CS301
Session 18

Agenda

+ The semantics of uSmalltalk

Smalltalk is highly dynamic

+ Semantics reflect this
+ Almost everything can change at runtime

+ (In the full language, even more so!)

Major new features

+ Values are objects
+ Object carries its class with it
+ Even classes like Smalllnteger can be redefined

+ ... so the behavior of a literal could change
during program execution

+ Method dispatch - many rules!
+ Environments - global and parameter

+ Closures capture only parameter environment

Abstract syntax

+ Expressions

datatype exp = VAR of name
| SET of name * exp
SEND of srcloc * name * exp * exp list

|

| BEGIN of exp list

| BLOCK of name list * exp list
| LITERAL of rep

| VALUE of value

| SUPER

+ For technical reasons values can be treated as
expressions

Top-level items

+ The main new thing is the class definition

toplevel = DEFINE of name * name list * exp
| CLASSD of
{ name : string
, super : string
, ivars : string list (* instance variables ¥*)
, methods : (method_kind * name * method_impl) list
}
| EXP of exp | VAL of name * exp | USE of name
and method_kind IMETHOD | CMETHOD
and method_ impl USER_IMPL of name list * name list * exp
| PRIM IMPL of name

Values

+ Values (objects) are pairs containing the class and
the representation:

withtype value = class * rep

+ Representations (closures need the static superclass)

rep = USER of value ref env (* instance vars ¥*)

| ARRAY of value Array.array
NUM of int

|
| syM of name
| CLOSURE of

name list * exp list * value ref env * class
| CLASSREP of class

Class representation

+ Classes are constructed from ML records

class = CLASS of
{ name : name
super : class option (* superclass, if any ¥*)

14

, ivars : string list (* instance variables *)
, methods : method env

, id : int (* unique identifier *)

}

+ The option datatype is used to represent things that
might not be there - class Object has no superclass

Side trip: the option datatype

+ A standard ML datatype, used throughout the
interpreter to represent optional things

datatype 'a option = NONE | SOME of 'a

+ Creating optional values:

NONE
SOME (h, t)

fun stringReader []
| stringReader (h::t)

Using option

+ Distinguishing between SOME and NONE

case super
of SOME ¢ => fm c
| NONE => ...

+ Raising an exception if NONE

fun mkInteger n = (valOf (!intClass), NUM n)
handle Option => badlit "..."

Methods in class reps

+ Methods are either primitive or user-defined:

method
= PRIM_METHOD of name * (value * value list -> value)
| USER_METHOD of
{ name : name
formals : name list
temps : name list
body : exp
superclass : class (* static superclass *)

N N S S

Expression evaluation

+ Context is a message send:

+ global environment §
+ local (parameter) environment p

+ static superclass (superclass of the class where
the message send occurs) Csuper

+ Environments map identifiers to locations in the
store

Judgments

+ Expression evaluation

<€7 P; Csuper; Sa 0> U <’U, O'/>

+ Top-level evaluation

{t.§,0) — (£, 0")

Variables

+ Just like Impcore (we ignore the superclass)

+ selfis an instance variable, and super behaves
like self except as the receiver of a message:

<VAR(self)7 P; Csuper 57 U> J <U7 U>

<SUPER7 P Csuper 57 U> J <U7 U>

Literals

+ Array literals are parsed as VALUES, but numbers
and symbols as LITERALS

<VALUE(U), P; Csuper; £> U> iL <Ua U>

Blocks

+ We make an object of class Block, with a closure
as representation, which captures the parameter
environment (not the globals) as well as the static
superclass:

(LITERAL(NUM(n)), p, Csuper; &, 0) I ((0(£(Smalllnteger)), NUM(n)), o)

(BLOCK({x1 ...xzy),€5)),p,cs, &, 0) I ((o(§(Block)), CLO((21 ... xy), €8, ¢, p)), O)

Message send

+ Five cases:
+ user-defined method, receiver is not super
+ user-defined method, receiver is super
+ primitive method, receiver is not super
+ primitive method, receiver is super

