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Agenda
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Course evaluation

Review

Why programming
languages?

Language influences thought

P.L. features as tools for specifying computation

Raise consciousness of language features

Different programming styles: more powerful 
problem solving
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Some language features

Familiar:

Automatic storage management

Inheritance

Strange:

Parametric polymorphism

First-class functions
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Classifying languages

Imperative, object-oriented, functional, logic 
programming and more

Most are hybrids, e.g. Java is object-oriented and 
imperative

Isolate features to understand what classifications 
mean
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Formal semantics

A taste of formal semantics will give you an idea 
of how we say precisely what a program will do
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Impcore features
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Assignment: (set x e)

Loop: (while e1 e2)

Conditional: (if e1 e2 e3)

Sequencing: (begin e1 ... en)

Procedure: (f e1 ... en)

What is “imperative”?

Computations work on a mutable store

Order matters, e.g.

(begin (set x 1) (set x 2))

is different from

(begin (set x 2) (set x 1))
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Abstract syntax

The tree structure of the language

Data structure used by interpreters & compilers

(set x (+ x 1))
x = x+1;
x := x+1
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SET

x +

x 1

Free variables

A variable name is an expression

x

but it means nothing in isolation; it is a free 
variable

To give meaning to free variables, we use
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Environments

Environments

Environment: a mapping from names to meanings

In Impcore meanings are values

To bind a name to a value we write

(val x 2)

...adding the mapping            to the current 
environment

11

x !→ 2

Operational semantics
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Concise, precise guide to what the language 
means

Specification for interpreter or compiler

Supports proofs of language and program 
properties



How it works

A set of inference rules specifies the behavior of a 
hypothetical abstract machine

Use the rules to see how a particular expression is 
evaluated in a given context

Reason about the system of rules to prove general 
properties of the object language
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Applicative programming

...works by applying functions, not by mutating 
state

The meaning of a name in a given scope doesn't 
change over time - no set

Therefore we can have confidence in some 
simple laws.

14

The power of lambda

At the top level, not interesting

Used for local function definition, more 
interesting

We can pass functions as parameters

...and - more interesting - return them as results
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Closures

We know what v means - a formal parameter 
that will be bound when the function is applied - 
but what does t mean in 

(lambda (v) (lookup v t)))

      ?
16



Values for free variables

Answer: it depends on the environment

Evaluating a lambda-expression requires 
capturing the environment in a closure 

We don't write closures explicitly; the interpreter 
pairs the lambda-expression with the current 
environment:
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〈〈(lambda (v) (lookup v t)),{t "→ ’()}〉〉

Mutation and closures

We can't bind variables to values in environments

Because of assignment and closures, we bind 
variables to locations

Bindings in a closure don't change, contents of 
locations can
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Lambda

19

Creates unnamed function

(lambda (x) (* x 3))

... the function that multiplies its argument by 3

In

(lambda (x) (+ x y))

... x is bound, but y is free

Uses of lambda
Define nested functions using letrec

Pass functions as parameters

Return functions as results

Store them in data structures

Polymorphic data structures

Backtracking algorithms using continuations
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Semantics of uScheme
Top-level judgment:

Expression evaluation judgment:
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〈t,ρ,σ〉 → 〈ρ′,σ′〉

〈e,ρ,σ〉 ⇓ 〈v,σ′〉

What a rule means
Operationally we read a rule as having inputs, 
possibly some subgoals, and outputs

Inputs: initial state of abstract machine

Subgoals: what the machine must do

Outputs: final state of abstract machine

Note that metavariables x and x' and x1 are all 
different!
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Variables and assignment
Variable lookup

Assignment
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x ∈ dom ρ ρ(x) ∈ dom σ
〈VAR(x),ρ,σ〉 ⇓ 〈σ(ρ(x)),σ

x ∈ dom ρ ρ(x) = l 〈e,ρ,σ〉 ⇓ 〈v,σ′〉
〈SET(x,e),ρ,σ〉 ⇓ 〈v,σ′{l &→ v}〉

Let-binding
Simultaneous binding

24

l1, . . . , ln !∈ dom σ

〈e1, ρ, σ〉 ⇓ 〈v1, σ1〉

...

〈en, ρ, σn−1〉 ⇓ 〈vn, σn〉

〈e, ρ{x1 &→ l1, . . . , xn &→ ln}, σn{l1 &→ v1, . . . , ln &→ vn}〉 ⇓ 〈v, σ′〉

〈let(〈x1, e1, . . . , xn, en〉, e), ρ, σ〉 ⇓ 〈v, σ′〉

l1, . . . , ln !∈ dom σ

〈e1, ρ, σ〉 ⇓ 〈v1, σ
′〉 ρ1 = ρ0{x1 &→ l1} σ1 = sigma′

0{l1 &→ v1}

...

〈en, ρn−1, σn−1〉 ⇓ 〈vn, σ′

n−1〉 ρn = ρn−1{xn &→ ln} σn = sigma′

n−1{ln &→ vn}

〈e, ρn, σn〉 ⇓ 〈v, σ′〉

〈letstar(〈x1, e1, . . . , xn, en〉, e), ρ, σ〉 ⇓ 〈v, σ′〉
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Let* binding
Sequential binding

25

l1, . . . , ln !∈ dom σ

〈e1, ρ, σ〉 ⇓ 〈v1, σ1〉

...

〈en, ρ, σn−1〉 ⇓ 〈vn, σn〉

〈e, ρ{x1 &→ l1, . . . , xn &→ ln}, σn{l1 &→ v1, . . . , ln &→ vn}〉 ⇓ 〈v, σ′〉

〈let(〈x1, e1, . . . , xn, en〉, e), ρ, σ〉 ⇓ 〈v, σ′〉

l1, . . . , ln !∈ dom σ

〈e1, ρ, σ〉 ⇓ 〈v1, σ
′〉 ρ1 = ρ{x1 &→ l1} σ1 = σ′{l1 &→ v1}

...

