
CS301
Session 16

1

Agenda

2

Introduction to µSmalltalk

Pure object-oriented programming

Smalltalk
Smalltalk: the original OO language

All values in Smalltalk are objects, even numbers
and booleans

Other than message send (or method invocation)
control flow mediated by boolean and block
objects

Blocks are closures and can be recursively
defined at the top level

3

Object-oriented programming
Language constructs: objects and classes

Mechanisms: inheritance and dynamic dispatch

Principles: data encapsulation and code re-use

4

Related languages
Precursor: Simula

Languages with OO features: CLOS, C++,
OCaml, Eiffel, Python, Java, C#, even Visual
Basic, many others

OO is the language paradigm du jour

5

What is an object?
An entity that responds to messages by changing
its state and/or answering with a value

An object is represented by a collection of

instance variables (private) that constitute its
state

methods (public) that specify its response to
messages

Arguably, objects alone are enough for "pure"
object-oriented programming

6

Adding classes
Objects provide encapsulation and message
handling

Classes add code re-use: all members of the same
class share the same methods

Again, arguably we could stop there and have a
meaningful OO language

7

Adding inheritance
Inheritance creates a potentially complex web of
code reuse

Mechanisms: subclassing and dynamic dispatch

Subclassing is transitive

A subclass inherits the instance variables and
methods of its superclass(es)

A subclass may override (redefine) an inherited
method

8

Dynamic dispatch
How a message is handled is determined at
runtime:

If there is a method defined in the receiver's
class for the message, use it

Otherwise, search upward in the class hierarchy

Consequence: the meaning of a message can't be
determined statically

protocol of an object: the messages it responds to
- determined by its class and superclasses

9

self and super

10

Not variables! self always refers to the receiver

super always refers to the receiver, but dynamic
dispatch is not used; instead:

Search upward in the class hierarchy for the
method, starting in the superclass of the class
where super appears in the source.

Result: method is known statically!

The method "new"
new is not a keyword - a method in class Class
responsible for creating instance variables

Sometimes we override it, but it's not a good idea to
omit "new super":

-> (class Bar Object (x)

 (classMethod new ())

 (method x () x))

<class Bar>

-> (val bar (new Bar))

nil

-> (x bar)

run-time error: UndefinedObject does not understand

message x

11

Variable names
Familiar static scope rules; in order of
precedence:

locals

method parameters

instance variables

globals

12

Example
Recall random numbers from the midterm:

(val make-rand (lambda (seed)

 (lambda () (set seed (mod (+ (* seed 9) 5) 1024)))))

Here it is in µSmalltalk:

(class Random ; class name

 Object ; superclass name

 (seed) ; instance variable

 ; a "constructor" with a parameter

 (classMethod new: (s) (initSeed: (new Random) s))

 (method initSeed: (s) (set seed s) self)

 ; the only "public" method

 (method next () (set seed (mod: (+ (* seed 9) 5) 1024))))

13

What was inherited?
The class Random inherits the class method new
(as well as protocol and localProtocol)

-> (localProtocol Random)

(classMethod new: (s) ...)

(method initSeed: (s) ...)

(method next () ...)

<class Random>

Objects of class Random inherit methods from
Object

14

Inherited methods
Some examples:

-> (isMemberOf: r1 Random)

<True>

-> (isKindOf: r1 Object)

<True>

-> (isKindOf: r1 Number)

<False>

-> (= r1 r1)

<True>

-> (isNil r1)

<False>

15

Example(2)
Remember infinite sequences in µScheme:

(define mk-seq (f n)

 (cons n (lambda () (mk-seq f (f n)))))

A similar (but imperative!) µSmalltalk definition:

(class InfiniteSequence Object

 (generator ; generator block

 current) ; current element

 (classMethod new:from:by (first aBlock)

 (initInfiniteSeq:: (new self) first aBlock))

 (method initInfiniteSeq:: (first aBlock) ; private

 (set generator aBlock) (set current first) self)

 (method current () current)

 (method next () (set current (value generator current))))

16

Using sequences
The even numbers:

-> (val evens (new:from:by

InfiniteSequence 0 (block (n) (+ n 2))))

<InfiniteSequence>

-> (next evens)

2

-> (current evens)

2

-> (next evens)

4

17

Sequences for random numbers

Define a subclass:

(class Random

 InfiniteSequence ; superclass

 () ; no extra instance variables

 (classMethod new: (s)

 (new:from:by super

 s

 (block (s) (mod: (+ (* s 9) 5) 1024)))))

18

Boolean objects
Example:

-> (if (= 0 1) [#bad!] [#good!])

good!