+ value method

Ordinary user message send

+ To evaluate

<SEND(m7 €, €15+, en>> P Cs, €7 U> U’ <U7 OJ>

+ eval receiver and parameters, threading the store:
<€7 P> Cs, 57 U> ‘U’ <<Cv T>7 UO>
<€i7 P> Cs, 57 Ui—1> ‘U’ <Ui7 Ui>

+ look up method using receiver's class

findMethod(m, ¢) = USER-METHOD(_, (Z1,...,Zn), (Y1, -+, Yk)s Cm,S)

Message send cont'd

+ Allocate space for the method's parameters and
locals I1,...,l, € dom o, Ij,...,l}, & dom o,

6 =o0p{li = v1,... 01y vy, 1] — nily .. 1 — nil

+ Create the environment and eval the body
p = instanceVars(r)

<€'m7[)/{$1 = ll-, sy I ln,ayl = l/la s Yk l;}, Seg-, é—> ‘U’ <(U7O-/>

+ Notice which static superclass is used!

Message send to super

+ The only difference is that we use the static
superclass to start the method lookup.

findMethod(m, ¢s) = USER_-METHOD(_, (Z1,. .., Zn), (Y1, -+, Yk)s Em, S)

20

Primitive methods

+ The rules are simpler, because primitive methods
are just functions

+ The value method sent to a block acts like a user
method, but without local variables. The body of
the block is evaluated in a context where the
static superclass is the one that was stored when
the block was created.

21

Top level variables

+ Defining a new global:

r¢dom¢é [&domo
<€7{}7€0(0bjeCt)7£70>J}<v706

(vaL(z,e),§,0) — ({z 1}, 0'{l— v})

+ Recall that a closure doesn't capture the global

environment. That's why we can define recursive
blocks at the top level.

22

The top-level environment

...not captured in closures:

-> (define foo (n) (if (<= n 0)

[(value bar n)] [(value foo (- n 1))1]))
<Block>
-> (define bar (n) (+ n 1))
<Block>

-> (value foo 5)

1

-> (val bar 0)

0

-> (value foo 5)

run-time error: SmallInteger does not understand
message value

23

CS301
Session 19

Agenda

+ A tour of the uSmalltalk interpreter

+ A look at full Smalltalk

Flow-of-control view

Entry point from command line main, calls
runInterpreter which calls readEvalPrint

Lexing and parsing "hidden" in the reader created
by readEvalPrint

readEvalPrint :loop "forever", calling top level
evaluator and handling errors

topEval: evaluates one top-level item; but "use"
recursively calls readEvalPrint

Where does abstract syntax come from?

+ How do we get
SET(llxll ,VAR("Y"))
+ from

(set x vy)

+ Answer: lexer turns characters into lists of lexical
items (datatype par) and parser turns that into
abstract syntax

Lexing and parsing
+ read is the entry point to lexing

+ toplevel is the entry point to parsing (this
identifier is both a datatype and a function name)

+ The guts of parsing are in function parse

Circularities: Booleans
+ A chicken-and-egg problem:

+ We need class Object because everything
inherits from it

+ Class Object defines method notNil, which
returns a Boolean

+ Class Boolean inherits from class Object

Circularities: literals

+ When the evaluator sees a literal, it must create a
value of one of the classes Integer, Symbol, or
Array

+ ... but we need the evaluator to read these classes
from the initial basis

Circularities: the solution

+ As we did for self-reference in recursion, use
reference cells

+ for classes Integer, Symbol, Array, Block
+ for Booleans true, false

+ During bootstrapping (reading the basis) these
cells contain nonsense - so the initial basis must
avoid evaluating certain kinds of expressions

+ After bootstrapping update the cells

Side trip: building in classes

+ ML and a clean design made it easy for me to
build in new primitive classes for the homework