〈en, ρn−1, σn−1〉 ⇓ 〈vn, σ′

n−1〉 ρn = ρn−1{xn &→ ln} σn = σ′

n−1{ln &→ vn}

〈e, ρn, σn〉 ⇓ 〈v, σ′〉

〈letstar(〈x1, e1, . . . , xn, en〉, e), ρ, σ〉 ⇓ 〈v, σ′〉
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Functions
Lambdas evaluate to closures
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l1, . . . , ln !∈ dom σ

〈e1, ρ, σ〉 ⇓ 〈v1, σ1〉

...

〈en, ρ, σn−1〉 ⇓ 〈vn, σn〉

〈e, ρ{x1 &→ l1, . . . , xn &→ ln}, σn{l1 &→ v1, . . . , ln &→ vn}〉 ⇓ 〈v, σ′〉

〈let(〈x1, e1, . . . , xn, en〉, e), ρ, σ〉 ⇓ 〈v, σ′〉

l1, . . . , ln !∈ dom σ

〈e1, ρ, σ〉 ⇓ 〈v1, σ
′〉 ρ1 = ρ{x1 &→ l1} σ1 = σ′{l1 &→ v1}

...

〈en, ρn−1, σn−1〉 ⇓ 〈vn, σ′

n−1〉 ρn = ρn−1{xn &→ ln} σn = σ′

n−1{ln &→ vn}

〈e, ρn, σn〉 ⇓ 〈v, σ′〉

〈letstar(〈x1, e1, . . . , xn, en〉, e), ρ, σ〉 ⇓ 〈v, σ′〉

x1, . . . , xn all distinct

〈lambda(〈x1, . . . , xn〉, e), ρ, σ〉 ⇓ 〈〈〈lambda(〈x1, . . . , xn〉, e), ρ〉〉, σ〉

l1, . . . , ln !∈ dom σ

〈e, ρ, σ〉 ⇓ 〈〈〈lambda(〈x1, . . . , xn〉, ec), ρc〉〉, σ0〉

〈e1, ρ, σ0〉 ⇓ 〈v1, σ1〉

...

〈en, ρ, σn−1〉 ⇓ 〈vn, σn〉

〈ec, ρc{x1 &→ l1, . . . , xn &→ ln}, σn{l1 &→ v1, . . . , ln &→ vn}〉 ⇓ 〈v, σ′〉

〈apply(e, e1, . . . , en), ρ, σ〉 ⇓ 〈v, σ′〉
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Functions
Function applications

27

l1, . . . , ln !∈ dom σ

〈e1, ρ, σ〉 ⇓ 〈v1, σ1〉

...

〈en, ρ, σn−1〉 ⇓ 〈vn, σn〉

〈e, ρ{x1 &→ l1, . . . , xn &→ ln}, σn{l1 &→ v1, . . . , ln &→ vn}〉 ⇓ 〈v, σ′〉

〈let(〈x1, e1, . . . , xn, en〉, e), ρ, σ〉 ⇓ 〈v, σ′〉

l1, . . . , ln !∈ dom σ

〈e1, ρ, σ〉 ⇓ 〈v1, σ
′〉 ρ1 = ρ{x1 &→ l1} σ1 = σ′{l1 &→ v1}

...

〈en, ρn−1, σn−1〉 ⇓ 〈vn, σ′

n−1〉 ρn = ρn−1{xn &→ ln} σn = σ′

n−1{ln &→ vn}

〈e, ρn, σn〉 ⇓ 〈v, σ′〉

〈letstar(〈x1, e1, . . . , xn, en〉, e), ρ, σ〉 ⇓ 〈v, σ′〉

x1, . . . , xn all distinct

〈lambda(〈x1, . . . , xn〉, e), ρ, σ〉 ⇓ 〈〈〈lambda(〈x1, . . . , xn〉, e), ρ〉〉, σ〉

l1, . . . , ln !∈ dom σ

〈e, ρ, σ〉 ⇓ 〈〈〈lambda(〈x1, . . . , xn〉, ec), ρc〉〉, σ0〉

〈e1, ρ, σ0〉 ⇓ 〈v1, σ1〉

...

〈en, ρ, σn−1〉 ⇓ 〈vn, σn〉

〈ec, ρc{x1 &→ l1, . . . , xn &→ ln}, σn{l1 &→ v1, . . . , ln &→ vn}〉 ⇓ 〈v, σ′〉

〈apply(e, e1, . . . , en), ρ, σ〉 ⇓ 〈v, σ′〉

1

Type Systems

28



Static vs. dynamic checking
Dynamic checking in uScheme:

-> (define appendfoo (l) (append 'foo l))
appendfoo
-> (appendfoo '(1 2))
error: car applied to non-pair foo in (car l1)

Static checking in ML:

- fun appendfoo l = "foo" @ l;
! Toplevel input:
! fun appendfoo l = "foo" @ l;
!                   ^^^^^
! Type clash: expression of type
!   string
! cannot have type
!   'a list

29

Checking and interpreters
Dynamic type checks: integrated with evaluation - a 
single-stage interpreter

Static type checks: first phase of a two-stage 
interpreter

30

Static type checking: why?
Not just to annoy novice programmers

Support for serious programming

Catch mistakes at compile time and reduce 
dependency on completeness of testing

Document the intended behavior of programs

Define interfaces between modules

Support for optimizing compilers

31

What Impcore types do
In a well-typed Impcore program we know:

Every function (including primitives) receives 
the right number and type of actual parameters

Only Booleans are used for flow control (if and 
while)

...and we know this without ever running the 
program!