-> (if (= 0 1) #bad! #good!)

run-time error: Symbol does not understand message

value

Method-stack traceback:

 Sent 'value' in initial basis, line 25

 Sent 'ifTrue:ifFalse:' in initial basis, line 19

 Sent 'if' in standard input, line 38

-> (if (= 0 1) #bad! [#good!])

good!

19

Block objects
Methods are "value" and "while"

-> (set n 2)

2

-> (begin (while [(< n 50)] [(set n (* 2 n))]) n)

64

-> (set n 2)

2

-> (begin (while (< n 50) [(set n (* 2 n))]) n)

run-time error: True does not understand message while

Method-stack traceback:

 Sent 'while' in standard input, line 58

-> (begin (while [(< n 50)] (set n (* 2 n))) n)

run-time error: SmallInteger does not understand message

value

Method-stack traceback:

 Sent 'value' in initial basis, line 32

20

Blocks are closures!
And we can define recursive blocks at top level:

-> (define exp (base e)

 (begin

 (if (= e 0) [1]

 [(* base (value exp base (- e 1)))])))

<Block>

-> (exp 3 2)

syntax error: standard input, line 63: in message

send, message exp expects 0 arguments, but gets 1

argument

-> (value exp 3 2)

9

21

CS301
Session 17

1

Agenda

2

Example: discrete-event simulation

The predefined objects and object-oriented
programming techniques

The computer lab
simulation: a quaint

scenario

3

Basic mechanism

4

Event queue: a priority queue prioritized by event
time

To schedule an event, place it on the queue

Each step in the simulation dequeues the highest
priority event, updates a global clock, and sends
the takeAction message to the event

Main classes
Simulation (abstract) and LabSimulation: drive the
simulation and report results

Lab: manage the computer terminals

Queue: represent the students waiting in line

EventQueue: represent events waiting to happen

PriorityQueue: a priority queue

WaitTimeList and ServiceTimeList: the schedule of
arrivals and needs for terminal time

5

The Student class
The active agent, placed on event queue in two
cases: for arrival in lab and for leaving a terminal

State: scheduled to arrive, waiting in line, using a
terminal, or done

Method takeAction either "arrives in the lab" or
"leaves the terminal"

Method arrive either grabs a terminal or waits in
line; in any case it also schedules a new student
arrival

6

Scheduling events
scheduleNewArrival sent to new Student

gets arrival and service times

adds self to event queue

scheduleLeaveTerminal sent to existing Student

computes leave time as minimum of time
needed to finish and time limit, and adds self to
event queue

updates time still needed accordingly

7

Method leaveTerminal
If done, releases terminal, updates stats, sends
grabTerminal to any waiting student

Otherwise,

If no one waiting, sends scheduleLeaveTerminal
to self

Otherwise, releases terminal, joins waiting line,
sends grabTerminal to first waiting student

8

Method grabTerminal
Gets a terminal from the Lab

Sends scheduleLeaveTerminal to self

9

The predefined objects

10

A "standard basis"

11

Smalltalk itself is small! The predefined objects
contain most of the "magic".

Most are implemented in Smalltalk. Exceptions:

Object (no superclass)

Class (metaclasses inherit its methods)

UndefinedObject for technical reasons

Primitive methods
Defined by the uSmalltalk interpreter:

eqObject print + - * div < > ...

Programmer can add them to classes, e.g.

(class Foo Object ()
 (method foo: primitive eqObject))
<class Foo>
-> (val foo (new Foo))
<Foo>
-> (foo: foo foo)
<True>
-> (foo: foo 1)
<False>

12

Defining built-ins
Class Object:

val objectClass =
 CLASS { name = "Object", super = NONE, ivars = ["self"], id = 1
 , methods = methods
 [primMethod "print" (unaryPrim defaultPrint)
 , userMethod "println" [] [] "(begin (print self)
 (print newline) self)"
 , primMethod "isNil" (unaryPrim (fn _ => mkBoolean false))
 , primMethod "notNil" (unaryPrim (fn _ => mkBoolean true))
 , primMethod "error:" (binaryPrim error)
 , primMethod "=" (binaryPrim (mkBoolean o eqRep))
 , userMethod "!=" ["x"] [] "(not (= self x))"
 , primMethod "isKindOf:" (binaryPrim kindOf)
 , primMethod "isMemberOf:" (binaryPrim memberOf)
 , primMethod "subclassResponsibility"
 (unaryPrim
 (fn _ => raise RuntimeError "..."]}

