
Introduction to Standard ML

Robert Harper1

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3891

Copyright c
 1986-1993 Robert Harper.

All rights reserved.

1With exercises by Kevin Mitchell, Edinburgh University, Edinburgh, UK.

Contents

1 Introduction 1

2 The Core Language 3

2.1 Interacting with ML : 3

2.2 Basic expressions, values, and types : : : : : : : : : : : : : : : 4

2.2.1 Unit : 5

2.2.2 Booleans : 5

2.2.3 Integers : 6

2.2.4 Strings : 7

2.2.5 Real Numbers : 7

2.2.6 Tuples : 8

2.2.7 Lists : 9

2.2.8 Records : 11

2.3 Identi�ers, bindings, and declarations : : : : : : : : : : : : : : 12

2.4 Patterns : 16

2.5 De�ning functions : 21

2.6 Polymorphism and Overloading : : : : : : : : : : : : : : : : : 33

2.7 De�ning types : 36

2.8 Exceptions : 43

2.9 Imperative features : 48

3 The Modules System 51

3.1 Overview : 51

3.2 Structures and Signatures : 53

3.3 Abstractions : 70

3.4 Functors : 74

3.5 The modules system in practice : : : : : : : : : : : : : : : : : 77

iii

iv CONTENTS

4 Input-Output 84

A Answers 88

Acknowledgements

Several of the examples were cribbed from Luca Cardelli's introduction to his

dialect of ML [3], from Robin Milner's core language de�nition [5], from Dave

MacQueen's modules paper [6], and from Abelson and Sussman's book [1].

Joachim Parrow, Don Sannella, and David Walker made many helpful sug-

gestions.

vii

Chapter 1

Introduction

These notes are an introduction to the Standard ML programming language.

Here are some of the highlights of Standard ML:

� ML is a functional programming language. Functions are �rst-class

data objects: they may be passed as arguments, returned as results,

and stored in variables. The principal control mechanism in ML is

recursive function application.

� ML is an interactive language. Every phrase read is analyzed, compiled,

and executed, and the value of the phrase is reported, together with its

type.

� ML is strongly typed. Every legal expression has a type which is deter-

mined automatically by the compiler. Strong typing guarantees that

no program can incur a type error at run time, a common source of

bugs.

� ML has a polymorphic type system. Each legal phrase has a uniquely-

determined most general typing that determines the set of contexts in

which that phrase may be legally used.

� ML supports abstract types. Abstract types are a useful mechanism for

program modularization. New types together with a set of functions on

objects of that type may be de�ned. The details of the implementation

are hidden from the user of the type, achieving a degree of isolation

that is crucial to program maintenance.

1

2 CHAPTER 1. INTRODUCTION

� ML is statically scoped. ML resolves identi�er references at compile

time, leading to more modular and more e�cient programs.

� ML has a type-safe exception mechanism. Exceptions are a useful

means of handling unusual or deviant conditions arising at run-time.

� ML has a modules facility to support the incremental construction of

large programs. An ML program is constructed as an interdependent

collection of structures which are glued together using functors. Sepa-

rate compilation is supported through the ability to export and import

functors.

Standard ML is the newest member of a family of languages tracing its

origins to the ML language developed at Edinburgh by Mike Gordon, Robin

Milner, and Chris Wadsworth in the mid-seventies [4]. Since then numerous

dialects and implementations have arisen, both at Edinburgh and elsewhere.

Standard ML is a synthesis of many of the ideas that were explored in the

variant languages, notably Luca Cardelli's dialect [3], and in the functional

language HOPE developed by Rod Burstall, Dave MacQueen, and Don San-

nella [2]. The most recent addition to the language is the modules system

developed by Dave MacQueen [6].

These notes are intended as an informal introduction to the language and

its use, and should not be regarded as a de�nitive description of Standard

ML. They have evolved over a number of years, and are in need of revision

both to re
ect changes in the language, and the experience gained with it

since its inception. Comments and suggestions from readers are welcome.

The de�nition of Standard ML is available from MIT Press [7]. A less

formal, but in many ways obsolete, account is available as an Edinburgh

University technical report [5]. The reader is encouraged to consult the

de�nition for precise details about the language.

Chapter 2

The Core Language

2.1 Interacting with ML

Most implementations of ML are interactive, with the basic form of interac-

tion being the \read-eval-print" dialogue (familiar to LISP users) in which

an expression is entered, ML analyzes, compiles, and executes it, and the

result is printed on the terminal.1

Here is a sample interaction:

- 3+2;

> 5 : int

ML prompts with \- ," and precedes its output with \> ." The user entered

the phrase \3+2". ML evaluated this expression and printed the value, \5",

of the phrase, together with its type, \int".

Various sorts of errors can arise during an interaction with ML. Most

of these fall into three categories: syntax errors, type errors, and run-time

faults. You are probably familiar with syntax errors and run-time errors from

your experience with other programming languages. Here is an example of

what happens when you enter a syntactically incorrect phrase:

- let x=3 in x end;

Parse error: Was expecting "in" in ... let <?> x ...

1The details of the interaction with the ML top level vary from one implementation to

another, but the overall \feel" is similar in all systems known to the author. These notes

were prepared using the Edinburgh compiler, circa 1988.

3

4 CHAPTER 2. THE CORE LANGUAGE

Run-time errors (such as dividing by zero) are a form of exception, about

which we shall have more to say below. For now, we simply illustrate the

sort of output that you can expect from a run-time error:

- 3 div 0;

Failure: Div

The notion of a type error is somewhat more unusual. We shall have

more to say about types and type errors later. For now, it su�ces to remark

that a type error arises from the improper use of a value, such as trying to

add 3 to true:

- 3+true;

Type clash in: 3+true

Looking for a: int

I have found a: bool

One particularly irksome form of error that ML cannot diagnose is the

in�nite loop. If you suspect that your program is looping, then it is often pos-

sible to break the loop by typing the interrupt character (typically Control-

C). ML will respond with a message indicating that the exception interrupt

has been raised, and return to the top level. Some implementations have a

debugging facility that may be helpful in diagnosing the problem.

Other forms of errors do arise, but they are relatively less common, and

are often di�cult to explain outside of context. If you do get an error message

that you cannot understand, then try to �nd someone with more experience

with ML to help you.

The details of the user interface vary from one implementation to another,

particularly with regard to output format and error messages. The examples

that follow are based on the Edinburgh ML compiler; you should have no

di�culty interpreting the output and relating it to that of other compilers.

2.2 Basic expressions, values, and types

We begin our introduction to ML by introducing a set of basic types. In ML

a type is a collection of values. For example, the integers form a type, as do

the character strings and the booleans. Given any two types � and � , the

set of ordered pairs of values, with the left component a value of type � and

2.2. BASIC EXPRESSIONS, VALUES, AND TYPES 5

the right a value of type � , is a type. More signi�cantly, the set of functions

mapping one type to another form a type. In addition to these and other

basic types, ML allows for user-de�ned types. We shall return to this point

later.

Expressions in ML denote values in the same way that numerals denote

numbers. The type of an expression is determined by a set of rules that

guarantee that if the expression has a value, then the value of the expression

is a value of the type assigned to the expression (got that?) For example,

every numeral has type int since the value of a numeral is an integer. We

shall illustrate the typing system of ML by example.

2.2.1 Unit

The type unit consists of a single value, written (), sometimes pronounced

\unit" as well. This type is used whenever an expression has no interesting

value, or when a function is to have no arguments.

2.2.2 Booleans

The type bool consists of the values true and false. The ordinary boolean

negation is available as not; the boolean functions andalso and orelse are

also provided as primitive.

The conditional expression, if e then e1 else e2, is also considered

here because its �rst argument, e, must be a boolean. Note that the else

clause is not optional! The reason is that this \if" is a conditional expres-
sion, rather than a conditional command, such as in Pascal. If the else

clause were omitted, and the test were false, then the expression would have

no value! Note too that both the then expression and the else expression

must have the same type. The expression

if true then true else ()

is type incorrect, or ill-typed, since the type of the then clause is bool,

whereas the type of the else clause is unit.

- not true;

> false : bool

- false andalso true;

6 CHAPTER 2. THE CORE LANGUAGE

> false : bool

- false orelse true;

> true : bool

- if false then false else true;

> true : bool

- if true then false else true;

> false : bool

2.2.3 Integers

The type int is the set of (positive and negative) integers. Integers are

written in the usual way, except that negative integers are written with the

tilde character \~" rather than a minus sign.

- 75;

> 75 : int

- ~24;

> ~24 : int

- (3+2) div 2;

> 2 : int

- (3+2) mod 2;

> 1 : int

The usual arithmetic operators, +, -, *, div, and mod, are available, with

div and mod being integer division and remainder, respectively. The usual

relational operators, <, <=, >, >=, =, and <>, are provided as well. They each

take two expressions of type int and return a boolean according to whether

or not the relation holds.

- 3<2;

> false : bool

- 3*2 >= 12 div 6;

> true : bool

- if 4*5 mod 3 = 1 then 17 else 51;

> 51 : int

Notice that the relational operators, when applied to two integers, evaluate

to either true or false, and therefore have type bool.

2.2. BASIC EXPRESSIONS, VALUES, AND TYPES 7

2.2.4 Strings

The type string consists of the set of �nite sequences of characters. Strings

are written in the conventional fashion as characters between double quotes.

The double quote itself is written \n"".

- "Fish knuckles";

> "Fish knuckles" : string

- "\"";

> """ : string

Special characters may also appear in strings, but we shall have no need of

them. Consult the ML language de�nition [7] for the details of how to build

such strings.

The function size returns the length, in characters, of a string, and the

function ^ is an in�x append function.2

- "Rhinocerous " ^ "Party";

> "Rhinocerous Party"

- size "Walrus whistle";

> 14 : int

2.2.5 Real Numbers

The type of
oating point numbers is known in ML as real. Real numbers

are written in more or less the usual fashion for programming languages: an

integer followed by a decimal point followed by one or more digits, followed

by the exponent marker, E, followed by another integer. The exponent part

is optional, provided that the decimal point is present, and the decimal part

is optional provided that the exponent part is present. These conventions

are needed to distinguish integer constants from real constants (ML does not

support any form of type inclusion, so an integer must be explicitly coerced

to a real.)

- 3.14159;

> 3.14159 : real

2By in�x we mean a function of two arguments that is written between its arguments,

just as addition is normally written.

8 CHAPTER 2. THE CORE LANGUAGE

- 3E2;

> 300.0 : real

- 3.14159E2;

> 314.159 : real

The usual complement of basic functions on the reals are provided. The

arithmetic functions ~, +, -, and * may be applied to real numbers, though

one may not mix and match: a real can only be added to a real, and not to

an integer. The relational operators =, <>, <, and so on, are also de�ned for

the reals in the usual way. Neither div nor mod are de�ned for the reals, but

the function / denotes ordinary real-valued division. In addition there are

functions such as sin, sqrt, and exp for the usual mathematical functions.

The function real takes an integer to the corresponding real number, and

floor truncates a real to the greatest integer less than it.

- 3.0+2.0;

> 5.0 : real

- (3.0+2.0) = real(3+2);

> true : bool

- floor(3.2);

> 3 : real

- floor(~3.2);

> ~4 : real

- cos(0.0);

> 1.0 : real

- cos(0);

Type clash in: (cos 0)

Looking for a: real

I have found a: int

This completes the set of atomic types in ML. We now move on to the

compound types, those that are built up from other types.

2.2.6 Tuples

The type �*� , where � and � are types, is the type of ordered pairs whose

�rst component has type � and whose second component has type � . Ordered

pairs are written (e1,e2), where e1 and e2 are expressions. Actually, there's

2.2. BASIC EXPRESSIONS, VALUES, AND TYPES 9

no need to restrict ourselves to pairs; we can build ordered n-tuples, where

n � 2, by writing n comma-separated expressions between parentheses.

- (true, ());

> (true,()) : bool * unit

- (1, false, 17, "Blubber");

> (1,false,17,"Blubber") : int * bool * int * string

- (if 3=5 then "Yes" else "No", 14 mod 3);

> ("No",2) : string * int

Equality between tuples is component-wise equality | two n-tuples are

equal if each of their corresponding components are equal. It is a type error

to try to compare two tuples of di�erent types: it makes no sense to ask

whether, say (true,7) is equal to ("abc",()), since their corresponding

components are of di�erent types.

- (14 mod 3, not false) = (1+1, true);

> true : bool

- ("abc", (5*4) div 2) = ("a"^"bc", 11);

> false : bool

- (true, 7) = ("abc", ());

Type clash in: (true,7)=("abc",())

Looking for a: bool*int

I have found a: string*unit

2.2.7 Lists

The type � list consists of �nite sequences, or lists, of values of type � . For
instance, the type int list consists of lists of integers, and the type bool

list list consists of lists of lists of booleans. There are two notations for

lists, the basic one and a convenient abbreviation. The �rst is based on the

following characterization of lists: a � list is either empty, or it consists of

a value of type � followed by a � list. This characterization is re
ected in the

following notation for lists: the empty list is written nil and a non-empty

list is written e::l, where e is an expression of some type � and l is some

� list. The operator :: is pronounced \cons", after the LISP list-forming

function by that name.

If you think about this de�nition for a while, you'll see that every non-

empty list can be written in this form:

10 CHAPTER 2. THE CORE LANGUAGE

e1::e2::� � �::en::nil

where each e
i
is an expression of some type � , and n � 1. This accords with

the intuitive meaning of a list of values of a given type. The role of nil is to

serve as the terminator for a list | every list has the form illustrated above.

This method of de�ning a type is called a recursive type de�nition. Such

de�nitions characteristically have one or more base cases, or starting points,
and one or more recursion cases. For lists, the base case is the empty list,

nil, and the recursion case is cons, which takes a list and some other value

and yields another list. Recursively-de�ned types occupy a central position

in functional programming because the organization of a functional program

is determined by the structure of the data objects on which it computes.

