CS301
Session 20

Agenda

+ Introduction to logic programming
+ Examples

+ Semantics

A logic programming trick

+ A two-way translator in two lines of code:
translate([],[])-.
translate([Word|Words], [Mot |Mots]) :-
dict(Word,Mot),translate(Words,Mots).
+ (not counting the dictionary)
+ What it does:

| ?- translate([the,dog,chases,the,cat],Francais).

Francais = [le,chien,chasse,le,chat]
| ?- translate(English,[le,rat,mange,le,fromage]).
English = [the,rat,eats,the,cheese] ?

+

+

+

A simple Prolog program

When is an item an element of a list?
Axiom:
element (X, [X|Xs]).
Inference rule:
element (X,[Y|Xs]) :- element(X,Xs).
Query:

| ?2- element(1,[2,1,4]).
true

Not just a functional program

+ Give me lists that 1 is a member of:

| ?2- element(1l,Xs).
Xs = [1]_1 ? ;
Xs = [_,1]|_1 ? ;

Xs = [_, ,1| 17?2

+ No limit to the number of answers

Running it "backwards"

+ Give me the elements of a given list

element(X,[2,1,4]).

X =2 7?;
X=12?;
X =4 ?;
no

Informal semantics

+ No evaluation - proof search instead
+ "Variables" are bound as a result of search

+ A '"program" is a set of clauses together with a
query

+ The meaning of a program is a set of proofs

+ The "answer" is yes or no - a proof was found or
not - together with bindings for the variables

Stranger Prolog programs

+ Generate-and-test
+ Example: do two lists have a nonempty intersection?

intersect(Xs,Y¥s) :-
element (X,Xs), element(X,Y¥Ys).

| ?- intersect([1,3,51,[2,3,5])-
true ? ;
true ? ;

no

A larger example

n-queens in 9 lines of code
bl

e

Problem definition

Can we place n queens on an n-by-n chessboard so
that no queen attacks any other queen?

Idea: represent a solution as some permutation of
the numbers 1...n, each one giving the row number

to place t

By constr

he queen in column n.

uction no two queens are in the same row

or column.

Our prog
diagonal.

ram checks whether any two share a

Example solution

+ 12,5,7,1,3,8,6,4]

ke

Checking for attacks

+ If two queens are n columns apart, there is an attack
if they are also n rows apart

+ To do a safety check, check that the first queen
doesn't attack any of the rest, and the second queen
doesn't attack any of the rest,

Safety check

+ notattack(x,1,L) ,

[T |
ML e T
Lﬂn“\
EEENET
e
L)L

Y

+ notattack(2,1,(5,7,1,3,8,6,41])

Defining safety

notattack(X,N,[]).
notattack(X,N,[Y|¥Ys]) :-

X =\= Y+N,
X =\= Y-N,
N1l is N+1,

notattack(X,N1,Ys).

Generating candidates

+ Generate the numbers 1..n

range(N,N, [N]).
range(N,M, [N|Ns]) :- M>N, N1 is N+1,
range(N1,M,Ns).

+ Generate a permutation
perm([]1,[]).
perm([X|Xs],Ys) :- perm(Xs,Zs),

append(z1,22,Zs),
append(Z1,[X|Z2],Ys).

Splitting with append

| ?- append(Xs,Y¥s,[1,2,3]).

Generate-and-test

queens(N,Qs) :- range(l,N,Ns),
perm(Ns,Qs),

Xs =[]

Ys = [1,2,3] ? ; safe(Qs).

Xs = [1

ve - b}ﬂ ? ; safe([1).

safe([Q|Qs]) :- safe(Qs),

iz: Ei?l. notattack(Q,1,Qs).

Xs = [1,2,3]

Ys =[] ? ;

(1 ms) no

What it does Unification makes it work

| ?- queens(8,Qs). + Unification: given two terms t; and t;, both
potentially containing variables, can we find a

Qs = [5,2,6,1,7,4,8,3] ? ; substitution for those variables making t; and t,
the same?

= P e

Qs = [6,3,5,7,1,4,2,8] 2 ; + e.g. unify [X,3,4|Xs]and [2,3,Y]|Ys]:

Qs = [(6,4,7,1,3,5,2,8] ? ; + {X:=2, Xs:=¥Ys, Y:=4 }

Qs = [3,6,2,7,5,1,8,4]

... and 88 other solutions

20

Unification in n-queens

+ Unify queens(8,0s) with queens(N,Qs)
+ Result: { N:=8}
+ New goal:

range(1l,8,Ns),
perm(Ns,Qs),
safe(Qs).