32



What they don't do
We don't know if

there is division by 0

application of car or cdr to the empty list

illegal array indexing

infinite looping or recursion

wrong answers

33

Type system for Impcore
Simple types:

Function types: 

Typing judgment for expressions:

Typing judgement for top-level items:

Properties: deterministic, sound w.r.t. evaluation

34

τ = int|bool|unit|array(τ)

τf = τ1 × . . .× τn → τ

Γξ,Γφ,Γρ ! e : τ

〈t, Γξ,Γφ〉 → 〈Γ′
ξ,Γ

′
φ〉

Literals and variables
Literals are numbers

Variable types are kept in the type environments

35

Γξ,Γφ,Γρ ! literal(v) : int

x ∈ dom Γρ

Γξ,Γφ,Γρ " var(x) : Γρ(x)

x !∈ dom Γρ x ∈ dom Γξ

Γξ,Γφ,Γρ # var(x) : Γξ(x)

Assignments
To parameters

To globals

36

x ∈ dom Γρ Γρ(x) = τ
Γξ,Γφ,Γρ " e : τ

Γξ,Γφ,Γρ " set(x, e) : τ

x !∈ dom Γρ x ∈ dom Γξ

Γξ(x) = τ
Γξ,Γφ,Γρ # e : τ

Γξ,Γφ,Γρ # set(x, e) : τ



Typing an if-expression
The two arms must have the same type - why?

37

Γξ,Γφ,Γρ ! e1 : bool Γξ,Γφ,Γρ ! e2 : τ Γξ,Γφ,Γρ ! e3 : τ

Γξ,Γφ,Γρ ! if(e1, e2, e3) : τ

Typing a while-loop
The value returned is the uninteresting "unit"

38

Γξ,Γφ,Γρ ! e1 : bool Γξ,Γφ,Γρ ! e2 : τ

Γξ,Γφ,Γρ ! while(e1, e2) : unit

Typing a sequence
Types 1 ... n-1 are uninteresting

39

Γξ,Γφ,Γρ ! e1 : τ1 . . .Γξ,Γφ,Γρ ! en : τn

Γξ,Γφ,Γρ ! begin(e1, . . . , en) : τn

Function application
Using the function type environment

We check that the actual parameters have the 
required types

40

Γφ(f) = τ1 × . . .× τn → τ Γξ,Γφ,Γρ # ei : τi

Γξ,Γφ,Γρ # apply(f, e1, . . . , en) : τ



Function definition
Extending the function type environment

Notice how we assume the formals have the correct 
types while we are typing the body!

41

Γξ,Γφ{f !→ τ1 × . . .× τn → τ}, {x1 !→ τ1, . . . , xn !→ τn} $ e : τ

〈define(f, (〈x1 : τ1, . . . , xn : τn〉, e : τ),Γξ,Γφ,→ 〈Γξ,Γφ{f !→ τ1 × . . .× τn → τ}

Top level value binding
We extend the global type environment

42

Γξ,Γφ, {} ! e : τ

〈val(x, e),Γξ,Γφ〉 → 〈Γξ{x %→ τ},Γφ〉

Three common type constructors

(First-class) functions

Products

Sums

43

First-class functions
Type constructor        

Infix, two arguments:  

Formation rule:

44

→
τ1 → τ2

τ1 and τ2 are types

τ1 → τ2 is a type



Typing rules for functions
Introduction

Elimination

45

Γ{x !→ τ} # e : τ ′

Γ # lambda(x : τ, e) : τ → τ ′

Γ ! e1 : τ → τ ′ Γ ! e2 : τ

Γ ! apply(e1, e2) : τ ′

Products (pairs)
Constituent types need not be the same

Variously, "tuple", "struct", "record"

Can be used to model objects (in the OO sense)

Formation

46

τ1 and τ2 are types

τ1 × τ2 is a type

Typing rules for products
Introduction

Elimination

(and similarly for the second element)
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Γ ! e1 : τ1 Γ ! e2 : τ2

Γ ! pair(e1, e2) : τ1 × τ2

Γ ! e : τ1 × τ2

Γ ! fst(e) : τ1

An elegant elim rule
Like a pattern match

48

Γ ! e : τ1 × τ2 Γ{x1 #→ τ1, x2 #→ τ2} ! e′ : τ

Γ ! letpair(x1, x2, e, e
′) : τ



Sum types
A type that unions other types together

Like C unions, but safer because you can always 
tell what's there

Like simple ML datatypes (no recursion)

Formation rule

49

τ1 and τ2 are types

τ1 + τ2 is a type

Typing rules for sums
Introduction

50

Γ ! e : τ1 τ2 is a type

Γ ! leftτ2(e) : τ1 + τ2

Γ ! e : τ2 τ1 is a type

Γ ! rightτ1(e) : τ1 + τ2

Typing rules for sums(2)
Elimination: like case or switch

51

Γ ! e : τ1 + τ2

Γ{x1 "→ τ1} ! e1 : τ
Γ{x2 "→ τ2} ! e2 : τ

Γ ! case e of left(x1)⇒ e1 | right(x2)⇒ e2 : τ

About type soundness

52



Why trust a type system?

53

Given a complex enough type system, we might 
be unable to see whether it behaves reasonably

Language designers prove type soundness both to 
increase trust and to be explicit about what 
guarantees the type system provides

What is type soundness?
A kind of claim we make about the relationship 
between the typing rules and the evaluation rules

Loosely, "well-typed programs don't go wrong"

Sample corollaries:

Functions always receive the right number and 
kind of arguments

No array access is out of bounds (a more 
advanced kind of type system)

54

Machinery needed for soundness

The meaning of a type      is a set of values 

Examples

 

 

This gives us a notation for the set of things a well 
typed expression is allowed to evaluate to

55

!τ"

!bool" = {bool(#t),bool(#f)}

!int" = {number(n) | n is an integer}

Proper environments
 

56

If Γ and ρ are typing and value environments, re-
spectively, we say ρ agrees with Γ whenever, for
every x in dom (Γ),

1. x is also in dom (ρ), and

2. ρ(x) ∈ !Γ(x)"



A soundness claim
 

57

If

1. Γ and ρ are typing and value environments,
and

2. ρ agrees with Γ, and

3. Γ ! e : τ and 〈ρ, e〉 ⇓ v,

then v ∈ !τ"

Limitations of 
monomorphic typing

Example from typed Impcore: list processing 
functions

58

Polymorphism
Introduce polymorphic type system with static type 
checking

Now we can write one version of length with type

(forall ('a) (function ((list 'a)) int))

This will be flexible enough to type a lot of the 
programs we want - almost a "sweet spot"

...but terribly verbose and impossible to use

59

∀α .α list→ int

Why?
Why torture ourselves with this type system?