Here are some examples of using nil and :: to build lists:

- nil;

> [] : 'a list

- 3 :: 4 :: nil;

> [3,4] : int list

- (3 :: nil) :: (4 :: 5 :: nil) :: nil;

> [[3],[4,5]] : int list list

- ["This", "is", "it"];

> ["This","is","it"] : string list

Notice that ML prints lists in a compressed format as a comma-separated

list of the elements of the list between square brackets. This format is con-

venient for input as well, and you may use it freely. But always keep in mind

that it is an abbreviation | the nil and :: format is the primary one.

The type of nil (see the example in Section 2) is peculiar because it

involves a type variable, printed as 'a, and pronounced \alpha". The reason

for this is that there is nothing about an empty list that makes it a list of

integers or a list of booleans, or any type of list at all. It would be silly to

require that there be a distinct constant denoting the empty list for each type

of list, and so ML treats nil as a polymorphic object, one that can inhabit

a variety of structurally-related types. The constant nil is considered to be

an int list or a bool list or a int list list, according to the context.

Note however that nil inhabits only list types. This is expressed by assigning

the type 'a list to nil, where 'a is a variable ranging over the collection

of types. An instance of a type involving a type variable (called a polytype,

2.2. BASIC EXPRESSIONS, VALUES, AND TYPES 11

for short) is obtained by replacing all occurrences of a given type variable by

some type (perhaps another polytype). For example, 'a list has int list

and (int * 'b) list as instances. A type that does not involve any type

variables is called a monotype.
Equality on lists is item-by-item: two lists are equal if they have the same

length, and corresponding components are equal. As with tuples, it makes

no sense to compare two lists with di�erent types of elements, and so any

attempt to do so is considered a type error.

- [1,2,3] = 1::2::3::nil;

> true : bool

- [[1], [2,4]] = [[2 div 2], [1+1, 9 div 3]];

> false : bool

2.2.8 Records

The last compound type that we shall consider in this section is the record
type. Records are quite similar to Pascal records and to C structures (and to

similar features in other programming languages). A record consists of a �nite

set of labelled �elds, each with a value of any type (as with tuples, di�erent

�elds may have di�erent types). Record values are written by giving a set of

equations of the form l = e, where l is a label and e is an expression, enclosed

in curly braces. The equation l = e sets the value of the �eld labelled l to the

value of e. The type of such a value is a set of pairs of the form l : t where

l is a label and � is a type, also enclosed in curly braces. The order of the

equations and typings is completely immaterial| components of a record are

identi�ed by their label, rather than their position. Equality is component-

wise: two records are equal if their corresponding �elds (determined by label)

are equal.

- {name="Foo",used=true};

> {name="Foo", used=true} : {name:string, used:bool}

- {name="Foo",used=true} = {used=not false,name="Foo"};

> true : bool

- {name="Bar",used=true} = {name="Foo",used=true};

> false : bool

Tuples are special cases of records. The tuple type � * � is actually

short-hand for the record type f 1 : �, 2 : � g with two �elds labeled

12 CHAPTER 2. THE CORE LANGUAGE

\1" and \2". Thus the expressions (3,4) and f1=3,2=4g have precisely the

same meaning.

This completes our introduction to the basic expressions, values, and

types in ML. It is important to note the regularity in the ways of forming

values of the various types. For each type there are basic expression forms

for denoting values of that type. For the atomic types, these expressions

are the constants of that type. For example, the constants of type int are

the numerals, and the constants of type string are the character strings,

enclosed in double quotes. For the compound types, values are built using

value constructors, or just constructors, whose job is to build a member of

a compound type out of the component values. For example, the pairing
constructor, written (,), takes two values and builds a member of a tuple

type. Similarly, nil and :: are constructors that build members of the list

type, as do the square brackets. The record syntax can also be viewed as a

(syntactically elaborate) constructor for record types. This view of data as

being built up from constants by constructors is one of the fundamental prin-

ciples underlying ML and will play a crucial role in much of the development

below.

There is one more very important type in ML, the function type. Before

we get to the function type, it is convenient to take a detour through the

declaration forms of ML, and some of the basic forms of expressions. With

that under our belt, we can more easily discuss functions and their types.

2.3 Identi�ers, bindings, and declarations

In this section we introduce declarations, the means of introducing identi�ers

in ML. All identi�ers must be declared before they are used (the names of

the built-in functions such as + and size are pre-declared by the compiler).

Identi�ers may be used in several di�erent ways in ML, and so there is a

declaration form for each such use. In this section we will concern ourselves

with value identi�ers, or variables. A variable is introduced by binding it to
a value as follows:

- val x = 4*5;

> val x = 20 : int

- val s = "Abc" ^ "def";

> val s = "Abcdef" : string

2.3. IDENTIFIERS, BINDINGS, AND DECLARATIONS 13

- val pair = (x, s);

> val pair = (20,"Abcdef") : int * string

The phrase val x = 4*5 is called a value binding. To evaluate a value

binding, ML evaluates the right-hand side of the equation and sets the value

of the variable on the left-hand side to this value. In the above example, x

is bound to 20, an integer. Thereafter, the identi�er x always stands for the

integer 20, as can be seen from the third line above: the value of (x, s)

is obtained from the values of x and s.

Notice that the output from ML is slightly di�erent than in our examples

above in that it prints \x = " before the value. The reason for that is that

whenever an identi�er is declared, ML prints its de�nition (the form of the

de�nition depends on the sort of identi�er; for now, we have only variables,

for which the de�nition is the value of the variable). An expression e typed

at the top level (in response to ML's prompt) is evaluated, and the value

of e is printed, along with its type. ML implicitly binds this value to the

identi�er it so that it can be conveniently referred to in the next top-level

phrase.

It is important to emphasize the distinction between ML's notion of a

variable and that of most other programming languages. ML's variables

are more like the const declarations than var declarations of Pascal; in

particular, binding is not assignment. When an identi�er is declared by a

value binding, a new identi�er is \created" | it has nothing whatever to

do with any previously declared identi�er of the same name. Furthermore,

once an identi�er is bound to a value, there is no way to change that value:

its value is whatever we have bound to it when it was declared. If you are

unfamiliar with functional programming, then this will seem rather odd, at

least until we discuss some sample programs and show how this is used.

Since identi�ers may be rebound, some convention about which binding

to use must be provided. Consider the following sequence of bindings.

- val x = 17;

> val x = 17 : int

- val y = x;

> val y = 17 : int

- val x = true;

> val x = true : bool

- val z = x;

14 CHAPTER 2. THE CORE LANGUAGE

> val z = true : bool

The second binding for x hides the previous binding, and does not a�ect

the value of y. Whenever an identi�er is used in an expression, it refers to

the closest textually enclosing value binding for that identi�er. Thus the

occurrence of x in the right-hand side of the value binding for z refers to

the second binding of x, and hence has value true, not 17. This rule is no

di�erent than that used in other block-structured languages, but it is worth

emphasizing that it is the same.

Multiple identi�ers may be bound simultaneously, using the keyword

\and" as a separator:

- val x = 17;

> val x = 17 : int

- val x = true and y = x;

> val x = true : bool

val y = 17 : int

Notice that y receives the value 17, not true! Multiple value bindings joined

by and are evaluated in parallel | �rst all of the right-hand sides are evalu-

ated, then the resulting values are all bound to their corresponding left-hand

sides.

In order to facilitate the following explanation, we need to introduce some

terminology. We said that the role of a declaration is to de�ne an identi�er

for use in a program. There are several ways in which an identi�er can be

used, one of which is as a variable. To declare an identi�er for a particular

use, one uses the binding form associated with that use. For instance, to

declare an identi�er as a variable, one uses a value binding (which binds

a value to the variable and establishes its type). Other binding forms will

be introduced later on. In general, the role of a declaration is to build an

environment, which keeps track of the meaning of the identi�ers that have

been declared. For instance, after the value bindings above are processed,

the environment records the fact that the value of x is true and that the

value of y is 17. Evaluation of expressions is performed with respect to this

environment, so that the value of the expression x can be determined to be

true.

Just as expressions can be combined to form other expressions by using

functions like addition and pairing, so too can declarations be combined with

2.3. IDENTIFIERS, BINDINGS, AND DECLARATIONS 15

other declarations. The result of a compound declaration is an environment

determined from the environments produced by the component declarations.

The �rst combining form for declarations is one that we've already seen: the

semicolon for sequential composition of environments.3

- val x = 17 ; val x = true and y = x;

> val x = 17 : int

> val x = true : bool

val y = 17 : int

When two declarations are combined with semicolon, ML �rst evaluates the

left-hand declaration, producing an environment E, and then evaluates the

right-hand declaration (with respect to E), producing environment E0. The

second declaration may hide the identi�ers declared in the �rst, as indicated

above.

It is also useful to be able to have local declarations whose role is to

assist in the construction of some other declarations. This is accomplished

as follows:

- local

val x = 10

in

val u = x*x + x*x

val v = 2*x + (x div 5)

end;

> val u = 200 : int

val v = 22 : int

The binding for x is local to the bindings for u and v, in the sense that x is

available during the evaluation of the bindings for u and v, but not thereafter.

This is re
ected in the result of the declaration: only u and v are declared.

It is also possible to localize a declaration to an expression using let:

- let

val x = 10

in

3The semicolon is syntactically optional: two sequential bindings are considered to be

separated by a semicolon.

16 CHAPTER 2. THE CORE LANGUAGE

x*x + 2*x + 1

end;

- 121 : int

The declaration of x is local to the expression occurring after the in, and is

not visible from the outside. The body of the let is evaluated with respect

to the environment built by the declaration occurring before the in. In

this example, the declaration binds x to the value 10. With respect to this

environment, the value of x*x+2*x+1 is 121, and this is the value of the whole

expression.

Exercise 2.3.1 What is the result printed by the ML system in response to
the following declarations? Assume that there are no initial bindings for x,
y or z.

1. val x = 2 and y = x+1;

2. val x = 1; local val x = 2 in val y = x+1 end; val z = x+1;

3. let val x = 1 in let val x = 2 and y = x in x + y end end;

2.4 Patterns

You may have noticed that there is no means of obtaining, say, the �rst com-

ponent of a tuple, given only the expressions de�ned so far. Compound values

are decomposed via pattern matching. Values of compound types are them-

selves compound, built up from their component values by the use of value

constructors. It is natural to use this structure to guide the decomposition

of compound values into their component parts.

Suppose that x has type int*bool. Then x must be some pair, with the

left component an integer and the right component a boolean. We can obtain

the value of the left and right components using the following generalization

of a value binding.

- val x = (17, true);

> val x = (17,true) : int*bool

- val (left, right) = x;

> val left = 17 : int

val right = true : bool

2.4. PATTERNS 17

The left-hand side of the second value binding is a pattern, which is built up

from variables and constants using value constructors. That is, a pattern is

just an expression, possibly involving variables. The di�erence is that the

variables in a pattern are not references to previously-bound variables, but

rather variables that are about to be bound by pattern-matching. In the

above example, left and right are two new value identi�ers that become

bound by the value binding. The pattern matching process proceeds by

traversing the value of x in parallel with the pattern, matching corresponding

components. A variable matches any value, and that value is bound to that

identi�er. Otherwise (i.e., when the pattern is a constant) the pattern and

the value must be identical. In the above example, since x is an ordered pair,

the pattern match succeeds by assigning the left component of x to left,

and the right component to right.

Notice that the simplest case of a pattern is a variable. This is the form

of value binding that we introduced in the previous section.

It does not make sense to pattern match, say, an integer against an or-

dered pair, nor a list against a record. Any such attempt results in a type

error at compile time. However, it is also possible for pattern matching to

fail at run time:

- val x=(false,17);

> val x = (false,17) : bool*int

- val (false,w) = x;

> val w = 17 : int

- val (true,w) = x;

Failure: match

Notice that in the second and third value bindings, the pattern has a con-

stant in the left component of the pair. Only a pair with this value as left

component can match this pattern successfully. In the case of the second

binding, x in fact has false as left component, and therefore the match suc-

ceeds, binding 17 to w. But in the third binding, the match fails because

true does not match false. The message Failure: match indicates that

a run-time matching failure has occurred.

Pattern matching may be performed against values of any of the types

that we have introduced so far. For example, we can get at the components

of a three element list as follows:

18 CHAPTER 2. THE CORE LANGUAGE

- val l = ["Lo", "and", "behold"];

> val l = ["Lo","and","behold"] : string list

- val [x1,x2,x3] = l;

> val x1 = "Lo" : string

val x2 = "and" : string

val x3 = "behold" : string

This works �ne as long as we know the length of l in advance. But

what if l can be any non-empty list? Clearly we cannot hope to write a

single pattern to bind all of the components of l, but we can decompose l

in accordance with the inductive de�nition of a list as follows:

- val l = ["Lo", "and", "behold"];

> val l = ["Lo","and","behold"] : string list

- val hd::tl = l;

> val hd = "Lo" : string

val tl = ["and","behold"] : string list

Here hd is bound to the �rst element of the list l (called the head of l), and
tl is bound to the list resulting from deleting the �rst element (called the

tail of the list). The type of hd is string and the type of tl is string list.

The reason is that :: constructs lists out of a component (the left argument)

and another list.

Exercise 2.4.1 What would happen if we wrote val [hd,tl] = l; instead
of the above. (Hint: expand the abbreviated notation into its true form, then

match the result against l).

Suppose that all we are interested in is the head of a list, and are not

interested in its tail. Then it is inconvenient to have to make up a name

for the tail, only to be ignored. In order to accommodate this \don't care"

case, ML has a wildcard pattern that matches any value whatsoever, without

creating a binding.

- val l = ["Lo", "and", "behold"];

> val l = ["Lo","and","behold"] : string list

- val hd::_ = l;

> val hd = "Lo" : string

2.4. PATTERNS 19

Pattern matching may also be performed against records, and, as you

may have guessed, it is done on the basis of labelled �elds. An example will

illustrate record pattern matching:

- val r = { name="Foo", used=true };

> val r = {name="Foo",used=true} : {name:string,used:bool}

- val { used=u, name=n } = r;

> val n = "Foo" : string

val u = true : bool

It is sometimes convenient to be able to match against a partial record

pattern. This can be done using the record wildcard, as the following example

illustrates:

- val { used=u, ... } = r ;

> val u = true : bool

There is an important restriction on the use of record wildcards: it must be

possible to determine at compile time the type of the entire record pattern

(i.e., all the �elds and their types must be inferrable from the context of the

match).

