
CS301
Session 20

1

Agenda

2

Introduction to logic programming

Examples

Semantics

A logic programming trick
A two-way translator in two lines of code:

translate([],[]).
translate([Word|Words],[Mot|Mots]) :-
! dict(Word,Mot),translate(Words,Mots).

(not counting the dictionary)

What it does:

| ?- translate([the,dog,chases,the,cat],Francais).
Francais = [le,chien,chasse,le,chat]
| ?- translate(English,[le,rat,mange,le,fromage]).
English = [the,rat,eats,the,cheese] ?

3

A simple Prolog program
When is an item an element of a list?

Axiom:

element(X,[X|Xs]).

Inference rule:

element(X,[Y|Xs]) :- element(X,Xs).

Query:

| ?- element(1,[2,1,4]).
true

4

Not just a functional program

Give me lists that 1 is a member of:

| ?- element(1,Xs).

Xs = [1|_] ? ;

Xs = [_,1|_] ? ;

Xs = [_,_,1|_] ?

No limit to the number of answers

5

Running it "backwards"
Give me the elements of a given list

element(X,[2,1,4]).

X = 2 ? ;

X = 1 ? ;

X = 4 ?;

no

6

Informal semantics
No evaluation - proof search instead

"Variables" are bound as a result of search

A "program" is a set of clauses together with a
query

The meaning of a program is a set of proofs

The "answer" is yes or no - a proof was found or
not - together with bindings for the variables

7

Stranger Prolog programs
Generate-and-test

Example: do two lists have a nonempty intersection?

intersect(Xs,Ys) :-
 element(X,Xs), element(X,Ys).

| ?- intersect([1,3,5],[2,3,5]).

true ? ;

true ? ;

no

8

A larger example

9

n-queens in 9 lines of code

10

Problem definition
Can we place n queens on an n-by-n chessboard so
that no queen attacks any other queen?

Idea: represent a solution as some permutation of
the numbers 1...n, each one giving the row number
to place the queen in column n.

By construction no two queens are in the same row
or column.

Our program checks whether any two share a
diagonal.

11

Example solution
[2,5,7,1,3,8,6,4]

12

Checking for attacks
If two queens are n columns apart, there is an attack
if they are also n rows apart

To do a safety check, check that the first queen
doesn't attack any of the rest, and the second queen
doesn't attack any of the rest,

13

Safety check
notattack(X,1,L)

notattack(2,1,[5,7,1,3,8,6,4])

14

Defining safety
notattack(X,N,[]).
notattack(X,N,[Y|Ys]) :-

X =\= Y+N,
X =\= Y-N,
N1 is N+1,
notattack(X,N1,Ys).

15

Generating candidates
Generate the numbers 1..n

range(N,N,[N]).
range(N,M,[N|Ns]) :- M>N, N1 is N+1,
 range(N1,M,Ns).

Generate a permutation

perm([],[]).
perm([X|Xs],Ys) :- perm(Xs,Zs),
 append(Z1,Z2,Zs),
 append(Z1,[X|Z2],Ys).

16

Splitting with append
| ?- append(Xs,Ys,[1,2,3]).

Xs = []
Ys = [1,2,3] ? ;

Xs = [1]
Ys = [2,3] ? ;

Xs = [1,2]
Ys = [3] ? ;

Xs = [1,2,3]
Ys = [] ? ;

(1 ms) no

17

Generate-and-test
queens(N,Qs) :- range(1,N,Ns),
 perm(Ns,Qs),
 safe(Qs).

safe([]).
safe([Q|Qs]) :- safe(Qs),
 notattack(Q,1,Qs).

18

What it does
| ?- queens(8,Qs).

Qs = [5,2,6,1,7,4,8,3] ? ;

Qs = [6,3,5,7,1,4,2,8] ? ;

Qs = [6,4,7,1,3,5,2,8] ? ;

Qs = [3,6,2,7,5,1,8,4]

... and 88 other solutions

19

Unification makes it work
Unification: given two terms t1 and t2, both
potentially containing variables, can we find a
substitution for those variables making t1 and t2
the same?

e.g. unify [X,3,4|Xs] and [2,3,Y|Ys]:

{ X:=2, Xs:=Ys, Y:=4 }

20

Unification in n-queens
Unify queens(8,Qs) with queens(N,Qs)

Result: { N:=8}

New goal:

range(1,8,Ns),
perm(Ns,Qs),
safe(Qs).

