
CS301
Session 18

1

Agenda

2

The semantics of uSmalltalk

Smalltalk is highly dynamic

3

Semantics reflect this

Almost everything can change at runtime

(In the full language, even more so!)

Major new features

4

Values are objects

Object carries its class with it

Even classes like SmallInteger can be redefined

... so the behavior of a literal could change
during program execution

Method dispatch - many rules!

Environments - global and parameter

Closures capture only parameter environment

Abstract syntax
Expressions

datatype exp = VAR of name
 | SET of name * exp
 | SEND of srcloc * name * exp * exp list
 | BEGIN of exp list
 | BLOCK of name list * exp list
 | LITERAL of rep
 | VALUE of value
 | SUPER

For technical reasons values can be treated as
expressions

5

Top-level items
The main new thing is the class definition

toplevel = DEFINE of name * name list * exp
 | CLASSD of
 { name : string
 , super : string
 , ivars : string list (* instance variables *)
 , methods : (method_kind * name * method_impl) list
 }
 | EXP of exp | VAL of name * exp | USE of name
and method_kind = IMETHOD | CMETHOD
and method_impl = USER_IMPL of name list * name list * exp
 | PRIM_IMPL of name

6

Values
Values (objects) are pairs containing the class and
the representation:

withtype value = class * rep

Representations (closures need the static superclass)

rep = USER of value ref env (* instance vars *)
 | ARRAY of value Array.array
 | NUM of int
 | SYM of name
 | CLOSURE of
 name list * exp list * value ref env * class
 | CLASSREP of class

7

Class representation
Classes are constructed from ML records

class = CLASS of
 { name : name
 , super : class option (* superclass, if any *)
 , ivars : string list (* instance variables *)
 , methods : method env
 , id : int (* unique identifier *)
 }

The option datatype is used to represent things that
might not be there - class Object has no superclass

8

Side trip: the option datatype

A standard ML datatype, used throughout the
interpreter to represent optional things

datatype 'a option = NONE | SOME of 'a

Creating optional values:

fun stringReader [] = NONE
 | stringReader (h::t) = SOME (h, t)

9

Using option
Distinguishing between SOME and NONE

case super
of SOME c => fm c
 | NONE => ...

Raising an exception if NONE

fun mkInteger n = (valOf (!intClass), NUM n)
handle Option => badlit "..."

10

Methods in class reps
Methods are either primitive or user-defined:

method
 = PRIM_METHOD of name * (value * value list -> value)
 | USER_METHOD of
 { name : name
 , formals : name list
 , temps : name list
 , body : exp
 , superclass : class (* static superclass *)
 }

11

Expression evaluation
Context is a message send:

global environment !

local (parameter) environment "

static superclass (superclass of the class where
the message send occurs) csuper

Environments map identifiers to locations in the
store

12

Judgments
Expression evaluation

Top-level evaluation

13

〈e, ρ, csuper, ξ,σ〉 ⇓ 〈v,σ′〉

〈t, ξ, σ〉 → 〈ξ′, σ′〉

Variables
Just like Impcore (we ignore the superclass)

self is an instance variable, and super behaves
like self except as the receiver of a message:

14

〈var(self), ρ, csuper, ξ, σ〉 ⇓ 〈v, σ〉

〈super, ρ, csuper, ξ, σ〉 ⇓ 〈v, σ〉

Literals
Array literals are parsed as VALUES, but numbers
and symbols as LITERALS

15

〈value(v), ρ, csuper, ξ, σ〉 ⇓ 〈v, σ〉

〈literal(num(n)), ρ, csuper, ξ, σ〉 ⇓ 〈〈σ(ξ(SmallInteger)),num(n)〉, σ〉

Blocks
We make an object of class Block, with a closure
as representation, which captures the parameter
environment (not the globals) as well as the static
superclass:

16

〈block(〈x1 . . . xn〉, es)), ρ, cs, ξ,σ〉 ⇓ 〈〈σ(ξ(Block)),clo(〈x1 . . . xn〉, es, cs, ρ)〉,σ〉