Since single-�eld selection is such a common operation, ML provides a

short-hand notation for it: the name �eld of rmay be designated by the appli-

cation #namer. Actually, #name is bound to the function fn fname=n,...g

=> n, which selects the name �eld from a record, and thus it must be pos-

sible to determine from context the entire record type whenever a selection

function is used. In particular, fn x => #name x will be rejected since the

full record type of x is not �xed by the context of occurrence. You will recall

that n-tuples are special forms of records whose labels are natural numbers i

such that 1 � i � n. The ith component of a tuple may therefore be selected

using the function #i.

Patterns need not be
at, in the following sense:

- val x = (("foo", true), 17) ;

> val x = (("foo",true),17) : (string*bool)*int

- val ((ll,lr),r) = x ;

> val ll = "foo" : string

val lr = true : bool

val r = 17 : int

20 CHAPTER 2. THE CORE LANGUAGE

Sometimes it is desirable to bind \intermediate" pattern variables. For

instance, we may want to bind the pair (ll,lr) to an identi�er l so that

we can refer to it easily. This is accomplished by using a layered pattern. A

layered pattern is built by attaching a pattern to a variable within another

pattern as follows:

- val x = (("foo", true), 17);

> val x = (("foo",true),17) : (string*bool)*int

- val (l as (ll,lr), r) = x;

> val l = ("foo",true) : string*bool

val ll = "foo" : string

val lr = true : bool

val r = 17 : int

Pattern matching proceeds as before, binding l and r to the left and right

components of x, but in addition the binding of l is further matched against

the pattern (ll,lr), binding ll and lr to the left and right components of

l. The results are printed as usual.

Before you get too carried away with pattern matching, you should real-

ize that there is one signi�cant limitation: patterns must be linear: a given

pattern variable may occur only once in a pattern. This precludes the possi-

bility of writing a pattern (x,x) which matches only symmetric pairs, those

for which the left and right components have the same value. This restriction

causes no di�culties in practice, but it is worth pointing out that there are

limitations.

Exercise 2.4.2 Bind the variable x to the value 0 by constructing patterns
to match against the following expressions.

For example, given the expression (true,"hello",0), the required pattern

is (, ,x).

1. { a=1, b=0, c=true }

2. [~2, ~1, 0, 1, 2]

3. [(1,2), (0,1)]

2.5. DEFINING FUNCTIONS 21

2.5 De�ning functions

So far we have been using some of the pre-de�ned functions of ML, such

as the arithmetic functions and the relational operations. In this section we

introduce function bindings, the means by which functions are de�ned in ML.

We begin with some general points about functions in ML. Functions are

used by applying them to an argument. Syntactically, this is indicated by

writing two expressions next to one another, as in size "abc" to invoke the

function size with argument "abc". All functions take a single argument;

multiple arguments are passed by using tuples. So if, for example, there

were a function append which takes two lists as arguments, and returns a

list, then an application of append would have the form append(l1,l2): it

has single argument which is an ordered pair (l1,l2). There is a special

syntax for some functions (usually just the built-in's) that take a pair as

argument, called in�x application, in which the function is placed between

the two arguments. For example, the expression e1 + e2 really means \apply

the function + to the pair (e1,e2). It is possible for user-de�ned functions

to be in�x, but we shall not go into that here.

Function application can take a syntactically more complex form in ML

than in many common programming languages. The reason is that in most

of the common languages, functions can be designated only by an identifer,

and so function application always has the form f(e1; . . . ; en), where f is an

identi�er. ML has no such restriction. Functions are perfectly good values,

and so may be designated by arbitrarily complex expressions. Therefore the

general form of an application is e e0, which is evaluated by �rst evaluating e,

obtaining some function f , then evaluating e
0, obtaining some value v, and

applying f to v. In the simple case that e is an identi�er, such as size, then

the evaluation of e is quite simple | simply retrieve the value of size, which

had better be a function. But in general, e can be quite complex and require

any amount of computation before returning a function as value. Notice

that this rule for evaluation of function application uses the call-by-value

parameter passing mechanism since the argument to a function is evaluated

before the function is applied.

How can we guarantee that in an application e e
0, e will in fact evaluate

to a function and not, say, a boolean? The answer, of course, is in the

type of e. Functions are values, and all values in ML are divided up into

types. A function type is a compound type that has functions as members.

22 CHAPTER 2. THE CORE LANGUAGE

A function type has the form �->�, pronounced \� to � ," where � and �

are types. An expression of this type has as value a function that whenever

it is applied to a value of type �, returns a value of type � , provided that

it terminates (unfortunately, there is no practical means of ensuring that all

functions terminate for all arguments). The type � is called the domain type
of the function, and � is called its range type. An application e e

0 is legal

only if e has type �->� and e
0 has type �, that is, only if the type of the

argument matches the domain type of the function. The type of the whole

expression is then � , which follows from the de�nition of the type �->� .

For example,

- size;

size = fn : string -> int

- not;

not = fn : bool -> bool

- not 3;

Type clash in: not 3

Looking for a: bool

I have found a: int

The type of size indicates that it takes a string as argument and returns

an integer, just as we might expect. Similarly, not is a function that takes a

boolean and returns a boolean. Functions have no visible structure, and so

print as \fn". The application of not to 3 fails because the domain type of

not is bool, whereas the type of 3 is int.

Since functions are values, we can bind them to identi�ers using the value

binding mechanism introduced in the last section. For example,

- val len = size;

> val len = fn : string -> int

- len "abc";

> 3 : int

The identi�er size is bound to some (internally-de�ned) function with type

string->int. The value binding above retrieves the value of size, some

function, and binds it to the identi�er len. The application len "abc" is

processed by evaluating len to obtain some function, evaluating "abc" to

obtain a string (itself), and applying that function to that string. The result

2.5. DEFINING FUNCTIONS 23

is 3 because the function bound to size in ML returns the length of a string

in characters.

Functions are complex objects, but they are not built up from other

objects in the same way that ordered pairs are built from their components.

Therefore their structure is not available to the programmer, and pattern

matching may not be performed on functions. Furthermore, it is not possible

to test the equality of two functions (due to a strong theoretical result which

says that this cannot be done, even in principle). Of all the types we have

introduced so far, every one except the function type has an equality de�ned

on values of that type. Any type for which we may test equality of values

of that type is said to admit equality. No function type admits equality,

and every atomic type admits equality. What about the other compound

types? Recall that equality of ordered pairs is de�ned \component-wise":

two ordered pairs are equal i� their left components are equal and their right

components are equal. Thus the type �*� admits equality i� both � and �

admit equality. The same pattern of reasoning is used to determine whether

an arbitrary type admits equality. The rough-and-ready rule is that if the

values of a type involve functions, then it probably doesn't admit equality

(this rule can be deceptive, so once you get more familiar with ML, you are

encouraged to look at the o�cial de�nition in the ML report [7]).

With these preliminaries out of the way, we can now go on to consider

user-de�ned functions. The syntax is quite similar to that used in other

languages. Here are some examples.

- fun twice x = 2*x;

> val twice = fn : int->int

- twice 4;

> 8 : int

- fun fact x = if x=0 then 1 else x*fact(x-1);

> val fact = fn : int->int

- fact 5;

> 120 : int

- fun plus(x,y):int=x+y;

> val plus = fn : int*int->int

- plus(4,5);

> 9 : int

Functions are de�ned using function bindings that are introduced by the

24 CHAPTER 2. THE CORE LANGUAGE

keyword fun. The function name is followed by its parameter, which is a

pattern. In the �rst two examples the parameter is a simple pattern, con-

sisting of a single identi�er; in the third example, the pattern is a pair whose

left component is x and right component is y. When a user-de�ned function

is applied, the value of the argument is matched against the parameter of the

function in exactly the same way as for value bindings, and the body of the

function is evaluated in the resulting environment. For example, in the case

of twice, the argument (which must be an integer, since the type of twice

is int->int) is bound to x and the body of twice, 2*x is evaluated, yielding

the value 8. For plus the pattern matching is slightly more complex since

the argument is a pair, but it is no di�erent from the value bindings of the

previous section: the value of the argument is matched against the pattern

(x,y), obtaining bindings for x and y. The body is then evaluated in this

environment, and the result is determined by the same evaluation rules. The

\:int" in the de�nition of plus is called a type constraint; its purpose here
is to disambiguate between integer addition and real addition. We shall have

more to say about this, and related issues, later on.

Exercise 2.5.1 De�ne the functions circumference and area to compute
these properties of a circle given its radius.

Exercise 2.5.2 De�ne a function to compute the absolute value of a real
number.

The de�nition of the function fact illustrates an important point about

function de�nitions in ML: functions de�ned by fun are recursive, in the sense
that the occurrence of fact in the right-hand side of the de�nition of fact

refers to the very function being de�ned (as opposed to some other binding

for fact which may happen to be in the environment). Thus fact \calls

itself" in the process of evaluating its body. Notice that on each recursive

call, the argument gets smaller (provided that it was greater than zero to

begin with), and therefore fact will eventually terminate. Non-terminating

de�nitions are certainly possible, and are the bane of the ML novice. For a

trivial example, consider the function

- fun f(x)=f(x);

> val f = fn: 'a->'b

Any call to f will loop forever, calling itself over and over.

2.5. DEFINING FUNCTIONS 25

Exercise 2.5.3 An alternative syntax for conditional statements might be

de�ned by

fun new_if(A,B,C) = if A then B else C

Explain what goes wrong if the de�nition for fact is altered to use this new
de�nition.

Now we can go on to de�ne some interesting functions and illustrate

how real programs are written in ML. Recursion is the key to functional

programming, so if you're not very comfortable with it, you're advised to go

slowly and practice evaluating recursive functions like fact by hand.

So far we have de�ned functions with patterns consisting only of a single

variable, or an ordered pair of variables. Consider what happens if we at-

tempt to de�ne a function on lists, say is nil which determines whether or

not its argument is the empty list. The list types have two value constructors:

nil and ::. A function de�ned on lists must work regardless of whether the

list is empty or not, and so must be de�ned by cases, one case for nil and

one case for ::. Here is the de�nition of is nil:

- fun is_nil(nil) = true

| is_nil(_::_) = false ;

> is_nil = fn : 'a list -> bool

- is_nil nil ;

> true : bool

- is_nil [2,3] ;

> false : bool

The de�nition of is nil re
ects the structure of lists: it is de�ned by cases,

one for nil and one for h::t, separated from one another by a vertical bar.

In general if a function is de�ned on a type with more than one value

constructor, then that function must have one case for each constructor.

This guarantees that the function can accept an arbitrary value of that type

without failure. Functions de�ned in this way are called clausal function
de�nitions because they contain one clause for each form of value of the

argument type.

Of course, clausal de�nitions are appropriate for recursively-de�ned func-

tions as well. Suppose that we wish to de�ne a function append that, given

two lists, returns the list obtained by tacking the second onto the end of the

�rst. Here is a de�nition of such a function:

26 CHAPTER 2. THE CORE LANGUAGE

- fun append(nil,l) = l

| append(hd::tl,l) = hd :: append(tl,l);

> val append = fn : ('a list * 'a list) -> 'a list

There are two cases to consider, one for the empty list and one for a non-

empty list, in accordance with the inductive structure of lists. It is trivial to

append a list l to the empty list: the result is just l. For non-empty lists,

we can append l to hd::tl by cons'ing hd onto the result of appending l to

tl.

Exercise 2.5.4 Evaluate the expression append([1,2],[3]) by hand to con-
vince yourself that this de�nition of append is correct.

Exercise 2.5.5 What function does the following de�nition compute?

fun r [] = [] | r(h::t) = append(r(t),[h])

The type of append is a polytype; that is, it is a type that involves the

type variable 'a. The reason is that append obviously works no matter what

the type of the elements of the list are | the type variable 'a stands for the

type of the elements of the list, and the type of append ensures that both

lists to be appended have the same type of elements (which is the type of the

elements of the resulting list). This is an example of a polymorphic function;
it can be applied to a variety of lists, each with a di�erent element type.

Here are some examples of the use of append:

- append([],[1,2,3]);

> [1,2,3] : int list

- append([1,2,3],[4,5,6]);

> [1,2,3,4,5,6] : int list

- append(["Bowl","of"],["soup"]);

> ["Bowl", "of", "soup"] : string list

Notice that we used append for objects of type int list and of type string

list.

In general ML assigns the most general type that it can to an expression.

By \most general", we mean that the type re
ects only the commitments

that are made by the internal structure of the expression. For example, in

the de�nition of the function append, the �rst argument is used as the target

2.5. DEFINING FUNCTIONS 27

of a pattern match against nil and ::, forcing it to be of some list type.

The type of the second argument must be a list of the same type since it

is potentially cons'd with an element of the �rst list. These two constraints

imply that the result is a list of the same type as the two arguments, and

hence append has type ('a list * 'a list) -> 'a list.

Returning to the example above of a function f(x) de�ned to be f(x), we

see that the type is 'a->'b because, aside from being a function, the body of

f makes no commitment to the type of x, and hence it is assigned the type

'a, standing for any type at all. The result type is similarly uncommitted,

and so is taken to be 'b, an arbitrary type. You should convince yourself

that no type error can arise from any use of f, even though it has the very

general type 'a->'b.

Function bindings are just another form of declaration, analogous to the

value bindings of the previous section (in fact, function bindings are just a

special form of value binding). Thus we now have two methods for building

declarations: value bindings and function bindings. This implies that a func-

tion may be de�ned anywhere that a value may be declared; in particular,

local function de�nitions are possible. Here is the de�nition of an e�cient

list reversal function:

- fun reverse l =

let fun rev(nil,y) = y

| rev(hd::tl,y) = rev(tl,hd::y)

in

rev(l,nil)

end;

> val reverse = fn : 'a list -> 'a list

The function rev is a local function binding that may be used only within

the let. Notice that rev is de�ned by recursion on its �rst argument, and

reverse simply calls rev, and hence does not need to decompose its argu-

ment l.

