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Agenda
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The semantics of uSmalltalk

Smalltalk is highly dynamic
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Semantics reflect this

Almost everything can change at runtime

(In the full language, even more so!)

Major new features
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Values are objects

Object carries its class with it

Even classes like SmallInteger can be redefined

... so the behavior of a literal could change 
during program execution

Method dispatch - many rules!

Environments - global and parameter

Closures capture only parameter environment



Abstract syntax
Expressions

datatype exp = VAR     of name
 | SET     of name * exp
 | SEND    of srcloc * name * exp * exp list
 | BEGIN   of exp list
 | BLOCK   of name list * exp list
 | LITERAL of rep
 | VALUE   of value
 | SUPER

For technical reasons values can be treated as 
expressions
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Top-level items
The main new thing is the class definition

toplevel = DEFINE of name * name list * exp
  | CLASSD of 
    { name : string
    , super : string
    , ivars : string list (* instance variables *)
    , methods : (method_kind * name * method_impl) list
    }
  | EXP of exp | VAL of name * exp | USE of name
and method_kind = IMETHOD | CMETHOD
and method_impl = USER_IMPL of name list * name list * exp
                | PRIM_IMPL of name
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Values
Values (objects) are pairs containing the class and 
the representation:

withtype value = class * rep

Representations (closures need the static superclass)

rep = USER of value ref env (* instance vars *)
  | ARRAY    of value Array.array
  | NUM      of int
  | SYM      of name
  | CLOSURE  of 
      name list * exp list * value ref env * class
  | CLASSREP of class
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Class representation
Classes are constructed from ML records

class  = CLASS of 
  { name : name 
   , super : class option  (* superclass, if any *)
   , ivars   : string list (* instance variables *)
   , methods : method env  
   , id      : int         (* unique identifier *)
  }

The option datatype is used to represent things that 
might not be there - class Object has no superclass
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Side trip: the option datatype

A standard ML datatype, used throughout the 
interpreter to represent optional things

datatype 'a option =  NONE |  SOME of 'a 

Creating optional values:

fun stringReader []     = NONE
  | stringReader (h::t) = SOME (h, t)
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Using option
Distinguishing between SOME and NONE

case super
of SOME c => fm c
 | NONE   => ...

Raising an exception if NONE

fun mkInteger n = (valOf (!intClass), NUM n)
handle Option => badlit "..."
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Methods in class reps
Methods are either primitive or user-defined:

method
  = PRIM_METHOD of name * (value * value list -> value)
  | USER_METHOD of 
     { name : name
     , formals : name list
     , temps : name list
     , body : exp
     , superclass : class (* static superclass *)
     }
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Expression evaluation
Context is a message send:

global environment !

local (parameter) environment "

static superclass (superclass of the class where 
the message send occurs) csuper

Environments map identifiers to locations in the 
store
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Judgments
Expression evaluation

Top-level evaluation
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〈e, ρ, csuper, ξ,σ〉 ⇓ 〈v,σ′〉

〈t, ξ, σ〉 → 〈ξ′, σ′〉

Variables
Just like Impcore (we ignore the superclass)

self is an instance variable, and super behaves 
like self except as the receiver of a message:
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〈var(self), ρ, csuper, ξ, σ〉 ⇓ 〈v, σ〉

〈super, ρ, csuper, ξ, σ〉 ⇓ 〈v, σ〉

Literals
Array literals are parsed as VALUES, but numbers 
and symbols as LITERALS

15

〈value(v), ρ, csuper, ξ, σ〉 ⇓ 〈v, σ〉

〈literal(num(n)), ρ, csuper, ξ, σ〉 ⇓ 〈〈σ(ξ(SmallInteger)),num(n)〉, σ〉

Blocks
We make an object of class Block, with a closure 
as representation, which captures the parameter 
environment (not the globals) as well as the static 
superclass:
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〈block(〈x1 . . . xn〉, es)), ρ, cs, ξ,σ〉 ⇓ 〈〈σ(ξ(Block)),clo(〈x1 . . . xn〉, es, cs, ρ)〉,σ〉



