Welcome to CS301

Programming
Languages:
the ultimate user
interface

Why programming
languages?

4+ Language influences thought
+ P.L. features as tools for specifying computation
+ Raise consciousness of language features

+ Different programming styles: more powerful
problem solving

Some language features

+ Familiar:

+ Automatic storage management
+ Inheritance
+ Strange:

+ Parametric polymorphism
+ First-class functions

Classifying languages

+ Imperative, object-oriented, functional, logic
programming and more

4+ Most are hybrids, e.g. Java is object-oriented and
imperative

+ Isolate features to understand what
classifications mean

Formal semantics

+ A taste of formal semantics will give you an idea
of how we say precisely what a program will do

Impcore: an imperative
core language

Impcore features

+ Assignment: (set x e)

4+ Loop: (while el e2)

+ Conditional: (if el e2 e3)

+ Sequencing: (begin el ... en)

4+ Procedure: (f el ... en)

What is “imperative”?

+ Computations work on a mutable store

4+ Order matters, e.g.

(begin (set x 1) (set x 2))
+ is different from

(begin (set x 2) (set x 1))

An example program

(define gcd (m n)
(begin
(while (!= (set r (mod m n)) 0)
(begin
(set m n)
(set n r)))
n))

Abstract syntax

Sample languages

+ Impcore:

(while e: e2)

+ uScheme:

(lambda (x) (+ x 1))
+ uSmalltalk:

(spend:for: account 50 #plumber)

lgnoring concrete
syntax

+ All our languages look alike!
+ ...on the surface, that is

4+ ...s0 we can concentrate on what’s underneath:

Abstract syntax

Abstract syntax

+ The tree structure of the language

+ Data structure used by interpreters & compilers

4+ (set x (+ x 1)) SET
X = xX+1; //’ \\
X 1= x+1 X

/N
X 1

Specifying abstract syntax

+ CFG notation
4+ Label nodes with all-caps constructors
+ Child nodes in parentheses

Exp = LITERAL (Value)
| VAR (Name)
| SET (Name, Exp)

Impcore’s abstract syntax

Toplevel

= EXP (Exp)

| DEFINE (Name, Namelist, Exp)
| VAL (Name, Exp)

| USE (Name)

...continued

LITERAL (Value)

VAR (Name)

SET (Name, Exp)

IF (Exp, Exp, Exp)
WHILE (Exp, Exp)
BEGIN (Explist)

APPLY (Name, Explist)

Free variables

+ A variable name is an expression
X

4+ but it means nothing in isolation; it is a free
variable

+ To give meaning to free variables, we use

Environments

Environments

+ Environment: a mapping from names to
meanings

4+ In Impcore meanings are values
+ To bind a name to a value we write
(val x 2)

+ ...adding the mapping x — 2 to the current
environment

On Notations:

20

Metalanguage

+ Metalanguage is language about language

4+ Object language is the thing metalanguage is
talking about

+ Know which is which! Clues: fonts, Greek
letters

+ A metavariable: x; an object var: x

21

Greek letters

+ Learn to pronounce them! We will use a small
number in a stereotyped way.

* p7§7¢7;u7't
+ Spelled “rho, xi, phi, mu, tau”

+ Pronounced “roe, ksigh, fie, myou, tau”

22

Assignments

+ Read R&K chapter 2 through 2.4
4+ Problem set one is due Friday at 11:59 PM

+ Come to lab this afternoon

23

Next time

+ Introduction to operational semantics

x & dom p x € dom &
(VAR(x),5,0,p) 4 (€(x),S,0,p)

24

Course mechanics

25

Useful information

+ Course home page

+ Syllabus
+ My home page

+ About lab assighments

+ About grading, and doing your own work

26

+ About operational semantics

+ Operational semantics of Impcore top level

+ Operational semantics of Impcore expressions

+ An example deduction

+ A look back and a look forward

+ Assignment

+ Concise, precise guide to what the l[anguage + A set of inference rules specifies the behavior of a
means hypothetical abstract machine
+ Specification for interpreter or compiler + Use the rules to see how a particular expression is

+ Supports proofs of language and program evllugies [& pTET Eeos:

properties + Reason about the system of rules to prove general
properties of the object language

Inference systems

+ Remember your logic course:

+ foimal logical system: axioms and inference
rules

+ Axiom says what is unconditionally true

+ Inference rule says that the conclusion is true if
the premises are

Top-level items

+ The judgment is (1,£,0) — (€,¢)

+ In other words, we execute top-level items for
their effect

The global environment

+ Top-level expressions

(€.8,0,{}) I (n&,0,p")
CEXP(e),,0) — (€,9)

+ Variable declarations

(,5,0,{}) 4 (»E,0,0)
{VAL(x,e),&,0) — (E{x—v},0)

The function environment

+ We just bind the function name to a piece of
abstract syntax

X1,...,Xx, all distinct

(DEFINE(f, (x1,. .., xn),e),&,0) — (€,0{f — USER((xy,..., Xn),€)})

xiag
Pencil

Expressions

+ The jUdgment is <ea§7¢ap> U’ <V, §/7¢7p/>

+ In other words, we evaluate an expression to
produce a value, and for its effects

Literal values

+ Axiom: literal values

Using variables

+ Variables are either parameters

x € dom p

(VAR(x),&,9,p) | (p(x),5,0,p)

+ ...or globals - note “shadowing”

x ¢ dom p xedom&
(VAR(x),E,9,p) | (§(x),,9,p)

Assignment

+ Our first recursive rule: assignment updates the
appropriate environment

xedomp (e,&,0,p) | (,&,0,p")
<SET(X7 e)?&? q)? p> U/ <V7 §,7¢7p/{x = V})

+ How do we modify the rule for assignment to a
global variable?