Functions are not restricted to using parameters and local variables |

they may freely refer to variables that are available when the function is

de�ned. Consider the following de�nition:

- fun pairwith(x,l) =

let fun p y = (x,y)

28 CHAPTER 2. THE CORE LANGUAGE

in map p l

end;

> val pairwith = fn : 'a * 'b list -> ('a*'b) list

- val l=[1,2,3];

> val l = [1,2,3] : int list

- pairwith("a",l);

> [("a",1),("a",2),("a",3)] : (string * int) list

The local function p has a non-local reference to the identi�er x, the pa-

rameter of the function pairwith. The same rule applies here as with other

non-local references: the nearest enclosing binding is used. This is exactly

the same rule that is used in other block structured languages such as Pascal

(but di�ers from the one used in most implementations of LISP).

Exercise 2.5.6 A \perfect number" is one that is equal to the sum of all
its factors (including 1 but not including itself). For example, 6 is a perfect
number because 6 = 3 + 2 + 1. De�ne the predicate isperfect to test for
perfect numbers.

It was emphasized above that in ML functions are values; they have the

same rights and privileges as any other value. In particular, this means that

functions may be passed as arguments to other functions, and applications

may evaluate to functions. Functions that use functions in either of these

ways are called higher order functions. The origin of this terminology is

somewhat obscure, but the idea is essentially that functions are often taken

to be more complex data items than, say, integers (which are called \�rst

order" objects). The distinction is not absolute, and we shall not have need

to make much of it, though you should be aware of roughly what is meant

by the term.

First consider the case of a function returning a function as result. Sup-

pose that f is such a function. What must its type look like? Let's suppose

that it takes a single argument of type � . Then if it is to return a function

as result, say a function of type �->�, then the type of f must be �->(�->�)

This re
ects the fact that f takes an object of type � , and returns a function

whose type is �->�. The result of any such application of f may itself be

applied to a value of type �, resulting in a value of type �. Such a succes-

sive application is written f(e1)(e2), or just f e1 e2; this is not the same

as f(e1,e2)! Remember that (e1,e2) is a single object, consisting of an

2.5. DEFINING FUNCTIONS 29

ordered pair of values. Writing f e1 e2 means \apply f to e1, obtaining

a function, then apply that function to e2". This is why we went to such

trouble above to explain function application in terms of obtaining a function

value and applying it to the value of the argument: functions can be denoted

by expressions other than identi�ers.

Here are some examples to help clarify this:

- fun times (x:int) (y:int) = x*y;

> val times = fn : int->(int->int)

- val twice = times 2;

> val twice = fn : int -> int

- twice 4;

> 8 : int

- times 3 4;

> 12 : int

The function times is de�ned to be a function that, when given an integer,

returns a function which, when given an integer returns an integer.4 The

identifer twice is bound to times 2. Since 2 is an object of type int, the

result of applying times to 2 is an object of type int->int, as can be seen

by inspecting the type of times. Since twice is a function, it may be applied

to an argument to obtain a value, in this case twice 4 returns 8 (of course!).

Finally times is successively applied to 3, then the result is applied to 4,

yielding 12. This last application might have been parenthesized to (times

3) 4 for clarity.

It is also possible for functions to take other functions as arguments.

Such functions are often called functionals or operators, but, once again, we

shall not concern ourselves terribly much with this terminology. The classical

example of such a function is the map function which works as follows: map

takes a function and a list as arguments, and returns the list resulting from

applying the function to each element of the list in turn. Obviously the

function must have domain type the same as the type of the elements of the

list, but its range type is arbitrary. Here is a de�nition for map:

- fun map f nil = nil

| map f (hd::tl) = f(hd) :: map f tl ;

> val map = fn : ('a->'b) -> ('a list) -> ('b list)

4The need for \:int" on x and y will be explained in Section 6 below.

30 CHAPTER 2. THE CORE LANGUAGE

Notice how the type of map re
ects the correlation between the type of the

list elements and the domain type of the function, and between the range

type of the function and the result type.

Here are some examples of using map:

- val l = [1,2,3,4,5];

> val l = [1,2,3,4,5] : int list

- map twice l;

> [2,4,6,8,10] : int list

- fun listify x = [x];

> val listify = fn : 'a -> 'a list

- map listify l;

> [[1],[2],[3],[4],[5]] : int list list

Exercise 2.5.7 De�ne a function powerset that given a set (represented as
a list) will return the set of all its subsets.

Combining the ability to take functions as values and to return functions

as results, we now de�ne the composition function. It takes two functions as

argument, and returns their composition:

- fun compose(f,g)(x) = f(g(x));

> val compose = fn : ('a->'b * 'c->'a) -> ('c->'b)

- val fourtimes = compose(twice,twice);

> val fourtimes = fn : int->int

- fourtimes 5;

> 20 : int

Let's walk through this carefully. The function compose takes a pair of

functions as argument and returns a function; this function, when applied

to x returns f(g(x)). Since the result is f(g(x)), the type of x must be

the domain type of g; since f is applied to the result of g(x), the domain

type of f must be the range type of g. Hence we get the type printed

above. The function fourtimes is obtained by applying compose to the pair

(twice,twice) of functions. The result is a function that, when applied to

x, returns twice(twice(x)); in this case, x is 5, so the result is 20.

Now that you've gained some familiarity with ML, you may feel that it

is a bit peculiar that declarations and function values are intermixed. So far

2.5. DEFINING FUNCTIONS 31

there is no primitive expression form for functions: the only way to designate

a function is to use a fun binding to bind it to an identi�er, and then to refer

to it by name. But why should we insist that all functions have names?

There is a good reason for naming functions in certain circumstances, as we

shall see below, but it also makes sense to have anonymous functions, or

lambda's (the latter terminology comes from LISP and the �-calculus.)

Here are some examples of the use of function constants and their rela-

tionship to clausal function de�nitions:

- fun listify x = [x];

> val listify = fn : 'a->'a list

- val listify2 = fn x=>[x];

> listify2 = fn : 'a->'a list

- listify 7;

> [7] : int list

- listify2 7;

> [7] : int list

- (fn x=>[x])(7);

> [7] : int list

- val l=[1,2,3];

> val l = [1,2,3] : int list

- map(fn x=>[x],l);

> [[1],[2],[3]] : int list list

We begin by giving the de�nition of a very simple function called listify

that makes a single element list out of its argument. The function listify2

is exactly equivalent, except that it makes use of a function constant. The

expression fn x=>[x] evaluates to a function that, when given an object

x, returns [x], just as listify does. In fact, we can apply this function

\directly" to the argument 7, obtaining [7]. In the last example, we pass

the function denoted by fn x=>[x] to map (de�ned above), and obtain the

same result as we did from map listify l.

Just as the fun binding provides a way of de�ning a function by pat-

tern matching, so may anonymous functions use pattern-matching in their

de�nitions. For example,

- (fn nil => nil | hd::tl => tl)([1,2,3]);

> [2,3] : int list

32 CHAPTER 2. THE CORE LANGUAGE

- (fn nil => nil | hd::tl => tl)([]);

> nil : int list

The clauses that make up the de�nition of the anonymous function are col-

lectively called a match.

The very anonymity of anonymous functions prevents us from writing

down an anonymous function that calls itself recursively. This is the reason

why functions are so closely tied up with declarations in ML: the purpose of

the fun binding is to arrange that a function have a name for itself while it

is being de�ned.

Exercise 2.5.8 Consider the problem of deciding how many di�erent ways
there are of changing $1 into 1, 2, 5, 10, 20 and 50 pence coins. Suppose

that we impose some order on the types of coins. Then it is clear that the
following relation holds

Number of ways to change amount a using n kinds of coins

= Number of ways to change amount a using all but the �rst kind of coin

+ Number of ways to change amount a-d using all n kinds of coins,

where d is the denomination of the �rst kind of coin.

This relation can be transformed into a recursive function if we specify the
degenerate cases that terminate the recursion. If a = 0, we will count this as
one way to make change. If a < 0, or n = 0, then there is no way to make

change. This leads to the following recursive de�nition to count the number
of ways of changing a given amount of money.

fun first_denom 1 = 1

| first_denom 2 = 2

| first_denom 3 = 5

| first_denom 4 = 10

| first_denom 5 = 20

| first_denom 6 = 50;

fun cc(0,_) = 1

| cc(_,0) = 0

| cc(amount, kinds) =

if amount < 0 then 0

2.6. POLYMORPHISM AND OVERLOADING 33

else

cc(amount-(first_denom kinds), kinds)

+ cc(amount, (kinds-1));

fun count_change amount = cc(amount, 6);

Alter this example so that it accepts a list of denominations of coins to

be used for making change.

Exercise 2.5.9 The solution given above is a terrible way to count change
because it does so much redundant computation. Can you design a better
algorithm for computing the result (this is hard, and you might like to skip

this exercise on �rst reading).

Exercise 2.5.10 (The Towers of Hanoi) Suppose you are given three rods
and n disks of di�erent sizes. The disks can be stacked up on the rods, thereby
forming \towers". Let the n disks initially be placed on rod A in order of de-

creasing size. The task is to move the n disks from rod A to rod C such
that they are ordered in the original way. This has to be achieved under the
constraints that

1. In each step exactly one disk is moved from one rod to another rod

2. A disk may never be placed on top of a smaller disk

3. Rod B may be used as an auxiliary store.

De�ne a function to perform this task.

2.6 Polymorphism and Overloading

There is a subtle, but important, distinction that must be made in order

for you to have a proper grasp of polymorphic typing in ML. Recall that we

de�ned a polytype as a type that involved a type variable; those that do not

are called monotypes. In the last section we de�ned a polymorphic function

as one that works for a large class of types in a uniform way. The key idea is

that if a function \doesn't care" about the type of a value (or component of

a value), then it works regardless of what that value is, and therefore works

34 CHAPTER 2. THE CORE LANGUAGE

for a wide class of types. For example, the type of append was seen to be

'a list * 'a list -> 'a list, re
ecting the fact that append does not

care what the component values of the list are, only that the two arguments

are both lists having elements of the same type. The type of a polymorphic

function is always a polytype, and the collection of types for which it is

de�ned is the in�nite collection determined by the instances of the polytype.

For example, append works for int list's and bool list's and int*bool

list's, and so on ad in�nitum. Note that polymorphism is not limited to

functions: the empty list nil is a list of every type, and thus has type 'a

list.

This phenomenon is to be contrasted with another notion, known as over-
loading. Overloading is a much more ad hoc notion than polymorphism be-

cause it is more closely tied up with notation than it is with the structure of

a function's de�nition. A �ne example of overloading is the addition func-

tion, +. Recall that we write 3+2 to denote the sum of two integers, 3 and

2, and that we also write 3.0+2.0 for the addition of the two real numbers

3.0 and 2.0. This may seem like the same phenomenon as the appending

of two integer lists and the appending of two real lists, but the similarity is

only apparent: the same append function is used to append lists of any type,

but the algorithm for addition of integers is di�erent from that for addition
for real numbers. (If you are familiar with typical machine representations

of integers and
oating point numbers, this point is fairly obvious.) Thus

the single symbol + is used to denote two di�erent functions, and not a sin-

gle polymorphic function. The choice of which function to use in any given

instance is determined by the type of the arguments.

This explains why it is not possible to write fun plus(x,y)=x+y in ML:

the compiler must know the types of x and y in order to determine which

addition function to use, and therefore is unable to accept this de�nition. The

way around this problem is to explicitly specify the type of the argument to

plus by writing fun plus(x:int,y:int)=x+y so that the compiler knows

that integer addition is intended. It it an interesting fact that in the absence

of overloaded identi�ers such as +, it is never necessary to include explicit

type information.5 But in order to support overloading and to allow you to

explicitly write down the intended type of an expression as a double-checking

measure, ML allows you to qualify a phrase with a type expression. Here are

5Except occasionally when using partial patterns, as in fun f fx,...g = x

2.6. POLYMORPHISM AND OVERLOADING 35

some examples:

- fun plus(x,y) = x+y;

Unresolvable overloaded identifier: +

- fun plus(x:int,y:int) = x+y;

> val plus = fn : int*int->int

- 3 : bool;

Type clash in: 3 : bool

Looking for a: bool

I have found a: int

- (plus,true): (int*int->int) * bool;

> (fn, true) : (int*int->int) * bool

- fun id(x:'a) = x;

> val id = fn : 'a -> 'a

Note that one can write polytypes just as they are printed by ML: type

variables are identi�ers preceded by a single quote.

Equality is an interesting \in-between" case. It is not a polymorphic

function in the same sense that append is, yet, unlike +, it is de�ned for

arguments of (nearly) every type. As discussed above, not every type admits

equality, but for every type that does admit equality, there is a function =

that tests whether or not two values of that type are equal, returning true

or false, as the case may be. Now since ML can tell whether or not a

given type admits equality, it provides a means of using equality in a \quasi-

polymorphic" way. The trick is to introduce a new kind of type variable,

written ''a, which may be instantiated to any type that admits equality (an

\equality type", for short). The ML type checker then keeps track of whether

a type is required to admit equality, and re
ects this in the inferred type of

a function by using these new type variables. For example,

- fun member(x, nil) = false

| member(x, h::t) = if x=h then true else member(x,t);

> val member = fn : ''a * ''a list -> bool

The occurrences of ''a in the type of member limit the use of member to those

types that admit equality.

36 CHAPTER 2. THE CORE LANGUAGE

2.7 De�ning types

The type system of ML is extensible. Three forms of type bindings are

available, each serving to introduce an identi�er as a type constructor.

The simplest form of type binding is the transparent type binding, or type
abbreviation. A type constructor is de�ned, perhaps with parameters, as

an abbreviation for a (presumably complex) type expression. There is no

semantic signi�cance to such a binding | all uses of the type constructor

are equivalent to the de�ning type.

- type intpair = int * int ;

> type intpair = int * int

- fun f(x:intpair) = let val (l,r)=x in l end ;

> val f = fn : intpair -> int

- f(3,2);

> 3 : int

- type 'a pair = 'a * 'a

> type 'a pair = 'a * 'a

- type boolpair = bool pair

> type boolpair = bool pair

Notice that there is no di�erence between int*int and intpair because

intpair is de�ned to be equal to int*int. The only reason to qualify x with

:intpair in the de�nition of f is so that its type prints as intpair->int.