Message send
Five cases:

user-defined method, receiver is not super

user-defined method, receiver is super

primitive method, receiver is not super

primitive method, receiver is super

value method
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Ordinary user message send
To evaluate 

eval receiver and parameters, threading the store:

look up method using receiver's class
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〈send(m, e, e1, . . . , en), ρ, cs, ξ,σ〉 ⇓ 〈v,σ′〉

〈e, ρ, cs, ξ,σ〉 ⇓ 〈〈c, r〉,σ0〉
〈ei, ρ, cs, ξ,σi−1〉 ⇓ 〈vi,σi〉

findMethod(m, c) = user method( , 〈x1, . . . , xn〉, 〈y1, . . . , yk〉, em, s)

Message send cont'd
Allocate space for the method's parameters and 
locals

Create the environment and eval the body

Notice which static superclass is used!
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l1, . . . , ln !∈ dom σn l′1, . . . , l
′
k !∈ dom σn

σ̂ = σn{l1 !→ v1, . . . , ln !→ vn, l′1 !→ nil, . . . , l′k !→ nil

ρ′ = instanceVars(r)
〈em, ρ′{x1 "→ l1, . . . , xn "→ ln, y1 "→ l′1, . . . , yk "→ l′k}, s, ξ, σ̂〉 ⇓ 〈v,σ′〉

Message send to super
The only difference is that we use the static 
superclass to start the method lookup.
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findMethod(m, cs) = user method( , 〈x1, . . . , xn〉, 〈y1, . . . , yk〉, em, s)



Primitive methods
The rules are simpler, because primitive methods 
are just functions

The value method sent to a block acts like a user 
method, but without local variables.  The body of 
the block is evaluated in a context where the 
static superclass is the one that was stored when 
the block was created.
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Top level variables
Defining a new global:

Recall that a closure doesn't capture the global 
environment.  That's why we can define recursive 
blocks at the top level.
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x !∈ dom ξ l !∈ dom σ
〈e, {}, ξ0(Object), ξ,σ〉 ⇓ 〈v,σ′〉

〈val(x, e), ξ,σ〉 → 〈ξ{x '→ l},σ′{l '→ v}〉

The top-level environment
...not captured in closures:

-> (define foo (n) (if (<= n 0) 
    [(value bar n)] [(value foo (- n 1))]))
<Block>
-> (define bar (n) (+ n 1))
<Block>
-> (value foo 5)
1
-> (val bar 0)
0
-> (value foo 5)
run-time error: SmallInteger does not understand 
message value
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A tour of the uSmalltalk interpreter

A look at full Smalltalk

Flow-of-control view
Entry point from command line main, calls 
runInterpreter which calls readEvalPrint

Lexing and parsing  "hidden" in the reader created 
by readEvalPrint

readEvalPrint : loop "forever", calling top level 
evaluator and handling errors

topEval: evaluates one top-level item; but "use" 
recursively calls readEvalPrint
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Where does abstract syntax come from?

How do we get

SET("x",VAR("y"))

from

(set x y)

Answer: lexer turns characters into lists of lexical 
items (datatype par) and parser turns that into 
abstract syntax
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Lexing and parsing
read is the entry point to lexing

toplevel is the entry point to parsing (this 
identifier is both a datatype and a function name)

The guts of parsing are in function parse
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Circularities: Booleans
A chicken-and-egg problem:

We need class Object because everything 
inherits from it

Class Object defines method notNil, which 
returns a Boolean

Class Boolean inherits from class Object
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Circularities: literals
When the evaluator sees a literal, it must create a 
value of one of the classes Integer, Symbol, or 
Array

... but we need the evaluator to read these classes 
from the initial basis
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Circularities: the solution
As we did for self-reference in recursion, use 
reference cells 

for classes Integer, Symbol, Array, Block

for Booleans true, false

During bootstrapping (reading the basis) these 
cells contain nonsense - so the initial basis must 
avoid evaluating certain kinds of expressions