To motivate type inference as in ML and related 
languages

The real "sweet spot": polymorphic type system, 
plus type inference, yields a terse, flexible language 
with robust guarantees suitable for production 
programming

Used in ML, OCaml, Haskell, etc. etc.

60



Type variables
A new kind of variable that stands for an unknown 
type

Actual types are supplied by type instantiation, 
a.k.a. type application

Type variables are bound in types by ∀(abstractly), 

or forall  (concretely)

Bound in expressions by                    (abstractly), or 
type-lambda (concretely)

61

tylambda

Idea: lambda for types
You've seen this before: Java/C++ generics

Quantified types:

(forall ('a1 ... 'an) type)

Type abstraction: 

(type-lambda ('a1 ... 'an) exp)

Type application: 

(@ exp type1 ... typen)

62

∀α1, . . . ,αn . τ

tylambda(α1, . . . ,αn, e)

tyapply(e, τ1, . . . , τn)

Quantified types

 -> length
<procedure> : (forall ('a) (function ((list 'a)) int))

-> cons
<procedure> : (forall ('a) (function ('a (list 'a)) (list 'a)))

-> car
<procedure> : (forall ('a) (function ((list 'a)) 'a))

-> cdr
<procedure> : (forall ('a) (function ((list 'a)) (list 'a)))

-> '()
() : (forall ('a) (list 'a))

63

Type instantiation
 -> (val length-int (@ length int))
length-int : (function ((list int)) int)

-> (val length-bool (@ length bool))
length-bool : (function ((list bool)) int)

-> (val nil-bool (@ '() bool))
() : (list bool)
 

64

Instantiation substitutes actual types for type variables



Type abstraction
-> (val-rec (forall ('a) (function ((list 'a)) int))
     len (type-lambda ('a)
       (lambda (((list 'a) l))
         (if ((@ null? 'a) l) 0
            (+ 1 ((@ len 'a) ((@ cdr 'a) l)))))))     
len : (forall ('a) (function ((list 'a)) int))
-> (@ len int)
<procedure> : (function ((list int)) int)
-> ((@ len int) '(1 2 3))
3 : int

65

Lambda for types
Remember the basic idea: abstract over types

Quantified types:

(forall ('a1 ... 'an) type)

Type abstraction: 

(type-lambda ('a1 ... 'an) exp)

Type application: 

(@ exp type1 ... typen)

66

∀α1, . . . ,αn . τ

tylambda(α1, . . . ,αn, e)

tyapply(e, τ1, . . . , τn)

Type expressions versus types

67

Our language of types is getting fairly complex:

datatype tyex = TYCON  of name (* constructor *)
              | TYVAR  of name (* type variable *)
              | CONAPP of tyex * tyex list    
                      (* apply a constructor *)
              | FORALL of name list * tyex                          
                      (* polymorphic type *)

Type constructors are things like list, function, pair, and so on

Constructors are applied to other types to obtain types, e.g. 
(list int)

Polymorphic types are not applied; but the values they 
describe are applied to types

Classifying type expressions
Instead of having a set of "type-formation" rules like

we have a kind system "on top of" our type system, 
to classify our type expressions.

This is used to ensure that types are well formed, 
e.g. to rule out something like:

(define (list list) foo () 0)

68

τ1 and τ2 are types

τ1 → τ2 is a type



Kinds
A kind environment classifies our types:

and constructors:

To extend the language we can add to the kind 
environment:

69

int :: ∗, bool :: ∗, unit :: ∗

list :: ∗ ⇒ ∗,→:: ∗ × ∗ ⇒ ∗, array :: ∗ ⇒, . . .

pair :: ∗ × ∗ ⇒ ∗, sum :: ∗ × ∗ ⇒ ∗

Using kinds
Kinding rules tell when type expressions are well 
formed

E.g., 

70

µ ∈ dom ∆

∆ " tycon(µ) :: ∆(µ)

list ∈ dom ∆

∆ " tycon(list) :: ∗ ⇒ ∗

Constructor applications
This kinding rule is the twin of the typing rule for 
function application:

We can use this rule to check that (list int) is 
a properly formed type.
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∆ ! τ :: κ1 × . . .× κn ⇒ κ
∆ ! τ1 :: κ1 . . .∆ ! τn :: κn

∆ ! conapp(τ, [τ1, . . . , τn]) :: κ

A special case: tuples
The tuple type constructor has variable arity:

72

∆ ! τi :: ∗, 1 ≤ i ≤ n

∆ ! conapp(tycon(tuple, [τ1, . . . , τn]) :: ∗



Quantified types
Where the polymorphism action is:

This rule is the "twin" of the typing rule for 
functions!