The type system of ML may be extended by de�ning new compound types

using a datatype binding. A data type is speci�ed by giving it a name (and

perhaps some type parameters) and a set of value constructors for building

objects of that type. Here is a simple example of a datatype declaration:

- datatype color = Red | Blue | Yellow ;

> type color

con Red : color

con Blue : color

con Yellow : color

- Red;

> Red : color

This declaration declares the identi�er color to be a new data type, with

2.7. DEFINING TYPES 37

constructors Red, Blue, and Yellow.6 This example is reminiscent of the

enumeration type of Pascal.

Notice that ML prints type color, without any equation attached, to

re
ect the fact that color is a new data type. It is not equal to any other type

previously declared, and therefore no equation is appropriate. In addition

to de�ning a new type, the datatype declaration above also de�nes three

new value constructors. These constructors are printed with the keyword

con, rather than val, in order to emphasize that they are constructors, and

may therefore be used to build up patterns for clausal function de�nitions.

Thus a datatype declaration is a relatively complex construct in ML: it

simultaneously creates a new type constructor and de�nes a set of value

constructors for that type.

The idea of a data type is pervasive in ML. For example, the built-in type

bool can be thought of as having been pre-declared by the compiler as

- datatype bool = true | false ;

> type bool

con true : bool

con false : bool

Functions may be de�ned over a user-de�ned data type by pattern match-

ing, just as for the primitive types. The value constructors for that data type

determine the overall form of the function de�nition, just as nil and :: are

used to build up patterns for functions de�ned over lists. For example,

- fun favorite Red = true

| favorite Blue = false

| favorite Yellow = false ;

> val favorite = fn : color->bool

- val color = Red;

> val color = Red : color

- favorite color;

> true : bool

This example also illustrates the use of the same identi�er in two di�erent

ways. The identi�er color is used as the name of the type de�ned above,

and as a variable bound to Red. This mixing is always harmless (though

6Nullary constructors (those with no arguments) are sometimes called constants.

38 CHAPTER 2. THE CORE LANGUAGE

perhaps confusing) since the compiler can always tell from context whether

the type name or the variable name is intended.

Not all user-de�ned value constructors need be nullary:

- datatype money = nomoney | coin of int | note of int |

check of string*int ;

> type money

con nomoney : money

con coin : int->money

con note : int->money

con check : string*int->money

- fun amount(nomoney) = 0

| amount(coin(pence)) = pence

| amount(note(pounds)) = 100*pounds

| amount(check(bank,pence)) = pence ;

> val amount = fn : money->int

The type money has four constructors, one a constant, and three with ar-

guments. The function amount is de�ned by pattern-matching using these

constructors, and returns the amount in pence represented by an object of

type money.

What about equality for user-de�ned data types? Recall the de�nition

of equality of lists: two lists are equal i� either they are both nil, or they

are of the form h::t and h'::t', with h equal to h' and t equal to t'. In

general, two values of a given data type are equal i� they are \built the same

way" (i.e., they have the same constructor at the outside), and corresponding

components are equal. As a consequence of this de�nition of equality for data

types, we say that a user-de�ned data type admits equality i� each of the

domain types of each of the value constructors admits equality. Continuing

with the money example, we see that the type money admits equality because

both int and string do.

- nomoney = nomoney;

> true : bool

- nomoney = coin(5);

> false : bool

- coin(5) = coin(3+2);

> true : bool

2.7. DEFINING TYPES 39

- check("TSB",500) <> check("Clydesdale",500);

> true : bool

Data types may be recursive. For example, suppose that we wish to de�ne

a type of binary trees. A binary tree is either a leaf or it is a node with two

binary trees as children. The de�nition of this type in ML is as follows:

- datatype btree = empty | leaf | node of btree * btree ;

> type btree

con empty : btree

con leaf : btree

con node : btree*btree->btree

- fun countleaves(empty) = 0

| countleaves(leaf) = 1

| countleaves(node(tree1,tree2)) =

countleaves(tree1)+countleaves(tree2) ;

> val countleaves = fn : btree->int

Notice how the de�nition parallels the informal description of a binary tree.

The function countleaves is de�ned recursively on btree's, returning the

number of leaves in that tree.

There is an important pattern to be observed here: functions on recursive-

ly-de�ned data values are de�ned recursively. We have seen this pattern

before in the case of functions such as append which is de�ned over lists.

The built-in type � list can be considered to have been de�ned as follows:7

- datatype 'a list = nil | :: of 'a * 'a list ;

> type 'a list

con nil : 'a list

con :: : ('a * ('a list)) -> ('a list)

This example illustrates the use of a parametric data type declaration: the

type list takes another type as argument, de�ning the type of the members

of the list. This type is represented using a type variable, 'a in this case, as

argument to the type constructor list. We use the phrase \type constructor"

because list builds a type from other types, much as value constructors build

values from other values.

7This example does not account for the fact that :: is an in�x operator, but we will

neglect that for now.

40 CHAPTER 2. THE CORE LANGUAGE

Here is another example of a recursively-de�ned, parametric data type.

- datatype 'a tree = empty | leaf of 'a |

node of 'a tree * 'a tree ;

> type 'a tree

con empty : 'a tree

con leaf : 'a->'a tree

con node : 'a tree*'a tree->'a tree

- fun frontier(empty) = []

| frontier(leaf(x)) = [x]

| frontier(node(t1,t2)) =

append(frontier(t1),frontier(t2));

> val frontier = fn : 'a tree -> 'a list

- val tree = node(leaf("a"),node(leaf("b"),leaf("c"))) ;

> val tree = node(leaf("a"),node(leaf("b"),leaf("c")))

: string tree

- frontier tree;

> ["a","b","c"] : string list

The function frontier takes a tree as argument and returns a list consisting

of the values attached to the leaves of the tree.

Exercise 2.7.1 Design a function samefrontier(x,y) which returns true

if the same elements occur in the same order, regardless of the internal struc-
ture of x and y, and returns false otherwise. A correct, but unsatisfactory
de�nition is

fun samefrontier(x,y) = (frontier x) = (frontier y)

This is a di�cult exercise, the problem being to avoid
attening a huge tree

when it is frontier unequal to the one with which it is being compared.

ML also provides a mechanism for de�ning abstract types using an abstype
binding.8 An abstract type is a data type with a set of functions de�ned on

it. The data type itself is called the implementation type of the abstract type,

and the functions are called its interface. The type de�ned by an abstype

binding is abstract because the constructors of the implementation type are

8Abstract types in this form are, for the most part, superseded by the modules system

described in the next chapter.

2.7. DEFINING TYPES 41

hidden from any program that uses the type (called a client): only the inter-

face is available. Since programs written to use the type cannot tell what the

implementation type is, they are restricted to using the functions provided

by the interface of the type. Therefore the implementation can be changed

at will, without a�ecting the programs that use it. This is an important

mechanism for structuring programs so as to prevent interference between

components.

Here is an example of an abstract type declaration.

- abstype color = blend of int*int*int

with val white = blend(0,0,0)

and red = blend(15,0,0)

and blue = blend(0,15,0)

and yellow = blend(0,0,15)

fun mix(parts:int, blend(r,b,y),

parts':int, blend(r',b',y')) =

if parts<0 orelse parts'<0 then white

else let val tp=parts+parts'

and rp = (parts*r+parts'*r') div tp

and bp = (parts*b+parts'*b') div tp

and yp = (parts*y+parts'*y') div tp

in blend(rp,bp,yp)

end

end;

> type color

val white = - : color

val red = - : color

val blue = - : color

val yellow = - : color

val mix = fn : int*color*int*color->color

- val green = mix(2, yellow, 1, blue);

> val green = - : color

- val black = mix(1, red, 2, mix(1, blue, 1, yellow));

> val black = - : color

There are several things to note about this declaration. First of all, the

type equation occurring right after abstype is a data type declaration: ex-

actly the same syntax applies, as the above example may suggest. Following

42 CHAPTER 2. THE CORE LANGUAGE

the de�nition of the implementation type is the interface declaration, be-

tween with and end. Examining ML's output for this declaration, we see

that ML reports type color without an equation, re
ecting the fact that it

is a new type, unequal to any others. Furthermore, note that no construc-

tors are declared as a result of the abstype declaration (unlike the case of

data type de�nitions). This prevents the client from building an object of

type color by any means other than using one of the values provided by the

interface of the type. These two facts guarantee that the client is insulated

from the implementation details of the abstract type, and therefore allows

for a greater degree of separation between client and implementor. Among

other things, this allows for more
exibility in program maintenance, as the

implementation of color is free to be changed without a�ecting the client.

Note, however, that the functions de�ned within the with clause do have ac-

cess to the implementation type and its constructors, for otherwise the type

would be quite useless!

Note that the insulation of the client from the implementation of the

abstract type prevents the client from de�ning functions over that type by

pattern matching. It also means that abstract types do not admit equality.

If an abstract type is to support an equality test, then the implementor must

de�ne an equality function for it.

Thus there are three ways to de�ne type constructors in ML. Transparent

type bindings are used to abbreviate complex type expressions, primarily for

the sake of readability, rather than to introduce a new type. Data type bind-

ings are used to extend the type system of ML. A data type is speci�ed by

declaring a new type constructor and providing a set of value constructors for

that type. Data type de�nitions are appropriate for specifying data that is

described structurally (such as a tree), for then it is natural that the under-

lying structure be visible to the client. For data structures that are de�ned

behaviorally (such as a stack or a priority queue), an abstract type de�nition

is appropriate: the structural realization is not part of the de�nition of the

type, only the functions that realize the de�ned behavior are relevant to the

client.

Exercise 2.7.2 An abstract type set might be implemented by

abstype 'a set = set of 'a list

with val emptyset: 'a set = ...

2.8. EXCEPTIONS 43

fun singleton (e: 'a): 'a set = ...

fun union(s1: 'a set, s2: 'a set): 'a set = ...

fun member(e: 'a, s: 'a set): bool = ...

| member(e, set (h::t)) = (e = h)

orelse member(e, set t)

fun intersection(s1: 'a set, s2: 'a set): 'a set = ...

end;

Complete the de�nition of this abstract type.

Exercise 2.7.3 Modify your solution so that the elements of the set are
stored in an ordered list. [Hint: One approach would be to pass the order-
ing relation as an additional parameter to each function. Alternatively, the
ordering relation could be supplied to those functions that create a set from
scratch, and embedded in the representation of a set. The union function

could then access the ordering relation from the representation of one of its
arguments, and propagate it to the union set. We will return to this problem
later, when a more elegant mechanism for performing this parameterization
will be discussed]

2.8 Exceptions

Suppose that we wish to de�ne a function head that returns the head of a list.

The head of a non-empty list is easy to obtain by pattern-matching, but what

about the head of nil? Clearly something must be done to ensure that head

is de�ned on nil, but it is not clear what to do. Returning some default value

is undesirable, both because it is not at all evident what value this might be,

and furthermore it limits the usability of the function (if head(nil) were

de�ned to be, say, nil, then head would apply only to lists of lists).

In order to handle cases like this, ML has an exception mechanism. The
purpose of the exception mechanism is to provide the means for a function to

\give up" in a graceful and type-safe way whenever it is unable or unwilling

to return a value in a certain situation. The graceful way to write head is as

follows:

- exception Head;

> exception Head

44 CHAPTER 2. THE CORE LANGUAGE

- fun head(nil) = raise Head

| head(x::l) = x;

> val head = fn : 'a list->'a

- head [1,2,3];

> 1 : int

- head nil;

> Failure: Head

The �rst line is an exception binding that declares head to be an exception.

The function head is de�ned in the usual way by pattern-matching on the

constructors of the list type. In the case of a non-empty list, the value of

head is simply the �rst element. But for nil, the function head is unable to

return a value, and instead raises an exception. The e�ect of this is seen in

the examples following the declaration of head: applying head to nil causes

the message Failure: Head to be printed, indicating that the expression

head(nil) caused the exception Head to be raised. Recall that attempts to

divide by zero result in a similar message; the internally-de�ned function div

raises the exception Div if the divisor is 0.

With exception and raise we can de�ne functions that
ag undesirable

conditions by raising an exception. But to be complete, there ought to be a

way of doing something about an error, and indeed there is such a mechanism

in ML, called an exception handler, or simply a handler. We illustrate its use

by a simple example:

- fun head2 l = head(l) handle Head => 0;

> val head2 = fn : int list->int

- head2([1,2,3]);

> 1 : int;

- head2(nil);

> 0 : int

The expression e handle exn => e
0 is evaluated as follows: �rst, evaluate e;

if it returns a value v, then the value of the whole expression is v; if it raises

the exception exn, then return the value of e0; if it raises any other exception,

then raise that exception. Notice that the type of e and the type of e0 must

be the same; otherwise, the entire expression would have a di�erent type

depending on whether or not the left-hand expression raised an exception.

This explains why the type of head2 is int list->int, even though l does

2.8. EXCEPTIONS 45

not appear to be constrained to be an integer list. Continuing the above

example, head2 applies head to l; if it returns a value, then that is the value

of head2; if it raises exception Head, then head2 returns 0.

Since a given expression may potentially raise one of several di�erent

exceptions, several exceptions can be handled by a single handler as follows:

- exception Odd;

> exception Odd

- fun foo n = if n mod 2 <> 0 then

raise Odd

else

17 div n;

> val foo = fn : int->int

- fun bar m = foo(m) handle Odd => 0

| Div => 9999 ;

> val bar = fn : int->int

- foo 0;

> Failure: Div

- bar 0;

> 9999 : int

- foo 3;

> Failure: Odd

- bar 3;

> 0 : int

- foo 20;

> 1 : int

- bar 20;

> 1 : int

The function foo may fail in one of two ways: by dividing by zero, causing

the exception Div to be raised, or by having an odd argument, raising the

exception Odd. The function bar is de�ned so as to handle either of these

contingencies: if foo(m) raises the exception Odd, then bar(m) returns 0; if

it raises Div, it returns 9999; otherwise it returns the value of foo(m).