Building CacheControl

+ Just a collection of functions turned into methods:

fun getHits _ = mkInteger (!cacheHits)

fun getMisses _ = mkInteger (!cacheMisses)

fun resetCacheCounts _ = (cacheHits := 0 ; cacheMisses := 0
; nilvalue)

fun turnCachingOn _ = (cachingOn := true; nilvValue)

fun turnCachingOff _ = (cachingOn := false; nilValue)

val statsClass =
mkClass "CacheControl" objectClass []
[primMethod "hits" (unaryPrim getHits),
primMethod "misses" (unaryPrim getMisses),
primMethod "reset" (unaryPrim resetCacheCounts),
primMethod "cachingOn" (unaryPrim turnCachingOn),
primMethod "cachingOff" (unaryPrim turnCachingOff)]

Building Timer

+ Some primitive methods and a user method:

local val timer = ref NONE in
fun startTimer _ = ...
and stopTimer _ = ...

end

val timercClass =
mkClass "Timer" objectClass []

[primMethod "start" (unaryPrim startTimer),
primMethod "stop" (unaryPrim stopTimer),
userMethod "timeBlock:" ["aBlock"] []

"(begin (start self) (value aBlock) (stop self))"
]

Binding the class names

+ Class names have to be bound in the global
environment:

val initialXi =
foldl addClass initialXi
[objectClass,
nilClass,
classClass,
statsClass,
timerClass]

Evaluation

+ Straightforward translation of semantics, so eval
has four parameters: expression, local environment,
static superclass, global environment

+ Functions findMethod and instanceVars
were used in the semantics without formally being
specified

Recall class representation

+ Classes are constructed from ML records

class = CLASS of
{ name : name
super : class option (* superclass, if any ¥*)

14

, ivars : string list (* instance variables *)
, methods : method env

, id : int (* unique identifier *)

}

Method lookup

+ Finding a method:

fun findMethod (name, class) =
let fun fm (CLASS { methods, super, ...}) =
find (name, methods)
handle NotFound m =>
case super
of SOME ¢ => fm c
| NONE => raise RuntimeError
(className class”
" does not understand message
in fm class
end

nA

m)

Instance variables of an object

+ Remember from the semantics : to send a message
we need to create an environment from the
receiver's instance variables

p' = instanceVars(r)
<€m7/)/{~731 — ll', e 7'/1:"77, = Znayl =]/1* i 'ayk’ = Z;‘}a Sv&? 5—> ‘U’ <’U,O'/>
and instanceVars (_, USER rep) = rep

| instancevars self =
bind("self", ref self, emptyEnv)

Creating closures

+ Capture local environment and static superclass

fun mkBlock ¢ = (valOf (!blockClass), CLOSURE c)
handle Option =>
raise InternalError
"Bad blockClass; evaluated block
expression in initial basis?"

| ev(BLOCK (formals, body)) =
mkBlock (formals, body, rho, superclass)

Read-eval-print

+ Besides tracing, the loop updates the definitions of
the classes that have literals:

fun closeLiteralsCycle xi =
(intClass := SOME (findInitialClass ("SmallInteger", xi))
; symbolClass SOME (findInitialClass ("Symbol", xi))
; arrayClass SOME (findInitialClass ("Array", xi))
)
. (* in readEvalPrint: *)
(closeLiteralsCycle xi;
closeBlocksCycle xi)
handle NotFound _ => ()

Full Smalltalk

+ Originally intimately associated with early GUI
design research

+ Thus, no official concrete syntax for classes

+ Innovative concrete syntax for message send. To
send a two-argument message named ml:m2: we
write

receiver ml: argl m2: arg2 ...

+ Assignment is left-arrow. Hurray!

Syntax examples

+ With judicious choice of names the syntax can look
rather natural:

myAccount spend: 10 for: #dinner
myAccount totalSpentFor: #dinner

20

Semantics

Many more literals

Class variables (like Java statics)
Nonlocal return

Huge predefined class hierarchy

Reflection; everything is an object, including
methods; supports Smalltalk processing itself:

+ compilers, debuggers, browsers, ...

21

	session18-4up.pdf
	session19-4up.pdf