We look up type variables in the kind environment

73

α ∈ dom ∆

∆ " tyvar(α) :: ∆(α)

∆{α1 :: ∗, . . . ,αn :: ∗} " τ :: ∗

∆ " forall(〈α1, . . . ,αn〉, τ) :: ∗

An important restriction
Type variables must have kind *
...so we can't quantify over, say, type constructors

We can say "for any type", but not "for any type 
constructor"

Other type systems (e.g. Haskell's) relax this 
restriction

74

The uScheme type system
The typing rules are much like typed Impcore, but

only one type environment

a kind environment is needed for type 
constructors and type variables

no special rules for constructors like array

75

Typing let-binders
Let and let*, no letrec

We view let* as syntactic sugar for nested let

76

∆,Γ ! ei : τi, 1 ≤ i ≤ n
∆,Γ{x1 #→ τ1, . . . , xn #→ τn} ! e : τ

∆,Γ ! let(〈x1, e1, . . . , xn, en〉, e) : τ

∆,Γ ! let(〈x1, e1〉, letstar(〈x2, e2, . . . , xn, en〉, e)) : τ, n > 0

∆,Γ ! letstar(〈x1, e1, . . . , xn, en〉, e) : τ

∆,Γ ! e : τ

∆,Γ ! letstar(〈〉, e) : τ



Typing lambda
We check that the declared parameter types are 
well formed

Then assume that the variables have these types 
while type-checking the body.

77

∆ ! τi :: ∗, 1 ≤ i ≤ n
∆,Γ{x1 $→ τ1, . . . , xn $→ τn} ! e : τ

∆,Γ ! lambda(〈x1 : τ1, . . . , xn : τn〉, e) : τ1 × . . .× τn → τ

Typing APPLY
Same as for Impcore, except that the type of the 
function is no longer stored in a function 
environment

78

∆,Γ ! ei : τi, 1 ≤ i ≤ n
∆,Γ ! e : τ1 × . . .× τn → τ

∆,Γ ! apply(e, e1, . . . , en) : τ

Typing TYLAMBDA
Instead of putting new ordinary variables in the 
type environment, we put new type variables in 
the kind environment:
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∆{α1 :: ∗, . . . ,αn :: ∗},Γ " e : τ

∆,Γ " tylambda(α1, . . . ,αn, e) : ∀α1 . . .αn.τ

Typing TYAPPLY
We check that the applied term has a 
polymorphic type and that the arguments are all 
types 

The resulting type is constructed by substituting 
the arguments for the type variables in the body of 
the polymorphic type.
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∆ ! τi :: ∗, 1 ≤ i ≤ n
∆,Γ ! e : ∀α1 . . .αn.τ

∆,Γ ! tyapply(e, τ1, . . . , τn) : τ [α1 %→ τ1, . . . ,αn %→ τn]



Typing VAL and VAL-REC
Note the different handling of the environment!
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∆,Γ ! e : τ

∆,Γ ! val(x, e)→ Γ{x #→ τ}

∆,Γ{x !→ τ} # e : τ

∆,Γ # val-rec(x, τ, e)→ Γ{x !→ τ}

Evaluation
No extra work is needed to interpret typed 
uScheme!  After type checking, types are "thrown 
away" and the evaluator works as before - except 
for error handling.

But we need to specify the semantics of the new 
constructs - type application and abstraction, and 
VAL-REC

And we need to be careful with VAL!
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Type application & abstraction

Forget the types
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〈e, ρ, σ〉 ⇓ 〈v,σ′〉

〈tyapply(e, τ1, . . . , τn), ρ, σ〉 ⇓ 〈v,σ′〉

〈e, ρ,σ〉 ⇓ 〈v,σ′〉

〈tylambda(〈α1, . . . ,αn〉, e), ρ, σ〉 ⇓ 〈v,σ′〉

VAL - a pitfall
Suppose VAL doesn't always create a new binding

> uscheme
-> (val x 1)
1
-> (define f (n) (+ x n))
f
-> (f 2)
3
-> (val x '(a b))
(a b)
-> (f 2)
error: in (+ x n), expected an integer, but got (a b)

84



VAL pitfall (2)
Since typed uScheme has no run-time type 
checking, VAL must create a new variable, not 
assign to an old one!

> tuscheme
-> (val x 1)
1 : int
-> (define int f ((int n)) (+ x n))
f : (function (int) int)
-> (f 2)
3 : int
-> (val x '(a b))
(a b) : (list sym)
-> (f 2)
3 : int
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From typed uScheme to 
uML
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Pure functional programming
a.k.a. applicative programming

Negatively, lack of mutation & related features 
(crudely: "no side effects")

Positively, referential transparency: the value of an 
expression depends only on the values of its 
subexpressions.

In particular, the value doesn't depend on the 
context of the expression!
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Benefits of r.t.
Simple semantics

Predictability and provability of programs

Easy compiler optimizations

Easy thread safety

...
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µML
ML proper does have assignment, but µML does 
not.

µML has output and error exit (imperative), and 
loops and sequencing (only interesting in the 
presence of imperative features).

So the only side effects are output and early 
termination.
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Abstract syntax of µML
Same as µScheme, 

but leaving out SET (assignment), WHILE (loops)

and adding in VALREC as in typed µScheme

Values are the same, but subject to a type system

numbers, booleans, and symbols

pairs

closures and primitive functions
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Operational semantics
No locations - why not?

The only result of expression evaluation is a value

The only result of top-level evaluation is a new 
environment

Rule for "begin" shows we don't care about order
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Contrasting begin rules
µML

µScheme
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〈begin(), ρ〉 ⇓ nil

〈e1, ρ〉 ⇓ v1

〈e2, ρ〉 ⇓ v2
...
〈en, ρ〉 ⇓ vn

〈begin(e1, e2, . . . , en), ρ〉 ⇓ vn

〈e1, ρ, σ0〉 ⇓ 〈v1,σ1〉
〈e2, ρ, σ1〉 ⇓ 〈v2,σ2〉
...
〈en, ρ, σn−1〉 ⇓ 〈vn,σn〉

〈begin(e1, e2, . . . , en), ρ, σ0〉 ⇓ 〈vn,σn〉

〈begin(), ρ, σ〉 ⇓ 〈bool(#f),σ〉



Closures
As in Scheme, a lambda expression evaluates to a 
closure containing the current environment.