Notice that the syntax of a multiple-exception handler is quite like the

syntax used for a pattern-matching de�nition of a lambda. In fact, one

can think of an exception handler as an anonymous function whose domain

type is exn, the type of exceptions, and whose range type is the type of the

46 CHAPTER 2. THE CORE LANGUAGE

expression appearing to the left of handle. From the point of view of type

checking, exceptions are nothing more than constructors for the type exn,

just as nil and cons are constructors for types of the form 'a list.

It follows that exceptions can carry values, simply by declaring them to

take an argument of the appropriate type. The attached value of an exception

can be used by the handler of the exception. An example will illustrate the

point.

- exception oddlist of int list and oddstring of string;

> exception oddlist of int list

exception oddstring of string

- ... handle oddlist(nil) => 0

| oddlist(h::t) => 17

| oddstring("") => 0

| oddstring(s) => size(s)-1

The exception declaration introduces two exceptions, oddlist, which takes

a list of integers as argument, and oddstring, which takes a string. The

handler performs a case analysis, both on the exception, and on its argument,

just as we might de�ned a function by pattern matching against a data type.

What happens if the elided expression in the previous example raises an

exception other than oddstring or oddlist? Here the similarity to functions

ends. For in the case of functions, if the match is not exhaustive, and the

function is applied to an argument that fails to match any pattern, then the

exception Match is raised. But in the case of exception handlers, the excep-

tion is re-raised in the hope that an outer handler will catch the exception.

For example,

- exception Theirs and Mine;

> exception Theirs

exception Mine

- fun f(x) = if x=0 then raise Mine else raise Theirs;

> val f = fn : int -> 'a

- f(0) handle Mine => 7;

> 7 : int

- f(1) handle Mine => 7;

Failure: Theirs

- (f(1) handle Mine => 7) handle Theirs => 8;

2.8. EXCEPTIONS 47

> 8 : int

Since exceptions are really values of type exn, the argument to a raise

expression need not be simply an identi�er. For example, the function f

above might have been de�ned by

- fun f(x) = raise (if x=0 then Mine else Theirs);

> val f = fn : int -> 'a

Furthermore, the wild-card pattern matches any exception whatsoever, so

that we may de�ne a handler that handles all possible exceptions simply be

including a \default" case, as in:

- ... handle _ => 0;

An exception binding is a form of declaration, and so may have limited

scope. The handler for an exception must lie within the scope of its dec-

laration, regardless of the name. This can sometimes lead to peculiar error

messages. For example,

- exception Exc;

> exception Exc

- (let exception Exc in raise Exc end) handle Exc => 0;

> Failure: Exc

Despite appearances, the outer handler cannot handle the exception raised

by the raise expression in the body of the let, for the inner Exc is a distinct

exception that cannot be caught outside of the scope of its declaration other

than by a wild-card handler.

Exercise 2.8.1 Explain what is wrong with the following two programs.

1. exception exn: bool;

fun f x =

let exception exn: int

in if x > 100 then raise exn with x else x+1

end;

f(200) handle exn with true => 500 | false => 1000;

48 CHAPTER 2. THE CORE LANGUAGE

2. fun f x =

let exception exn

in if p x then a x

else if q x then f(b x) handle exn => c x

else raise exn with d x

end;

f v;

Exercise 2.8.2 Write a program to place n queens on an n � n chess board

so that they do not threaten each other.

Exercise 2.8.3 Modify your program so that it returns all solutions to the
problem.

2.9 Imperative features

ML supports references and assignments. References are a type-safe form

of pointer to the heap. Assignment provides a way to change the object

to which the pointer refers. The type � ref is the type of references to

values of type � .9 The function ref:'a->'a ref allocates space in the

heap for the value passed as argument, and returns a reference to that lo-

cation. The function !:'a ref->'a is the \contents of" function, returning

the contents of the location given by the reference value, and the function

:= : 'a ref*'a->unit is the assignment function.

- val x = ref 0;

> val x = ref(0) : int ref;

- !x;

> 0 : int

- x := 3;

> () : unit;

- !x;

> 3 : int

9At present � must be a monotype, though it is expected that one of several proposed

methods of handling polymorphic references will soon be adopted.

2.9. IMPERATIVE FEATURES 49

All reference types admit equality. Objects of type � ref are heap ad-

dresses, and two such objects are equal i� they are identical. Note that this

implies that they have the same contents, but the converse doesn't hold: we

can have two unequal references to the same value.

- val x = ref 0 ;

> val x = ref 0 : int ref

- val y = ref 0 ;

> val y = ref 0 : int ref

- x=y ;

> false : bool

- !x = !y ;

> true : bool

This corresponds in a language like Pascal to having two di�erent variables

with the same value assigned to them: they are distinct variables even though

they have the same value (at the moment). For those of you familiar with

LISP, the equality of references in ML corresponds to LISP's eq function,

rather than to equal.

Along with references comes the usual imperative language constructs

such as sequential composition and iterative execution of statements. In ML

statements are expressions of type unit, expressing the idea that they are

evaluated for their side e�ects to the store, rather than their value. The

in�x operator \;" implements sequencing, and the construct while e do

e' provides iteration.

Exercise 2.9.1 The following abstract type may be used to create an in�nite

stream of values.

abstype 'a stream = stream of unit -> ('a * 'a stream)

with fun next(stream f) = f()

val mkstream = stream

end;

Given a stream s, next s returns the �rst value in the stream, and a stream
that produces the rest of the values. This is illustrated by the following ex-

ample:

50 CHAPTER 2. THE CORE LANGUAGE

- fun natural n = mkstream(fn () => (n, natural(n+1)));

> val natural = fn : int -> int stream

- val s = natural 0;

> val s = - : int stream

- val (first,rest) = next s;

> val first = 0 : int

val rest = - : int stream

- val (next, _) = next rest;

> val next = 1 : int

Write a function that returns the in�nite list of prime numbers in the form

of a stream.

Exercise 2.9.2 The implementation of the stream abstract type given above
can be very ine�cient if the elements of the stream are examined more than
once. This is because the next function computes the next element of the
stream each time it is called. This is wasteful for an applicative stream (such

as the prime numbers example), as the value returned will always be the
same. Modify the abstract type so that this ine�ciency is removed by using
references.

Exercise 2.9.3 Modify your stream abstract type so that streams can be �-
nite or in�nite, with a predicate endofstream to test whether the stream has

�nished.

Chapter 3

The Modules System

3.1 Overview

The ability to decompose a large program into a collection of relatively inde-

pendent modules with well-de�ned interfaces is essential to the task of build-

ing and maintaining large programs. The ML modules sytem supplements

the core language with constructs to facilitate building and maintaining large

programs.

Many modern programming languages provide for some form of modular

decomposition of programs into relatively independent parts. Exactly what

constitutes a program unit and how they are related is by no means estab-

lished in the literature, and consequently there is no standard terminology.

Program components are variously called, among other things, \modules",

\packages", and \clusters"; in ML we use the term \structure", short for

\environment structure". This choice of terminology is telling: ML's con-

ception of a program unit is that it is a rei�ed environment. Recall that the

environment is the repository of the meanings of the identi�ers that have

been declared in a program. For example, after the declaration val x=3,

the environment records the fact that x has value 3, which is of type int.

Now the fundamental notion underlying program modularization is that the

aim is to partition the environment into chunks that can be manipulated

relatively independently of one another. The reason for saying \relatively" is

that if two modules constitute a program, then there must be some form of

interaction between them, and there must be some means of expressing and

51

52 CHAPTER 3. THE MODULES SYSTEM

managing this interaction. This is the problem of sharing.

Exactly what sorts of operations one is able to perform with a program

unit, and how sharing is managed, are the characteristic features of any

modularization system. At the very least, one wants a modules facility to

allow for separate compilation of program units, some means of assembling

the units into a complete program, and some form of insulation between the

units so as to avoid inadvertent dependency on \accidental" properties of

a unit such as the details of its implementation. Managing the interaction

between insulation (abstraction) and sharing is the key issue that determines

the form of solution to the other problems posed by the desire for modular

program development.

Just as the type of an identi�er mediates its use in a program, so struc-

tures have a form of type, called a \signature", that describes the structure to

the rest of the world. In the literature the type of a program unit is called an

\interface" or \package description". ML's terminology is suggested by the

analogy between an environment structure and an algebraic structure, the

latter's \type" being an (algebraic) signature. Just as types are a \summary"

of the compile-time properties of an expression, so a signature is a summary

of the information that is known about a structure at compile time. However,

in contrast to the core language, explicitly ascribing a signature to a struc-

ture e�ects both the compile-time and run-time properties of that structure

by de�ning a limited \view" of that structure.

A functor is a function that takes structures to structures. The idea

is that if a structure S depends on another structure T only to the extent

speci�ed in T 's signature, then S may be isolated from T 's implementation

details by de�ning a function that, given any structure with T 's signature,

returns the structure S with that structure \plugged in". In the literature

this facility is called a \parameterized module" or a \generic package". In ML

we choose the term \functor" both because it is suggestive of its functional

character and also because it accords with the mathematical terminology

surrounding structures and signatures mentioned above. The declaration of

a functor corresponds to building S in isolation, and the application of that

functor to a structure corresponds to linking together the parts of a program

to form a coherent whole. Functors are also the basis for an elegant form of

information hiding, called an abstraction. For most purposes, abstractions

are a replacement for abstract types.

We begin our introduction to the modules facility by looking at structures

3.2. STRUCTURES AND SIGNATURES 53

and signatures.

3.2 Structures and Signatures

A structure is essentially an environment turned into a manipulable object.

The basic form of expression denoting a structure is called an encapsulated

declaration, consisting of a declaration bracketed by the keywords struct

and end. Here is a simple example of an encapsulated declaration:

struct

type t = int ;

val x = 3 ;

fun f(x) = if x=0 then 1 else x*f(x-1)

end

The \value" of this encapsulated declaration is a structure in which the type

identi�er t is bound to int, and the value identi�ers x and f are bound to

3 and the factorial function, respectively. Although we shall regard a struc-

ture as a kind of value (the kind denoted by an encapsulated declaration),

it does not have the same status as ordinary values. In particular, one may

not simply enter an encapsulated declaration at top level the way that one

might enter an arithmetic expression. However, they may be bound to iden-

ti�ers using structure bindings, a form of declaration that may appear only

at top level or within an encapsulated declaration. For the time being we

will restrict our attention to structure bindings at the top level, and defer

discussion of structure bindings within structures until later. Thus we may

bind the above structure to an identi�er as follows:

- structure S =

struct

type t = int

val x = 3;

fun f(x) = if x=0 then 1 else x*f(x-1)

end;

> structure S =

struct

type t = int

54 CHAPTER 3. THE MODULES SYSTEM

val f = fn : int -> int

val x = 3 : int

end

Notice that the result of evaluating the structure binding is an environment.1

Consequently, ML prints the environment resulting from the declaration be-

tween struct and end almost as though it were typed directly at top level.

Of course, a structure is an independent environment in that the declaration

within an encapsulated declaration does not e�ect the top level environment.

So, for example, neither t nor f are available at top level after the above dec-

laration.

However, they may be accessed by reaching into the structure bound to

S using a quali�ed name. A quali�ed name consists of a structure path and

a simple identi�er, separated by a dot. For the present, a structure path is

simply a single structure identi�er; later on we will need to generalize paths

to a sequence of structure identi�ers. We may refer to the components of the

structure S using quali�ed names as follows:

- x;

Type checking error in: x

Unbound value identifier: x

- S.x;

> 3 : int

- S.f(S.x);

> 6 : int

- S.x: S.t;

> 3 : S.t

The expression S.x is a quali�ed name that refers to the value identi�er x in

the structure S. Its value, as you might expect, is 3. Similarly, S.f designates

the function f de�ned in the structure S, the factorial function. When it is

applied to S.x (that is, to 3), it returns 6. Reference to the identi�ers de�ned

by S is not limited to values: the last example illustrates the use of the type

identi�er S.t, de�ned in S to be int.

If you are writing a bit of code that refers to several components of a

single structure, it can get quite tedious to continually use quali�ed names.

1For technical reasons some implementations of ML rearrange the environment before

printing.

3.2. STRUCTURES AND SIGNATURES 55

To alleviate this problem, ML provides a declaration form that opens up a

structure and incorporates its bindings into the local environment so that

they can be referred to directly.

- let open S in f(x) end;

> 6 : int

- open S;

> val x = 3 : int

> val f = fn : int->int

> type t = int

In the �rst example we locally open structure S within a let expression so

that we can write f(x) instead of the more verbose S.f(S.x). In the second

example we open S at the top level, thereby adding its bindings to the top

level environment, as can be seen by the result of the expression.

It is often helpful to think of a structure as a kind of value both because

it re
ects the idea of treating environments as objects and also because it

suggests the sorts of operations that one might perform on them. Just as

every value in the core language has a type, so structures have types as well,

namely signatures. Signatures describe structures in much the same way

that types describe ordinary values in that they serve as a description of the

computational role of the value by determining the sorts of ways in which

it can be used. This is necessarily vague, and signatures are not just a new

form of type, but nonetheless, this analogy should help you to see what's

going on.

If we examine the output of ML on the above examples, we notice a

certain inconsistency between the report for structure bindings and the report

for value bindings (at least as long as we push the \structures as values"

analogy): whereas for value bindings ML reports both the value and the

type, for structure bindings only a form of value is printed. Let's consider

what would happen if ML were to adhere to the val binding convention for

structure bindings.

- structure S =

struct

val x = 2+2 ;

val b = (x=4)

end;

56 CHAPTER 3. THE MODULES SYSTEM

> structure S =

struct

val x = 4

val b = true

end

:

sig

val x : int

val b : bool

end

In this fanciful example, the type information for the variables appears in the

signature, whereas the value appears in the structure. This accords with our

intuitive idea of a signature as a description of a value, the structure. One

can see that the val binding format is rather awkward for \fat" objects like

structures, so the actual ML system prints an amalgamation of the structure

and its signature in response to a structure binding.

The expression bracketed by sig and end in the above example is called a

signature, the body of which is called a speci�cation. A speci�cation is similar

to a declaration, except that it merely describes an identi�er (by assigning it

a type) rather than giving it a value (and implicitly a type). For the present

we consider only val speci�cations, adding the other forms as we go along.