After bootstrapping update the cells
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Side trip: building in classes
ML and a clean design made it easy for me to 
build in new primitive classes for the homework
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Building CacheControl
Just a collection of functions turned into methods:

fun getHits _ = mkInteger (!cacheHits)
fun getMisses _ = mkInteger (!cacheMisses)
fun resetCacheCounts _ = (cacheHits := 0 ; cacheMisses := 0 
                          ; nilValue)
fun turnCachingOn _ = (cachingOn := true; nilValue)
fun turnCachingOff _ = (cachingOn := false; nilValue)
val statsClass = 

  mkClass "CacheControl" objectClass []
    [ primMethod "hits" (unaryPrim getHits),
      primMethod "misses" (unaryPrim getMisses),
      primMethod "reset" (unaryPrim resetCacheCounts),
      primMethod "cachingOn" (unaryPrim turnCachingOn),
      primMethod "cachingOff" (unaryPrim turnCachingOff)]
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Building Timer
Some primitive methods and a user method:

local val timer = ref NONE in
  fun startTimer _ = ...
  and stopTimer _ = ...
end
    
val timerClass = 
  mkClass "Timer" objectClass []
    [ primMethod "start" (unaryPrim startTimer),
      primMethod "stop" (unaryPrim stopTimer),
      userMethod "timeBlock:" ["aBlock"] [] 
       "(begin (start self) (value aBlock) (stop self))"
      ]
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Binding the class names
Class names have to be bound in the global 
environment:

val initialXi = 
  foldl addClass initialXi
        [ objectClass, 
          nilClass, 
          classClass, 
          statsClass, 
          timerClass ]
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Evaluation
Straightforward translation of semantics, so eval 
has four parameters: expression, local environment, 
static superclass, global environment

Functions findMethod and instanceVars 
were used in the semantics without formally being 
specified
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Recall class representation
Classes are constructed from ML records

class  = CLASS of 
  { name : name 
   , super : class option  (* superclass, if any *)
   , ivars   : string list (* instance variables *)
   , methods : method env  
   , id      : int         (* unique identifier *)
  }

14

Method lookup
Finding a method:

fun findMethod (name, class) =
  let fun fm (CLASS { methods, super, ...}) =
     find (name, methods)
        handle NotFound m =>
           case super
             of SOME c => fm c
              | NONE   => raise RuntimeError
                (className class^
                " does not understand message "^m)
        in  fm class
        end
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Instance variables of an object

Remember from the semantics : to send a message 
we need to create an environment from the 
receiver's instance variables

and instanceVars (_, USER rep) = rep
  | instanceVars self = 
          bind("self", ref self, emptyEnv)
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ρ′ = instanceVars(r)
〈em, ρ′{x1 "→ l1, . . . , xn "→ ln, y1 "→ l′1, . . . , yk "→ l′k}, s, ξ, σ̂〉 ⇓ 〈v,σ′〉



Creating closures
Capture local environment and static superclass

fun mkBlock c = (valOf (!blockClass), CLOSURE c)
    handle Option => 
        raise InternalError 
            "Bad blockClass; evaluated block 
expression in initial basis?"

...
 | ev(BLOCK (formals, body)) = 
         mkBlock (formals, body, rho, superclass)
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Read-eval-print
Besides tracing, the loop updates the definitions of 
the classes that have literals:

fun closeLiteralsCycle xi =
(intClass := SOME (findInitialClass ("SmallInteger", xi))
; symbolClass := SOME (findInitialClass ("Symbol", xi))
; arrayClass  := SOME (findInitialClass ("Array", xi))
)
... (* in readEvalPrint: *)
(closeLiteralsCycle xi;   
 closeBlocksCycle xi)
handle NotFound _ => ()
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Full Smalltalk
Originally intimately associated with early GUI 
design research

Thus, no official concrete syntax for classes

Innovative concrete syntax for message send.  To 
send a two-argument message named  m1:m2: we 
write

receiver m1: arg1 m2: arg2 ...

Assignment is left-arrow.  Hurray!
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Syntax examples
With judicious choice of names the syntax can look 
rather natural:

myAccount spend: 10 for: #dinner
myAccount totalSpentFor: #dinner
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Semantics
Many more literals

Class variables (like Java statics)

Nonlocal return

Huge predefined class hierarchy

Reflection; everything is an object, including 
methods; supports Smalltalk processing itself:

compilers, debuggers, browsers, ...
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