To apply a lambda we use the environment when 
evaluating the body:
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〈e, ρ〉 ⇓ 〈〈lambda(〈x1, . . . , xn〉, ec), ρc〉〉
〈e1, ρ〉 ⇓ v1 . . . 〈en, ρ〉 ⇓ vn

〈ec, ρc{x1 $→ v1, . . . , xn $→ vn}〉 ⇓ v

〈apply(e, e1, . . . , en), ρ〉 ⇓ v

Recursion (1)
Up to now we handled semantics of recursion by 
early binding and mutation to install a circular 
reference in an environment

No mutation - so we simply state the requirement 
for a circular reference

We guarantee that we can do it by restricting 
recursion to lambda!
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Recursion (2)
Simple, but tricky: we create an environment that 
contains references to itself!
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e1, . . . , en are all lambda epressions
ρ′ = ρ{x1 !→ v1, . . . , xn !→ vn}
〈e1, ρ′〉 ⇓ v1 . . . 〈en, ρ′〉 ⇓ vn

〈e, ρ′〉 ⇓ v

〈letrec(〈x1, e1, . . . , xn, en〉, e), ρ〉 ⇓ v

Recursion (3)
Implementation uses a simple trick: an ML function 
captures the environment in an ML closure

datatype  value = NIL
          ...
          | CLOSURE   of lambda * (unit -> value env)
fun eval(e, rho) = let fun ...
    | ev(LETX (LETREC, bs, body)) =
        let fun makeRho' () =
          let fun step ((n, e), rho) =
           (case e
              of LAMBDA l => bind(n, CLOSURE (l, makeRho'), rho)
                      | _ => raise RuntimeError "non-lambda in letrec")
          in  foldl step rho bs
          end
         in  eval(body, makeRho'())
         end

Shallow embedding again!
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Recursion for lambda only!
In µScheme:

(letrec ((odd-even (list2
  (lambda (n) (let ((even (cadr odd-even)))
    (if (< n 0) (even (+ n 1)) 
        (if (> n 0) (even (- n 1)) #f))))
  (lambda (n) (let ((odd (car odd-even))) 
    (if (< n 0) (odd (+ n 1))
        (if (> n 0) (odd (- n 1)) #t)))))))

(list2 ((car odd-even) 3) ((cadr odd-even) 4)))
(#t #t)

In µML: 

run-time error: non-lambda in letrec
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Type system
Once again we have type expressions of

variables !

constructors "

applications of constructors (#1,...,#n)#

note postfix notation

quantification ∀ #1,...,#n.# but quantification is 
restricted to the top level or outside

No kinds - the programmer never writes a type
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Type schemes
In typed µScheme quantifiers are fully general:

-> (val not-too-poly 
     (lambda (((forall ('a) (list 'a)) nil)) 
      ((@ pair (list int) (list bool)) 
        ((@ cons int) 1 (@ nil int)) 
        ((@ cons bool) #t (@ nil bool)))))
not-too-poly : (function ((forall ('a) (list 'a))) 
                         (pair (list int) (list bool)))
-> (not-too-poly '())
((1) #t) : (pair (list int) (list bool))

Not allowed in µML:

-> (val too-poly (lambda (nil) 
                  (pair (cons 1 nil) (cons #t nil))))

type error: Cannot unify int and bool
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Type system
We can give a straightforward - but 
nondeterministic! - set of typing rules.

Rules for if, begin, apply, etc. are familiar from 
typed µScheme (but no kind environment needed)

Rules for variables and lambda are nondeterministic

Rules for let/letrec infer type schemes
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Type inference
The issue is how to turn nondeterministic rules 
into a deterministic type inference algorithm

The algorithm is presented in terms of inference 
rules that "return" a substitution as well as a type!

Unification is the way we find substitutions
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Type inference judgment
In               , the substitution theta and the type 
tau are outputs

The type may contain type variables

The typing context contains type schemes
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θΓ ! e : τ

Type inference for APPLY
Type checking:

Inference:
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θΓ ! e, e1, . . . , en : τ̂ , τ1, . . . , τn

θ′(τ̂) = θ′(τ1 × . . .× τn → α),where α is fresh

(θ′ ◦ θ)Γ ! apply(e, e1, . . . , en) : θ′α

Γ ! e : τ1 × . . .× τn → τ
Γ ! ei : τi, 1 ≤ i ≤ n

Γ ! apply(e, e1, . . . , en) : τ

Operational interpretation
Infer types                     for                    , 
yielding substitution 

Pick fresh type var     and unify    with
                       , yielding 

Answer type is      , answer substitution is 
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τ̂ , τ1, . . . , τn e, e1, . . . , en

θ

α τ̂

τ1, . . . , τn → α θ′

θ′α θ′ ◦ θ



CS301 - Spring 2006

Soundness
Soundness of the type inference rules means that 
if we infer a type for e using the type inference 
system, then e has that type according to the type 
checking system.

Soundness can be proved by induction on the 
structure of a type inference.

105 CS301 - Spring 2006

Example
Let's infer a type for (car '(1))
APPLY(PRIM(car),LITERAL(PAIR(NUM(1),NIL)))

Type scheme                          for car is found in 
environment, and we take its most general 
instance, or                    ; for the literal we use the 
rule on p. 236 to get                ; our substitution is 
still "empty", or id.

So now we have types for the function and for its 
argument, and we want to match them up.
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int list

∀α.α list→ α

α list→ α

CS301 - Spring 2006

Example (cont'd)
We pick a fresh type variable    and unify
                    with                       ; the answer 
substitution is 

So the answer type is 

and the answer substitution is 

Notice how unification implicitly filled in the type 
application (@ car int)
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β
α list→ α int list→ β

θ′ = {α !→ int,β !→ int}

θ′β = int

θ′ ◦ id = {α "→ int,β "→ int}

CS301 - Spring 2006

Type inference for variables
The typing rule for variables is nondeterministic:

To make it algorithmic, we use the most general 
instance of the type scheme:
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Γ(x) = σ τ <: σ

Γ ! x : τ

Γ(x) = σ τ = freshinstance(σ)

Γ ! x : τ



Most general instance
If ' is a type scheme and # is a most general 
instance of ', what could # be?