In the above example, x is speci�ed to have type int and b type bool.

Signature expressions are not limited to the output of the ML compiler.

They play a crucial role in the use of the modules system, particularly in

functor declarations, and therefore are often typed directly by the user. Sig-

natures may be bound to signature identi�ers using signature bindings in

much the same way that types may be bound to type identi�ers using type

bindings. Signature bindings are introduced with the keyword signature,

and may only appear at top level.

- signature SIG =

sig

val x : int

val b : bool

end;

> signature SIG =

sig

3.2. STRUCTURES AND SIGNATURES 57

val x : int

val b : bool

end;

The output from a signature binding is not very enlightening, and so I'll omit

it from future examples.

The primary signi�cance of signatures lies in signature matching. A struc-

ture matches a signature if, roughly, the structure satis�es the speci�cation

in the signature. Since speci�cations are similar to types, the idea is simi-

lar to type checking in the core language, though the details are a bit more

complex. One use of signatures is to attach them to structure identi�ers in

structure bindings as a form of correctness check in which we specify that

the structure being bound must match the given signature.

- structure S : SIG =

struct

val x = 2+1

val b = x=7

end;

> structure S =

struct

val x = 3 : int

val b = false : bool

end

The notation :SIG on the structure binding indicates that the encapsulated

declaration on the right of the equation must match the signature SIG.

Since ML accepted the above declaration, it must be that the structure

does indeed match the given signature. Why is that the case? The given

structure matches SIG because

1. S.x is bound to 3, which is of type int, as required by SIG,

and

2. S.b is bound to false, which is of type bool.

In short, if a variable x is assigned a type � in a signature, then the corre-

sponding expression bound to x in the structure must have type � .

The signature may require less than the structure presents. For example,

58 CHAPTER 3. THE MODULES SYSTEM

- structure S : SIG =

struct

val x = 2+1

val b = false

val s = "Garbage"

end;

> structure S =

struct

val x = 3 : int

val b = false : bool

end

Here the structure bound to S de�nes variables x, b, and s, while the signature

SIG only requires x and b. Not only is the type of s immaterial to the

signature matching, but it is also removed from the structure by the process

of signature matching. The idea is that SIG de�nes a view of the structure

consisting only of x and b. Other signatures may be used to obtain other

views of the same structure, as in the following example:

- structure S =

struct

val x = 2+1

val b = false

val s = "String"

end;

> structure S =

struct

val x = 3 : int

val b = false : bool

val s = "String" : string

end

- signature SIG' =

sig

val x : int

val b : bool

end

and SIG'' =

sig

3.2. STRUCTURES AND SIGNATURES 59

val b : bool

val s : string

end;

- structure S' : SIG' = S and S'' : SIG'' = s;

> structure S' =

struct

val x = 3 : int

val b = false : bool

end

structure S'' =

struct

val b = false : bool

val s = "String" `` string

end

Exercise 3.2.1 A signature for structures that possess an ordering can be
written as

signature ORD =

sig

type t

val le: t * t -> bool

end

Create structures for ordered integers and (real*string) pairs to match this

signature.

If a value in a structure has polymorphic type, then it satis�es a speci�-

cation only if the polymorphic type has the speci�ed type as an instance. So,

for example, if x is bound in some structure to nil, which as type 'a list,

then x satis�es the speci�cations int list and bool list list, for exam-

ple, as should be obvious by now. But what happens if the speci�cation type

is polymorphic? Let's suppose that an identi�er f is speci�ed to have type

'a list->'a list. In order to satisfy this speci�cation, a structure must

bind a value to f that can take an arbitrary list to another list of that type.

Thus it is not good enough that f be of type, say, int list->int list, for

the speci�cation requires that f work for bool list as well. The general

principle is that the value in the structure must be at least as general as that

60 CHAPTER 3. THE MODULES SYSTEM

in the speci�cation. So if f is bound in a structure to the identity function,

which has type 'a->'a, then it satis�es the speci�cation above. The reason

is that it takes a value of any type, and returns a value of that type, so a

fortiori it can take a list of any type and return a list of that type. Here's

an example to summarize:

- signature SIG =

sig

val n : 'a list

val l : int list

val f : 'a list -> 'a list

end;

- structure S : SIG =

struct

val n = nil (* : 'a list *)

val l = nil (* : 'a list *)

fun f(x) = x (* : 'a -> 'a *)

end

Exercise 3.2.2 What is wrong with the following declaration?

structure S : SIG =

struct

val n = [3,4]

val l = nil

fun f(x) = x

end

Exception bindings within structures are subject to the same restriction

as for exception bindings in the core language: they must have monotypes.

Exception speci�cations prescribe the type of the exception only, and the

rules for signature matching are the same as for variables, except that the

complications related to polymorphic types do not arise.

- structure S =

struct

exception Barf

exception Crap = Barf

3.2. STRUCTURES AND SIGNATURES 61

fun f(x) = if x=0 then raise Barf

else if x=1 then raise Crap

else 7

end;

> structure S =

struct

exception Barf

exception Crap

val f = fn : int->int

end

- S.f(0);

Failure: Barf

- S.f(4);

> 7 : int

Type declarations and speci�cations raise more interesting questions.

First, let's consider transparent type bindings in structures, such as in the

�rst example of this section in which t is bound to int. What might the sig-

nature of such a structure be? Let's consider an example under the imaginary

structure-printing regime that we considered above.

- structure S =

struct

type t = int

val x = 3

fun f(x) = if x=0 then 1 else x*f(x-1)

end;

> structure S =

struct

type t = int

val f = fn

val x = 3

end

:

sig

type t

val f : int->int

val x : int

62 CHAPTER 3. THE MODULES SYSTEM

end

The speci�cation of identi�er t in the structure bound to S is just type t,

indicating that its \value" is a type (namely, int).

When a type identi�er takes an argument, the speci�cation is written in

the obvious way:

- structure S =

struct

type 'a t = 'a * int

val x = (true,3)

end;

> structure S =

struct

type 'a t = 'a * int

val x = (true,3)

end

:

sig

type 'a t

val x : bool * int

end

Notice the form of the speci�cation for t.

Both of the above speci�cation forms are acceptable in signature expres-

sions. But what happens to signature matching? Consider the following

example:

- signature SIG =

sig

type 'a t

val x : int * bool

end;

- structure S : SIG =

struct

type 'a t = 'a * bool

val x = (3,true)

end;

3.2. STRUCTURES AND SIGNATURES 63

> structure S =

struct

type 'a t = 'a * bool

val x = (3,true) : int * bool

end

The structure bound to Smatches SIG because S.t is a unary (one argument)

type constructor, as speci�ed in SIG.

If a signature speci�es a type constructor, then that type constructor may

be used in the remainder of the speci�cation. Here's an example:

- signature SIG =

sig

type 'a t

val x: int t

end;

This signature speci�es the class of structures that de�ne a unary type con-

structor t and a variable of type int t (for that type constructor t).

Now let's return to the structure S above, and consider whether or not

it matches this signature SIG. According to the informal reading of SIG just

given, S ought to match SIG. More precisely, S matches SIG because

1. S.t is a unary type constructor, as required;

2. The type of S.x is int*bool. Now int t is equal to int*bool,

by de�nition of S.t, and therefore S.x satis�es the speci�-

cation int t.

It is important to realize that during signature matching, all of the type

identi�ers in the signature are taken to refer to the corresponding identi�ers

in the structure, so that the speci�cation int t is taken to mean int S.t.

Exercise 3.2.3 Which signatures match the following structure?

structure S =

struct

type 'a t = 'a * int

val x = (true, 3)

end

64 CHAPTER 3. THE MODULES SYSTEM

As a methodological point, it is usually wise to adhere to the signature

closure rule, which states that the free identi�ers of a signature are to be

limited to signature identi�ers and built-in functions like + and :: (the so-

called pervasives).

Exercise 3.2.4 Given

structure A = struct datatype 'a D = d of 'a end

which of the following are valid signatures for

structure B =

struct

type t = int A.D

fun f(A.d(x)) = A.d(x+1)

end

1. sig type t val f: int A.D -> int A.D end

2. sig type t val f: t -> int A.D end

3. sig type t val f: t -> t end

Data type declarations in structures present no great di�culties. Consider

the following example:

- signature SIG =

sig

type 'a List

val Append : 'a List * 'a List -> 'a List

end;

- structure S : SIG =

struct

datatype 'a List = Nil | Cons of 'a * 'a List

fun Append(x,Nil) = x

| Append(x,Cons(h,t)) = Cons(h,Append(x,t))

end;

> structure S =

struct

type 'a List

val Append = fn : 'a List * 'a List -> 'a List

end

3.2. STRUCTURES AND SIGNATURES 65

As an exercise, convince yourself that S matches SIG by arguing along the

same lines as we've done for the other examples considered so far.

In the above example the signature SIG ascribed to S has no entries for

the constructors of the data type List. There are two ways to specify the

constructors in SIG. One is to treat them just like ordinary values, as the

following example illustrates.

- signature SIG =

sig

type 'a List

val Nil : 'a List

val Cons : 'a * 'a List -> 'a List

val Append : 'a List * 'a List -> 'a List

end;

- structure S : SIG =

struct

datatype 'a List = Nil | Cons of 'a * 'a List

fun Append(x,Nil) = x

| Append(x,Cons(h,t)) = Cons(h,Append(x,t))

end;

> structure S =

struct

type 'a List

val Nil : 'a List

val Cons : 'a * 'a List -> 'a List

val Append = fn : 'a List * 'b List -> 'a List

end

Notice that 'a List is no longer a data type, and that Nil and Cons are

simply variables, not value constructors.

The other possibility is to specify the constructors as constructors so that

the structure of a type is visible. The way to do this is with the data type

speci�cation, which is syntactically identical to the data type declaration.

Here's an example:

- signature SIG =

sig

datatype 'a List = Nil | Cons of 'a * 'a List

66 CHAPTER 3. THE MODULES SYSTEM

val Append : 'a List * 'a List -> 'a List

end;

- structure T : SIG = S;

> structure T =

struct

type 'a List

con Nil : 'a List

con Cons : 'a * 'a List -> 'a List

val Append = fn : 'a List * 'a List -> 'a List

end

The utility of this approach to specifying constructors will be explained below

when we introduce functors.

Abstract type declarations in structures do not present any new issues for

signature matching as they merely serve to declare a type and some identi�ers

associated with it. Abstract type speci�cations do not arise because, as we

shall see below, we have another means of treating types abstractly, and so

there is no need of such a speci�cation.

Exercise 3.2.5 De�ne an implementation of stacks using signatures and
structures.

In practice, structures are typically built up from one another according

to some pattern determined by the application. If a structure S is built from

another structure T , then S is said to depend on T . MacQueen classi�es

dependency in two ways. First, the dependence of S on T may be essen-
tial or inessential. Essential dependence arises when S may only be used in

conjunction with T | the relationship between the two is so close that they

may not be usefully separated. All other forms of dependence are inessen-

tial. Second, the dependence of S on T may be either explicit or implicit.

S explicitly depends on T if the signature of S can only be expressed by

reference to the signature of T ; otherwise the dependence is implicit. Note

that explicit dependence is always essential.

The simplest case of inessential dependence occurs when S imports a value

from T, as in the following example:

- structure T =

struct

3.2. STRUCTURES AND SIGNATURES 67

val x = 7

end;

> structure T =

struct

val x = 7 : int

end

- structure S =

struct

val y = T.x + 1

end;

> structure S =

struct

val y = 8 : int

end

It is clear that S can be used independently of T, even though S was de�ned

by reference to T. This form of dependence is sometimes called dependence
by construction.

Essential dependence is much more important. One form of essential

dependence occurs when T declares an exception that can be raised by a

function in S. For example,

- structure T =

struct

exception Barf

fun foo(x) = if x=0 then raise Barf else 3 div x

end;

> structure T =

struct

exception Barf

val foo = fn : int->int

end

- structure S =

struct

fun g(x) = T.foo(x) + 1

end

Since S.g(0) raises the exception Barf, the use of S is limited to contexts in

which T is available, for otherwise one cannot handle the exception. Therefore

68 CHAPTER 3. THE MODULES SYSTEM

S depends essentially on T, and ought to be packaged together with it. Note,

however, that the dependence is implicit, for the signature of S printed by

ML does not make reference to T.

Essential and explicit dependence occurs when S overtly uses a data type

de�ned in T, as in

- structure T =

struct

datatype 'a List = Nil | Cons of 'a * 'a List

fun len(Nil) = 0

| len(Cons(h,t)) = 1 + len(t)

end;

> structure T =

struct

type 'a List

con Nil : 'a List

con Cons : 'a * 'a List -> 'a List

val len = fn : 'a List -> int

end

- structure S =

struct

val len = T.len

end;

> structure S =

struct

val len = fn : 'a T.List -> int

end

Notice that the signature of S makes reference to the structure T, re
ecting

the fact that len may only be applied to values of a type de�ned in T.

Note that the signature closure rule precludes the possibility of ascribing

a non-trivial signature to S in the above example, for a signature expression

may not contain free references to structure identi�ers such as T. This may

seem like an arbitrary restriction, but in fact it serves to call attention to the

fact that S and T are closely related, and should be packaged together as a

unit. This kind of packaging can be achieved by making T be a substructure

of S by including the declaration of T within the encapsulated declaration of

S, as follows:

3.2. STRUCTURES AND SIGNATURES 69

- structure S =

struct

structure T =

struct

datatype 'a List = Nil | Cons of 'a * 'a List

fun len(Nil) = 0

| len(Cons(h,t)) = 1 + len(t)

end

val len = T.len

end;

> structure S =

struct

structure T =

struct

type 'a List

con Nil : 'a List

con Cons : 'a * 'a List -> 'a List

val len = fn : 'a List -> int

end

val len = fn : 'a T.List -> int

end

In this way one may form a hierarchical arrangement of interdependent struc-

tures, and may thereby package together a related set of structures as a unit.