21

Backtracking makes it work
A search tree

22

Backtracking trace
Remember element testing:

element(X,[X|Xs]).
element(X,[Y|Xs]) :- element(X,Xs).

Tracing it:

23

| ?- element(X,[1,2,3]).
 Call: element(X,[1,2,3]) ?
 Exit: element(1,[1,2,3]) ?
X = 1 ? ;
 Call: element(X,[2,3]) ?
 Exit: element(2,[2,3]) ?
 Exit: element(2,[1,2,3]) ?
X = 2 ? ;
 Call: element(X,[3]) ?
 Exit: element(3,[3]) ?
 Exit: element(3,[2,3]) ?
 Exit: element(3,[1,2,3]) ?
X = 3 ? ;

Extensions

Change the search order, e.g. to breadth-first

Constraint solvers

Function definitions

Higher-order unification

...

24

Why learn logic programming?
Expand your view of computation

Acquire a powerful specialized tool

Amaze and baffle your friends in 50 lines of code:

i am sure there are space aliens around.
how long have you been sure there are space aliens
around ?
since my mother went crazy.
can you tell me more about mother
i like to pull her hair.
does anyone else in your family like to pull her hair ?
my brother.
can you tell me more about brother
he is too weird.
please go on
i feel he is watching me.
do you often feel that way ?

25

CS301
Session 21

1

Agenda

2

Semantics of Prolog

Logical view

Substitutions

Unification

Procedural view

Logical vs. procedural semantics

Logical semantics extremely simple but it's an
idealization of what actually happens

It ignores effects of search order, e.g.
nontermination

Procedural semantics specifies search order

Can also specify the behavior of the nonlogical
constructs like cut

3

Logical semantics
Judgment: the conjunction of goals is satisfiable
using the set of clauses D and the substitution !

Rule for conjunctions

4

D ! θ̂g1, . . . , θ̂gn

D ! θ̂g1 . . . D ! θ̂gn

D ! θ̂g1, . . . , θ̂gn

Logical semantics cont'd
Rule for a single goal

C is any clause in the database!

5

C ∈ D C = G:-H1, . . . ,Hm

θ̂′(G) = θ̂g
D " θ̂′(H1), . . . , θ̂′(Hm)

D " θ̂g

Substitutions
Informally, think of a substitution as a function
that maps logic variables to Prolog terms (which
may contain logic variables

If ! a substitution and t a term, write !t for the
application of ! to t

but write ! g for the application to a goal g

A substitution never affects a functor, predicate,
or literal

6

^

Unification
Unification plus variable renaming finds the pair of
substitutions we need to match a goal to a clause
head

Why renaming? Consider:

member(M,[1|nil])
member(X,[X|M])

We need to consider the two occurrences of M to
be different variables.

7

Unification: two subtleties
Unification finds a most general unifier! We're not
interested in other substitutions.

To be correct, unification must do an occurs check:
the following should not unify:

foo(X,[X|L])
foo(Y,[bar(Y)|M])

8

Procedural semantics
Specifies order of evaluation

which clause is matched first?

how does backtracking work?

9

Choosing a clause
Given an atomic query g and a database D, we
attempt to satisfy g using the clauses of D in the
order in which they appear.

This yields nontermination in the following:

element(X,[Y|Xs]) :- element(X,Xs).
element(X,[X|Xs]).
?- element(1,L).

10

Backtracking
If we unify a goal with a clause C, but fail to satisfy
a subgoal, we return to the list of clauses and try to
to unify our goal with the next clause after C.

This causes nontermination in:

reach(X,Y) :- reach1(X,Y).
reach(X,Y) :- reach(X,U), reach(U,Y).
reach(X,X).
?- reach(a,a).

11

Comparing the two
The logical interpretation is "too powerful" - if there
is any way to find a proof, it succeeds.

The procedural interpretation reflects what can be
easily, efficiently implemented, but is harder to
understand.

Note that many implementations omit the "occurs
check" to speed up unification.

12

Exercise
Small groups - do exercise 2 (a) and (b)

13

	session20-4up.pdf
	session21-4up.pdf