Conditional

+ What can we conclude about an implementation?
Should it evaluate all three subexpressions?

<€1,&,¢,p> U’ <V1>§/7¢7p/>
vi#0 (e,8,0,p) (,8",0,p")
<IF(61762763)7&M¢7P> U <V27§”7¢7p//>

+ What's the other rule?

[teration

+ Specify iteration in terms of recursion!

<€1>§»¢7P> J <v1,§’,¢,p’> V1 7é 0
<€27§/7¢7 p/> U <V27§”7¢7 p//>
<WHILE<61762)7§”7 0, p”> 4 <V37 §”/7 0, p/”>
<WHILE(617 62)) &7 q)? p> U <V3, &Hlv ¢7 p///>

+ Even a "null" loop can have an effect:

<€17§7¢7p> U’ <V17§/7¢7p,> vi=0
(WHILE(ey,e2),8,0,p) I (v1,&,6,p")

Sequencing

+ This rule has a variable number of premises

<617§07¢7p0> l} <v17§1a¢7p1>
(€2,61,0,p1) I (v2,82,0,p2)

<em§n71a¢7pn71> l} <Vn7§na¢apn>
<BEGIN(€1a €2, .. 7671)7‘:07(1)’ p0> U’ <Vm énvq)? pn>

+ There’s also an axiom for empty BEGIN

Function application

+ Here we create a parameter environment

O(f) = USER({x1,...,x,),e)
X1,...,X, all distinct

(e1,80,0,p0) 4 (vi,E1,0,p1)

<emin—17¢apn—1> U’ <vm&m¢7pl’l> Q’
(€,6n,0, {x1— vi,..xa > va}) § (€, 0(04)
<APPLY(f7617627 GOC ’eﬂ)vg()?q)) p0> ‘U <V7 E.a/7¢> pﬂ>

+ We also have rules for all the primitive functions

xiag
Pencil

xiag
Pencil

The PRINT primitive

+ If PRINT is a function, its application must return
a value. We arbitrarily specify 0.

o(f) = PRIMITIVE (print)
(¢,€,0,p) I (n,&,0,p)
<APPLY(f7 e)?&’ q)7 p> U’ <07 §/7 q)7 p/>

+ Why are the output environments different from
the input environments?

An example deduction

+ Let’s construct a deduction showing how to
evaluate

(while x (set x (- x 1)))

+ in the global environment {x— 1} and the empty
parameter environment { }

(WHILE(VAR(x),e), {x — 1},0,{}) | (2,2,0,2)

v (VAR(x), {x — 1},0,{}) 4 (L, L0:D1},0,{})
\/x Zdom({}) xedom({x— 1}) v 1 #0

(SET(x,APPLY(—, VAR(x),LITERAL(1))),{x+— 1},¢,{}) |

v x¢dom({}) xedom({x— 1}) (2,2,0,)
(APPLY(—, VAR (x), LITERAL(1))), {x — 1},0,{}) |
<?’ ?7¢7 {7>

(WHILE(VAR(x),e), {x — 1},0,{}) | (2,2,0,2)

v (VAR(x), {x = 1},0,{}) ¥ (1,{x+—1},0,{})
~/ (SET(x,APPLY(—,VAR(x),LITERAL(I))),{x»—> 1},(]),{}) {
v x¢dom({}) x€dom(fx—1}) (0, {xr (B2o{})
J/(APPLY (—, VAR (x), LITERAL(1))), {x — 1},¢,{}) J
v 6(=) = PRIMITIVE(minus) (0, {x — (%} 0{})

v (VAR(), {x— 11,0,{}) I (1,{x— 1},0,{})
v (LITERAL(1), {x — 1},0, {1) 4 (1, {x — 1},0, {})

v/ (WHILE(VAR(x), ¢), {x — 1},0, {}) 4 (&, 130:7)0},0, {})

/. (VARQ), fxe 11,0, {0 4 (1, {x—1},0,{})
 (SET(x, APPLY (—, VAR (x), LITERAL(1))), {x — 1},6,{}) §
(0, {x — 0},0,{})
v/ (WHILE(VAR(x),¢), {x = 0},0, {}) 4 (0, 3:2)0},0,{})
v/ (VAR(x), {x = 0},0,{}) I (0,2:0:2)0},0,{})
x¢dom({}) x € dom({x+ 0})
v 0=0

Properties of the semantics

+ We can prove by inspecting the rules that - for
this system - evaluation is deterministic

+ ... and other properties (see exercise 8-15)

Using the semantics

+ For us, the primary use of the semantics is to serve
as a specification for an interpreter

+ We'll see this first with the ML-based interpreter
for uScheme

A look backward

+ Impcore characteristics:

Program by defining functions

Run programs by evaluating expressions
Recursion

Lispish concrete syntax

Se[r)arate envircgﬂnent,s for global variables,
parameters, and functions

Formal operational syntax

YR R SRR

+

	session1-4up.pdf
	session2-4up.pdf