Example: ' is ∀!,(.!!(&(!!() list

  could # be (1!(2&((1!(2) list?
  how about (1!(1&((1!(1) list?
  int!bool&(int!bool) list?
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Type inference for lambda
Again the typing rule is nondeterministic:

We introduce fresh type variables:
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Γ{x1 !→ τ1, . . . , xn !→ τn} # e : τ

Γ # lambda(〈x1, . . . , xn〉, e) : τ1 × . . .× τn → τ

α1, . . . ,αn are fresh
Γ′ = Γ{x1 !→ ∀.α1, . . . , xn !→ ∀.αn}
θΓ′ $ e : τ

θΓ $ lambda(〈x1, . . . , xn〉, e) : θα1 × . . .× θαn → τ

Operational interpretation
Pick n fresh type variables and form type schemes
∀.!i

Bind the xi to ∀.!i to form the new typing 

environment $'

Infer a type # for e in $', yielding substitution %

The answer substitution is % and the answer type 
is %!1!...!%!n& #

111

Example
Let's infer a type for (lambda (x) (+ x 1))
LAMBDA(<x>,APPLY(PRIM(+),VAR(x),LIT(NUM(1)))

Pick a fresh type variable ! and bind x to ∀.!

Infer a type for the body in the new environment

Use the rule for APPLY
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Example (cont'd)
Environment: {x & ∀.!}

Infer types for PRIM(+), VAR(x), and LIT(NUM(1)), 
getting int!int&int, !, and int; the substitution is 
% = id

Pick a fresh type variable (, and unify int!int&int 
with !!int&(, yielding substitution %' = 
{!!int,(!int}

Answer: %'( = int, and %'"% = %'
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Example  (cont'd)
Now we have typed the body of the lambda, so  
the answer substitution is %', which is  
{!!int,(!int}, and the answer type is %'!&int, 
which is int&int.

In this example the algorithm has "filled in" the 
unstated type of the formal parameter x in 
(lambda (x) (+ x 1))
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Free variables
The free type variables of a type scheme are those 
not bound by ∀

For instance, in ∀!.!&(, ( is free (and ! is 

bound)

How about in ∀.!?
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Generalization
To type let-binding, we generalize an inferred 
type t to create a type scheme, by "closing over" 
the variables that are free in t, but not over the 
variables free in the typing environment.

E.g., generalize(!&(,{x!∀.!}) is ∀(.!&(
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Smalltalk
Smalltalk: the original OO language

All values in Smalltalk are objects, even numbers 
and booleans

Other than message send (or method invocation) 
control flow mediated by boolean and block 
objects

Blocks are closures and can be recursively 
defined at the top level
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Object-oriented programming
Language constructs: objects and classes

Mechanisms: inheritance and dynamic dispatch

Principles: data encapsulation and code re-use
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Related languages
Precursor: Simula

Languages with OO features: CLOS, C++, 
OCaml, Eiffel, Python, Java, C#, even Visual 
Basic, many others

OO is the language paradigm du jour
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What is an object?
An entity that responds to messages by changing 
its state and/or answering with a value

An object is represented by a collection of

instance variables (private) that constitute its 
state

methods (public) that specify its response to 
messages

Arguably, objects alone are enough for "pure" 
object-oriented programming
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Adding classes
Objects provide encapsulation and message 
handling

Classes add code re-use: all members of the same 
class share the same methods

Again, arguably we could stop there and have a 
meaningful OO language
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Adding inheritance
Inheritance creates a potentially complex web of 
code reuse

Mechanisms: subclassing and dynamic dispatch

Subclassing is transitive

A subclass inherits the instance variables and 
methods of its superclass(es)

A subclass may override (redefine) an inherited 
method
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Dynamic dispatch
How a message is handled is determined at 
runtime:

If there is a method defined in the receiver's 
class for the message, use it

Otherwise, search upward in the class hierarchy

Consequence: the meaning of a message can't be 
determined statically

protocol of an object: the messages it responds to 
- determined by its class and superclasses
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self and super
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Not variables!  self always refers to the receiver

super always refers to the receiver, but dynamic 
dispatch is not used; instead:

Search upward in the class hierarchy for the 
method, starting in the superclass of the class 
where super appears in the source.

Result: method is known statically!



The method "new"
new is not a keyword - a method in class Class 
responsible for creating instance variables

Sometimes we override it, but it's not a good idea to 
omit "new super":

-> (class Bar Object (x) 
    (classMethod new ())
    (method x () x))
<class Bar>
-> (val bar (new Bar))
nil
-> (x bar)
run-time error: UndefinedObject does not understand 
message x
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Variable names
Familiar static scope rules; in order of 
precedence:

locals

method parameters

instance variables

globals
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Smalltalk is highly dynamic
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Semantics reflect this

Almost everything can change at runtime

(In the full language, even more so!)

Major new features
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Values are objects

Object carries its class with it

Even classes like SmallInteger can be redefined

... so the behavior of a literal could change 
during program execution

Method dispatch - many rules!