21

Backtracking makes it work

+ A search tree

22

Backtracking trace

+ Remember element testing:

element (X, [X|Xs]).
element (X, [Y|Xs]) :- element(X,Xs).

+ Tracing it | 2- element(x,[1,2,31).
Call: element(X,[1,2,3
Exit: element(1l,[1,2,3
X=17?;
Call: element(X,[2,3]) ?
Exit: element(2,[2,3]) ?
Exit: element(2,[1,2,3]) ?
X=27?;
Call: element(X,[3]) ?
Exit: element(3,[3]) ?
Exit: element(3,[2,3]) ?
Exit: element(3,[1,2,3]) ?

2
1z

23

Extensions

+

Change the search order, e.g. to breadth-first

Constraint solvers

+

<+

Function definitions

+

Higher-order unification

24

Why learn logic programming?
+ Expand your view of computation
+ Acquire a powerful specialized tool

+ Amaze and baffle your friends in 50 lines of code:

i am sure there are space aliens around.

how long have you been sure there are space aliens
around ?

since my mother went crazy.

can you tell me more about mother

i like to pull her hair.

does anyone else in your family like to pull her hair ?
my brother.

can you tell me more about brother

he is too weird.

please go on

i feel he is watching me.

do you often feel that way ?

25

CS301
Session 21

Agenda

+ Semantics of Prolog
+ Logical view
+ Substitutions
+ Unification

+ Procedural view

Logical vs. procedural semantics

+ Logical semantics extremely simple but it's an
idealization of what actually happens

+ Itignores effects of search order, e.g.
nontermination

+ Procedural semantics specifies search order

+ Can also specify the behavior of the nonlogical
constructs like cut

Logical semantics

+ Judgment: the conjunction of goals is satisfiable
using the set of clauses D and the substitution ©

Dl—égl,...,égn

+ Rule for conjunctions

D}—égl DFégn

DFégh...,égn

Logical semantics cont'd

+ Rule for a single goal

cCeD C:GZ_H1,..~7Hm
0'(G) =g
DF§/(Hy),... 0/(H,y)

A~

D F fg

+ Cis any clause in the database!

Substitutions

+ Informally, think of a substitution as a function
that maps logic variables to Prolog terms (which
may contain logic variables

+ If B a substitution and t a term, write 6t for the
application of 8 to t

A
+ but write 8 g for the application to a goal g

+ A substitution never affects a functor, predicate,
or literal

Unification

+ Unification plus variable renaming finds the pair of
substitutions we need to match a goal to a clause
head

+ Why renaming? Consider:

member (M, [1|nil])
member (X, [X|M])

+ We need to consider the two occurrences of M to
be different variables.

Unification: two subtleties

+ Unification finds a most general unifier! We're not
interested in other substitutions.

+ To be correct, unification must do an occurs check:
the following should not unify:

foo (X, [X|L])
foo (Y, [bar(Y)|M])

Procedural semantics

+ Specifies order of evaluation

+ which clause is matched first?

+ how does backtracking work?

Choosing a clause

+ Given an atomic query g and a database D, we
attempt to satisfy g using the clauses of D in the
order in which they appear.

+ This yields nontermination in the following:

element (X,[Y|Xs]) :- element(X,Xs).
element (X, [X|Xs]).
?- element(1l,L).

Backtracking

+ If we unify a goal with a clause C, but fail to satisfy
a subgoal, we return to the list of clauses and try to
to unify our goal with the next clause after C.

+ This causes nontermination in:

reach(X,Y) :- reachl(X,Y).
reach(X,Y) :- reach(X,U), reach(U,Y).
reach(X,X).

?- reach(a,a).

Comparing the two

+ The logical interpretation is "too powerful" - if there
is any way to find a proof, it succeeds.

+ The procedural interpretation reflects what can be
easily, efficiently implemented, but is harder to
understand.

+ Note that many implementations omit the "occurs
check" to speed up unification.

Exercise

+ Small groups - do exercise 2 (a) and (b)

	session20-4up.pdf
	session21-4up.pdf