Message send
Five cases:

user-defined method, receiver is not super

user-defined method, receiver is super

primitive method, receiver is not super

primitive method, receiver is super

value method

17

Ordinary user message send
To evaluate

eval receiver and parameters, threading the store:

look up method using receiver's class

18

〈send(m, e, e1, . . . , en), ρ, cs, ξ,σ〉 ⇓ 〈v,σ′〉

〈e, ρ, cs, ξ,σ〉 ⇓ 〈〈c, r〉,σ0〉
〈ei, ρ, cs, ξ,σi−1〉 ⇓ 〈vi,σi〉

findMethod(m, c) = user method(, 〈x1, . . . , xn〉, 〈y1, . . . , yk〉, em, s)

Message send cont'd
Allocate space for the method's parameters and
locals

Create the environment and eval the body

Notice which static superclass is used!

19

l1, . . . , ln !∈ dom σn l′1, . . . , l
′
k !∈ dom σn

σ̂ = σn{l1 !→ v1, . . . , ln !→ vn, l′1 !→ nil, . . . , l′k !→ nil

ρ′ = instanceVars(r)
〈em, ρ′{x1 "→ l1, . . . , xn "→ ln, y1 "→ l′1, . . . , yk "→ l′k}, s, ξ, σ̂〉 ⇓ 〈v,σ′〉

Message send to super
The only difference is that we use the static
superclass to start the method lookup.

20

findMethod(m, cs) = user method(, 〈x1, . . . , xn〉, 〈y1, . . . , yk〉, em, s)

Primitive methods
The rules are simpler, because primitive methods
are just functions

The value method sent to a block acts like a user
method, but without local variables. The body of
the block is evaluated in a context where the
static superclass is the one that was stored when
the block was created.

21

Top level variables
Defining a new global:

Recall that a closure doesn't capture the global
environment. That's why we can define recursive
blocks at the top level.

22

x !∈ dom ξ l !∈ dom σ
〈e, {}, ξ0(Object), ξ,σ〉 ⇓ 〈v,σ′〉

〈val(x, e), ξ,σ〉 → 〈ξ{x '→ l},σ′{l '→ v}〉

The top-level environment
...not captured in closures:

-> (define foo (n) (if (<= n 0)
 [(value bar n)] [(value foo (- n 1))]))
<Block>
-> (define bar (n) (+ n 1))
<Block>
-> (value foo 5)
1
-> (val bar 0)
0
-> (value foo 5)
run-time error: SmallInteger does not understand
message value

23

CS301
Session 19

1

Agenda

2

A tour of the uSmalltalk interpreter

A look at full Smalltalk

Flow-of-control view
Entry point from command line main, calls
runInterpreter which calls readEvalPrint

Lexing and parsing "hidden" in the reader created
by readEvalPrint

readEvalPrint : loop "forever", calling top level
evaluator and handling errors

topEval: evaluates one top-level item; but "use"
recursively calls readEvalPrint

3

Where does abstract syntax come from?

How do we get

SET("x",VAR("y"))

from

(set x y)

Answer: lexer turns characters into lists of lexical
items (datatype par) and parser turns that into
abstract syntax

4

Lexing and parsing
read is the entry point to lexing

toplevel is the entry point to parsing (this
identifier is both a datatype and a function name)

The guts of parsing are in function parse

5

Circularities: Booleans
A chicken-and-egg problem:

We need class Object because everything
inherits from it

Class Object defines method notNil, which
returns a Boolean

Class Boolean inherits from class Object

6

Circularities: literals
When the evaluator sees a literal, it must create a
value of one of the classes Integer, Symbol, or
Array

... but we need the evaluator to read these classes
from the initial basis

7

Circularities: the solution
As we did for self-reference in recursion, use
reference cells

for classes Integer, Symbol, Array, Block

for Booleans true, false

During bootstrapping (reading the basis) these
cells contain nonsense - so the initial basis must
avoid evaluating certain kinds of expressions

After bootstrapping update the cells

8

Side trip: building in classes
ML and a clean design made it easy for me to
build in new primitive classes for the homework

