on the fly,
capturing the current environment in closures

+ When you have a language with this feature, use
functions freely for control structure, data
encapsulation, and whatever else you might
dream up

23

What next?

+ An interpreter for uScheme written in ML

+ ... so next week's mission is to acquire a
rudimentary knowledge of ML

24

	session5-4up.pdf
	session6-4up.pdf