Environments - global and parameter

Closures capture only parameter environment



Expression evaluation
Context is a message send:

global environment )

local (parameter) environment *

static superclass (superclass of the class where 
the message send occurs) csuper

Environments map identifiers to locations in the 
store
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Judgments
Expression evaluation

Top-level evaluation
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〈e, ρ, csuper, ξ,σ〉 ⇓ 〈v,σ′〉

〈t, ξ,σ〉 → 〈ξ′,σ′〉

Variables
Just like Impcore (we ignore the superclass)

self is an instance variable, and super behaves 
like self except as the receiver of a message:
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〈var(self), ρ, csuper, ξ,σ〉 ⇓ 〈v,σ〉

〈super, ρ, csuper, ξ,σ〉 ⇓ 〈v,σ〉

Literals
Array literals are parsed as VALUES, but numbers 
and symbols as LITERALS
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〈value(v), ρ, csuper, ξ,σ〉 ⇓ 〈v,σ〉

〈literal(num(n)), ρ, csuper, ξ,σ〉 ⇓ 〈〈σ(ξ(SmallInteger)),num(n)〉,σ〉



Blocks
We make an object of class Block, with a closure 
as representation, which captures the parameter 
environment (not the globals) as well as the static 
superclass:
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〈block(〈x1 . . . xn〉, es)), ρ, cs, ξ,σ〉 ⇓ 〈〈σ(ξ(Block)),clo(〈x1 . . . xn〉, es, cs, ρ)〉,σ〉

Message send
Five cases:

user-defined method, receiver is not super

user-defined method, receiver is super

primitive method, receiver is not super

primitive method, receiver is super

value method
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Ordinary user message send
To evaluate 

eval receiver and parameters, threading the store:

look up method using receiver's class
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〈send(m, e, e1, . . . , en), ρ, cs, ξ,σ〉 ⇓ 〈v,σ′〉

〈e, ρ, cs, ξ,σ〉 ⇓ 〈〈c, r〉,σ0〉
〈ei, ρ, cs, ξ,σi−1〉 ⇓ 〈vi,σi〉

findMethod(m, c) = user method( , 〈x1, . . . , xn〉, 〈y1, . . . , yk〉, em, s)

Message send cont'd
Allocate space for the method's parameters and 
locals

Create the environment and eval the body

Notice which static superclass is used!
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l1, . . . , ln !∈ dom σn l′1, . . . , l
′
k !∈ dom σn

σ̂ = σn{l1 !→ v1, . . . , ln !→ vn, l′1 !→ nil, . . . , l′k !→ nil

ρ′ = instanceVars(r)
〈em, ρ′{x1 "→ l1, . . . , xn "→ ln, y1 "→ l′1, . . . , yk "→ l′k}, s, ξ, σ̂〉 ⇓ 〈v,σ′〉



Message send to super
The only difference is that we use the static 
superclass to start the method lookup.
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findMethod(m, cs) = user method( , 〈x1, . . . , xn〉, 〈y1, . . . , yk〉, em, s)

Prolog
No evaluation - proof search instead

"Variables" are bound as a result of search

A "program" is a set of clauses together with a 
query

The meaning of a program is a set of proofs

The "answer" is yes or no - a proof was found or 
not - together with bindings for the variables
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Unification makes it work
Unification: given two terms t1 and t2, both 
potentially containing variables, can we find a 
substitution for those variables making t1 and t2 
the same?

e.g. unify [X,3,4|Xs] and [2,3,Y|Ys]:

{ X:=2, Xs:=Ys, Y:=4 }
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Backtracking makes it work
A search tree
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Logical vs. procedural semantics

Logical semantics extremely simple but it's an 
idealization of what actually happens

It ignores effects of search order, e.g. 
nontermination

Procedural semantics specifies search order

Can also specify the behavior of the nonlogical 
constructs like cut
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Logical semantics
Judgment: the conjunction of goals is satisfiable 
using the set of clauses D and the substitution %

Rule for conjunctions
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D ! θ̂g1, . . . , θ̂gn

D ! θ̂g1 . . . D ! θ̂gn

D ! θ̂g1, . . . , θ̂gn

Logical semantics cont'd
Rule for a single goal

C is any clause in the database!
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C ∈ D C = G:-H1, . . . ,Hm

θ̂′(G) = θ̂g
D " θ̂′(H1), . . . , θ̂′(Hm)

D " θ̂g

Substitutions
Informally, think of a substitution as a function 
that maps logic variables to Prolog terms (which 
may contain logic variables

If % a substitution and t a term, write %t for the 
application of % to t

but write % g for the application to a goal g

A substitution never affects a functor, predicate, 
or literal
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Unification
Unification plus variable renaming finds the pair of 
substitutions we need to match a goal to a clause 
head

Why renaming?  Consider:

member(M,[1|nil])
member(X,[X|M])

We need to consider the two occurrences of M to 
be different variables.
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Unification: two subtleties
Unification finds a most general unifier!  We're not 
interested in other substitutions.

To be correct, unification must do an occurs check: 
the following should not unify:

foo(X,[X|L])
foo(Y,[bar(Y)|M])
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Procedural semantics
Specifies order of evaluation

which clause is matched first?

how does backtracking work?
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Choosing a clause
Given an atomic query g and a database D, we 
attempt to satisfy g using the clauses of D in the 
order in which they appear.

This yields nontermination in the following:

element(X,[Y|Xs]) :- element(X,Xs).
element(X,[X|Xs]).
?- element(1,L).
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Backtracking
If we unify a goal with a clause C, but fail to satisfy 
a subgoal, we return to the list of clauses and try to 
to unify our goal with the next clause after C.

This causes nontermination in:

reach(X,Y) :- reach1(X,Y).
reach(X,Y) :- reach(X,U), reach(U,Y).
reach(X,X).
?- reach(a,a).
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Comparing the two
The logical interpretation is "too powerful" - if there 
is any way to find a proof, it succeeds.

The procedural interpretation reflects what can be 
easily, efficiently implemented, but is harder to 
understand.

Note that many implementations omit the "occurs 
check" to speed up unification.
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Non-logical features
Features that cannot be given a simple semantics 
in pure logic

cut (!) prevents backtracking

not might appear logical but depends on the 
closed world assumption.

assert and retract modify the rules on the fly
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Prolog and theorem proving
Prolog was originally developed as part of 
research in automated proof

It is based on resolution theorem proving, a proof 
search procedure for the Horn clause fragment of 
first-order logic
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