9

Building CacheControl
Just a collection of functions turned into methods:

fun getHits _ = mkInteger (!cacheHits)
fun getMisses _ = mkInteger (!cacheMisses)
fun resetCacheCounts _ = (cacheHits := 0 ; cacheMisses := 0
 ; nilValue)
fun turnCachingOn _ = (cachingOn := true; nilValue)
fun turnCachingOff _ = (cachingOn := false; nilValue)
val statsClass =

 mkClass "CacheControl" objectClass []
 [primMethod "hits" (unaryPrim getHits),
 primMethod "misses" (unaryPrim getMisses),
 primMethod "reset" (unaryPrim resetCacheCounts),
 primMethod "cachingOn" (unaryPrim turnCachingOn),
 primMethod "cachingOff" (unaryPrim turnCachingOff)]

10

Building Timer
Some primitive methods and a user method:

local val timer = ref NONE in
 fun startTimer _ = ...
 and stopTimer _ = ...
end

val timerClass =
 mkClass "Timer" objectClass []
 [primMethod "start" (unaryPrim startTimer),
 primMethod "stop" (unaryPrim stopTimer),
 userMethod "timeBlock:" ["aBlock"] []
 "(begin (start self) (value aBlock) (stop self))"
]

11

Binding the class names
Class names have to be bound in the global
environment:

val initialXi =
 foldl addClass initialXi
 [objectClass,
 nilClass,
 classClass,
 statsClass,
 timerClass]

12

Evaluation
Straightforward translation of semantics, so eval
has four parameters: expression, local environment,
static superclass, global environment

Functions findMethod and instanceVars
were used in the semantics without formally being
specified

13

Recall class representation
Classes are constructed from ML records

class = CLASS of
 { name : name
 , super : class option (* superclass, if any *)
 , ivars : string list (* instance variables *)
 , methods : method env
 , id : int (* unique identifier *)
 }

14

Method lookup
Finding a method:

fun findMethod (name, class) =
 let fun fm (CLASS { methods, super, ...}) =
 find (name, methods)
 handle NotFound m =>
 case super
 of SOME c => fm c
 | NONE => raise RuntimeError
 (className class^
 " does not understand message "^m)
 in fm class
 end

15

Instance variables of an object

Remember from the semantics : to send a message
we need to create an environment from the
receiver's instance variables

and instanceVars (_, USER rep) = rep
 | instanceVars self =
 bind("self", ref self, emptyEnv)

16

ρ′ = instanceVars(r)
〈em, ρ′{x1 "→ l1, . . . , xn "→ ln, y1 "→ l′1, . . . , yk "→ l′k}, s, ξ, σ̂〉 ⇓ 〈v,σ′〉

Creating closures
Capture local environment and static superclass

fun mkBlock c = (valOf (!blockClass), CLOSURE c)
 handle Option =>
 raise InternalError
 "Bad blockClass; evaluated block
expression in initial basis?"

...
 | ev(BLOCK (formals, body)) =
 mkBlock (formals, body, rho, superclass)

17

Read-eval-print
Besides tracing, the loop updates the definitions of
the classes that have literals:

fun closeLiteralsCycle xi =
(intClass := SOME (findInitialClass ("SmallInteger", xi))
; symbolClass := SOME (findInitialClass ("Symbol", xi))
; arrayClass := SOME (findInitialClass ("Array", xi))
)
... (* in readEvalPrint: *)
(closeLiteralsCycle xi;
 closeBlocksCycle xi)
handle NotFound _ => ()

18

Full Smalltalk
Originally intimately associated with early GUI
design research

Thus, no official concrete syntax for classes

Innovative concrete syntax for message send. To
send a two-argument message named m1:m2: we
write

receiver m1: arg1 m2: arg2 ...

Assignment is left-arrow. Hurray!

19

Syntax examples
With judicious choice of names the syntax can look
rather natural:

myAccount spend: 10 for: #dinner
myAccount totalSpentFor: #dinner

20

Semantics
Many more literals

Class variables (like Java statics)

Nonlocal return

Huge predefined class hierarchy

Reflection; everything is an object, including
methods; supports Smalltalk processing itself:

compilers, debuggers, browsers, ...

21

	session18-4up.pdf
	session19-4up.pdf