13

Built-ins
Class UndefinedObject

val nilClass =
 mkClass "UndefinedObject" objectClass []
 [primMethod "isNil"
 (unaryPrim (fn _ => mkBoolean true))
 , primMethod "notNil"
 (unaryPrim (fn _ => mkBoolean false))
 , primMethod "print"
 (unaryPrim (fn x => (print "nil"; x)))
]

14

isNil without testing equality

A non-OO programmer might be tempted to write

 (method isNil () (= self nil)))

Real programmers know to use inheritance and
method override instead:

(class Object ...
(method isNil () false) ...)

(class UndefinedObject Object ...
(method isNil () true) ...)

15

Booleans
Definable in Smalltalk

Abstract class Boolean defines

ifFalse:ifTrue:
ifTrue:
ifFalse:
not eqv: xor: & | and: or: if

Subclasses True and False define

ifTrue:ifFalse:

Each is instantiated exactly once

16

Blocks
Hybrid of internal and definable:

(class Block Object
 () ; internal representation
 (method value primitive value)
 (method whileTrue: (body)
 (ifTrue:ifFalse: (value self)
 [(value body)
 (whileTrue: self body)]
 [nil]))
 (method while (body) (whileTrue: self body))
 (method whileFalse: (body)
 (ifTrue:ifFalse: (value self)
 [nil]
 [(value body)
 (whileFalse: self body)]))
)

17

Collection classes
Inheritance hierarchy:

Collection (abstract)
Set
KeyedCollection (abstract)
Dictionary
SequenceableCollection (abstract)
List
Array

18

Collection implementation
Pervasive use of inheritance and method override

Class Collection is abstract, requiring its subclasses
to define

add: do: remove:ifAbsent species

...and defines all the other methods in terms of
these

19

Set
A simple Collection class using a List to represent its
members

Set is a client of List, not a subclass!

Only interesting code is

(method add: (item)
(ifFalse: (includes: members item)
 [(add: members item)])
item)

The rest is "delegated" (jargon alert!) to the list rep

20

Scheme comparison
Recall sets-as-lists in uScheme

(val emptyset '())
(define member? (x s) ...)
(define add-element (x s)
 (if (member? x s) s (cons x s)))
(define size (s) (length s))
(define union (s1 s2)
 (if (null? s1)
 s2
 (add-element (car s1) (union (cdr s1) s2))))

How is the Smalltalk definition different?
Advantages? Disadvantages?

21

Lists
Some interesting techniques needed because lists
are mutable

Sentinel object eliminates need to test for empty

Circular representation

List representation is a sentinel

...of class ListSentinel

...which is a subclass of Cons

22

Sentinels
The list sentinel represents the list

car is nil

cdr refers to first "real" cons cell of the list, or to
self for empty list

pred refers to last cell of the list, or to self for
empty list

23

Cons cells
Class Cons has rep

car cdr

and local protocol

(method car () ...)
(method car: (anObject) ...)
(method cdr () ...)
(method cdr: (anObject) ...)
(method deleteAfter () ...)
(method do: (aBlock) ...)
(method insertAfter: (anObject) ...)
(method pred: (aCons) ...)
(method rejectOne:ifAbsent:withPred: (aBlock exnBlock pred) ...)

But has no instance variable pred!

24

List sentinels
Class ListSentinel is a subclass of Cons with rep

pred

and local protocol

(classMethod new () ...)
(method do: (aBlock) ...)
(method pred () ...)
(method pred: (aCons) ...)
(method rejectOne:ifAbsent:withPred: (aBlock
exnBlock pred) ...)

25

Arrays
Primitive methods:

new size at: at:put:

Primitive rep as an ML array:

rep = ...
 | ARRAY of value Array.array

26

Defined methods for arrays
Unimplemented: add, remove, and friends, because
arrays are fixed-size

Interesting: do

(method do: (aBlock) (locals index)
 (set index (firstKey self))
 (timesRepeat: (size self)
 [(value aBlock (at: self index))
 (set index (+ index 1))]))

Boring:

firstKey lastKey species printName

27

Numbers and the like
Inheritance hierarchy

Magnitude (ordered things)

Number

Fraction

Float

Integer (only SmallInteger in uScheme
implementation)

28

	week10
	session17-4up