Substructures require the de�nition of a structure path to be generalized

to an arbitrary dot-separated sequence of structure identi�ers, each a com-

ponent of the previous. For example, S.T is a structure path, and S.T.len

is a quali�ed name that selects the function len in the structure T in the

structure S.

By making T be a substructure of S, we can express the signature of S

within the language by using substructure speci�cations and quali�ed names,

as in the following example:

- signature SIGT =

sig

datatype 'a List = Nil | Cons of 'a * 'a List

val len : 'a List -> int

end;

70 CHAPTER 3. THE MODULES SYSTEM

- signature SIGS =

sig

structure T : SIGT

val len : 'a T.List -> int

end;

Notice the structure speci�cation in SIGS, which asserts that the substructure

T is to match signature SIGT. Note also that the speci�cation of len in SIGS

mentions T.List, which is local to SIGS by virtue of the fact that T is a

substructure of S.

Exercise 3.2.6 De�ne a structure Exp that implements a datatype of ex-
pressions with associated operation. It should satisfy the signature

- signature EXP =

sig

datatype id = Id of string

datatype exp = Var of id

| App of id * (exp list)

end

De�ne another signature SUBST, and structure Subst, that implements sub-
stitutions for these expressions (i.e., de�ne a type subst in terms of a list
of identi�er/expression pairs, and a substitute function, which, given a sub-

stitution and an expression, returns the expression resulting from applying
substitution.

3.3 Abstractions

We noted above that the process of signature matching \cuts down" struc-

tures so that they have only the components present in the signature. The

ascription of a signature to a structure provides a \view" of that structure,

so that signature matching provides a limited form of information hiding by

restricting access to only those components that appear in the signature.

One reason to make such restrictions is that it can be helpful in program

maintenance to precisely de�ne the interface of each program module. Simi-

lar concerns are addressed by abstract types in the core language: one reason

3.3. ABSTRACTIONS 71

to use an abstract type is to ensure that all uses of that type are indepen-

dent of the details of the implementation. Signature matching can provide

some of the facilities of abstract types since with it one can \throw away"

the constructors of a data type, thereby hiding the representation. But this

turns out to be a special case of a more general information hiding construct

in ML, called an abstraction.

The fundamental idea is that we would like, in certain circumstances, to

limit the view of a structure to being exactly what is speci�ed in the signature.

The following example illustrates the point:

- signature SIG =

sig

type t

val x : t -> t

end;

- structure S : SIG =

struct

type t = int

val x = fn x => x

end;

> structure S =

struct

type t = int

val x = fn : t -> t

end

- S.x(3);

> 3 : int

- S.x(3) : S.t;

> 3 : int : S.t

Note that S.t is int, even though SIG makes no mention of this fact.

The purpose of an abstraction is to suppress all information about the

structure other than what explicitly appears in the signature.

- abstraction S : SIG =

struct

type t = int

val x = fn x => x

72 CHAPTER 3. THE MODULES SYSTEM

end;

> abstraction S : SIG

- S.x(3);

> 3 : int

- S.x(3) : S.t;

Type error in: S.x(3) : S.t

Looking for a: int

I have found a: S.t

The e�ect of the abstraction declaration is to limit all information about S

to what is speci�ed in SIG.

There is a close connection between abstractions and abstract types. Con-

sider the following abstract type:

- abstype 'a set = set of 'a list

with

val empty_set = set([])

fun union(set(l1),set(l2)) = set(l1@l2)

end;

> type 'a set

val empty_set = - : 'a set

val union = fn : 'a set * 'a set -> 'a set

- empty_set;

> - : 'a set

This declaration de�nes a type 'a setwith operations empty set and union.

The constructor set for sets is hidden in order to ensure that the type is

abstract (i.e., that no client can depend on the representation details).

In general, an abstype declaration de�nes a type and a collection of

operations on it, while hiding the implementation type. Abstractions provide

another way of accomplishing the same thing, as the following example shows.

- signature SET =

sig

type 'a set

val empty_set : 'a set

val union : 'a set * 'a set -> 'a set

end;

3.3. ABSTRACTIONS 73

- abstraction Set : SET =

struct

datatype 'a set = set of 'a list

val empty_set = set([])

fun union(set(l1),set(l2)) = set(l1@l2)

end;

> abstraction Set : SET

- Set.set;

Undefined variable Set.set

- S.empty_set;

> - : 'a S.set

Exercise 3.3.1 De�ne an abstraction for complex numbers using the signa-
ture

- signature COMPLEX =

sig

type complex

exception divide : unit

val rectangular: { real: real, imag: real } -> complex

val plus: complex * complex -> complex

val minus: complex * complex -> complex

val times: complex * complex -> complex

val divide: complex * complex -> complex

val eq : complex * complex -> bool

val real_part: complex -> real

val imag_part: complex -> real

end;

[Hint: Given two complex numbers z1 = a+ ib and z2 = c+ id, the following

hold
z1 + z2 = (a+ c) + i(b+ d)

z1 � z2 = (a� c) + i(b� d)

z1 � z2 = (ac� bd) + i(ad+ bc)

z1=z2 =
(ac+ bd) + i(bc� ad)

c
2 + d

2

]

74 CHAPTER 3. THE MODULES SYSTEM

Abstractions are more
exible than abstract types in one sense, and a

bit less
exible in another. The
exibility comes from the fact that the

abstraction needn't �t the \data type with operations" mold imposed by

abstract types. For example, no type need be declared at all, or if so, it

needn't be a data type. Abstract types are marginally more
exible in that

they are ordinary declaration forms, and may therefore appear anywhere

that a declaration may appear, whereas abstractions are subject to the same

limitations as structure bindings: they may only appear at top level or within

an encapsulated declaration. This limitation does not appear to be unduly

restrictive as it is customary to de�ne all types at top level anyway.2

3.4 Functors

ML programs are hierarchical arrangements of interrelated structures. Func-

tors, which are functions on structures, are used to manage the dynamics of

program development in ML. Functors play the role of a linking loader in

many programming languages: they are the means by which a program is

assembled from its component parts.

Functors are de�ned using functor bindings, which may only occur at

top level. The syntax of a functor binding is similar to the clausal form of

function de�nition in the core language. Here is an example:

- signature SIG =

sig

type t

val eq : t * t -> bool

end;

- functor F(P: SIG) : SIG =

struct

type t = P.t * P.t

fun eq((x,y),(u,v)) = P.eq(x,u) andalso P.eq(y,v)

end;

> functor F(P: SIG): SIG

2It is advisable to avoid abstype's in ML because they are being phased out in favor

of abstractions.

3.4. FUNCTORS 75

The signature SIG speci�es a type t with a binary relation eq. The functor F

de�nes a function that, given any structure matching signature SIG, returns

another structure, which is required to match SIG as well. (Of course, the

result signature may, in general, di�er from the parameter signature.)

Functors are applied to structures to yield structures.

- structure S : SIG =

struct

type t = int

val eq : t*t->bool = op =

end;

> structure S =

struct

type t = int

val eq = fn : t*t->bool

end

- structure SS : SIG = F(S);

> structure SS =

struct

type t = int * int

val eq = fn : t * t -> bool

end

Here we have created a structure S that matches signature SIG. The functor F,

when applied to structure S, builds another structure of the same signature,

but with t being the type of pairs of integers, and the equality function

de�ned on these pairs. Notice how SS is built as a function of S by F.

Functors enjoy a degree of polymorphism that stems from the fact that

signature matching is de�ned to allow the structure to have more information

than is required by the signature (which is then thrown away, as discussed

above). For example,

- structure T : SIG =

struct

type t = string * int

val eq : t * t -> bool = op =

fun f(x:t)=(x,x)

end;

76 CHAPTER 3. THE MODULES SYSTEM

> structure T =

struct

type t = string * int

val eq = fn : t * t -> bool

end;

- structure TT : SIG = F(T);

> structure TT =

struct

type t = (string*int)*(string*int)

val eq : t * t -> bool

end

Although functors are limited to a single argument, this is not a serious

limitation, for several structures can be packaged into one as substructures,

and then passed to a functor. In practice this is not much of an inconvenience,

for it is usually the case that if one wants to pass several structures to a

functor, then they are so closely related as to be packaged together anyway.

Functors are subject to a closure restriction similar to that for signatures:

they may not have any free references to values, types, or exceptions in the

environment (except for pervasive system primitives.) The functor body

may freely refer to the parameters and their components (using quali�ed

names), to locally-declared identi�ers, and to previously-declared functors

and signatures.

Though it is perhaps the most common case, the body of a functor need

not be an encapsulated declaration; quali�ed names and functor applications

are perfectly acceptable (but functors are not recursive!). Here are some

examples:

- functor G(P: SIG): SIG = F(F(P));

> functor G(P: SIG): SIG

- functor I(P: SIG): SIG = P;

> functor I(P: SIG): SIG

It is worth noting that the functor I is not the identity function, for if S is

a structure matching SIG but with more components than are mentioned in

SIG, then the result of the application F(S) will be the cut-down view of S,

and not S itself. For example,

3.5. THE MODULES SYSTEM IN PRACTICE 77

- structure S =

struct

type t = int

val eq = op =

fun f(x) = x

end;

> structure S =

struct

type t = int

val eq = fn : int * int -> bool

val f = fn : 'a -> 'a

end

- structure S' = I(S);

> structure S' =

struct

type t = int

val eq = fn : t * t -> bool

end

Notice that the component f of S is missing from the result of applying I to

S.

Exercise 3.4.1 Convert your implementation of sets using an ordered list
representation into a form where the equality and ordering functions are pro-
vided as arguments to a set functor.

This completes our introduction to the fundamental mechanisms of the

ML modules system. There is one very important idea still to be discussed,

the sharing speci�cation. We defer considering sharing speci�cations until

we have illustrated the use of functors in programming.

3.5 The modules system in practice

In this section we illustrate the use of the modules system in program de-

velopment. We shall consider, in outline, the development of a parser that

translates an input stream into an abstract syntax tree and records some in-

formation about the symbols encountered into a symbol table. The program

78 CHAPTER 3. THE MODULES SYSTEM

is divided into four units, one for the parser, one for the abstract syntax tree

management routines, one for the symbol table, and one to manage symbols.

Here are the signatures of these four units:

- signature SYMBOL =

sig

type symbol

val mksymbol: string -> symbol

val eqsymbol: symbol * symbol -> bool

end;

- signature ABSTSYNTAX =

sig

structure Symbol : SYMBOL

type term

val idname: term -> Symbol.symbol

end;

- signature SYMBOLTABLE =

sig

structure Symbol : SYMBOL

type entry

type table

val mktable : unit -> table

val lookup : Symbol.symbol * table -> entry

end;

- signature PARSER =

sig

structure AbstSyntax : ABSTSYNTAX

structure SymbolTable : SYMBOLTABLE

val symtable : SymbolTable.table

val parse: string -> AbstSyntax.term

end;

Of course, these signatures are abbreviated and idealized, but it is hoped that

they are su�ciently plausible to be convincing and informative. Please note

the hierarchical arrangement of these structures. Since the parser module

uses both the abstract syntax module and the symbol table module in an

essential way, it must include them as substructures. Similarly, both the

3.5. THE MODULES SYSTEM IN PRACTICE 79

abstract syntax module and the symbol table module include the symbol

module as substructures.

Now let's consider how we might build a parser in this con�guration. For-

getting about the algorithms and representations, we might think of writing

down a collection of structures such as the following:

- structure Symbol : SYMBOL =

struct

datatype symbol = symbol of string * ...

fun mksymbol(s) = symbol(s, ...)

fun eqsymbol(sym1, sym2) = ...

end;

- structure AbstSyntax : ABSTSYNTAX =

struct

structure Symbol : SYMBOL = Symbol

datatype term = ...

fun idname(term) = ...

end;

- structure SymbolTable : SYMBOLTABLE =

struct

structure Symbol : SYMBOL = Symbol

type entry = ...

type table = ...

fun mktable() = ...

fun lookup(sym,table) = ...

end;

- structure Parser : PARSER =

struct

structure AbstSyntax : ABSTSYNTAX = AbstSyntax

structure SymbolTable : SYMBOLTABLE = SymbolTable

val symtable = SymbolTable.mktable();

fun parse(str) =

... SymbolTable.lookup(AbstSyntax.idname(t), symtable) ...

end;

Note that in the last line of Parser we apply SymbolTable.lookup to the

result of an application of AbstSyntax.idname. This is type correct only by

80 CHAPTER 3. THE MODULES SYSTEM

virtue of the fact that AbstSyntax and SymbolTable include the same struc-

ture Symbol. Were there to be two structures matching signature SYMBOL,

one bound into SymbolTable and the other bound into AbstSyntax, then this

line of code would not type check. Keep this fact in mind in what follows.

Now this organization of our compiler seems to be OK, at least so far

as the static structure of the system is concerned. But if you imagine that

there are umpteen other structures around, each with a few thousand lines of

code, then one can easily imagine that this approach would become somewhat

unwieldy. Suppose that there is a bug in the symbol table code, which we

�x, and now we would like to rebuild the system with the new symbol table

module installed. This requires us to recompile the above set of structure

expressions (along with all the others that are a�ected as a consequence) in

order to rebuild the system. Clearly some form of separate compilation and

linking facility is needed. What we are aiming at is to be able to recompile

any one module in isolation from the others, and then relink the compiled

forms into the desired static con�guration. Of course, this idea is not new;

the point is to see how it's done in ML.

The key is never to write down a structure explicitly, but rather to orga-

nize the system as a set of functors, each taking its dependents as arguments

(and taking no arguments if it has no dependents). Then to link the sys-

tem, one merely applies the functors so as to construct the appropriate static

con�guration. For our example, the functors will look like this:

- functor SymbolFun(): SYMBOL =

struct

datatype symbol = symbol of string * ...

fun mksymbol(s) = symbol(s, ...)

fun eqsymbol(sym1, sym2) = ...

end;

- functor AbstSyntaxFun(Symbol: SYMBOL): ABSTSYNTAX =

struct

structure Symbol : SYMBOL = Symbol

datatype term = ...

fun idname(term) = ...

end;

- functor SymbolTableFun(Symbol: SYMBOL): SYMBOLTABLE =

struct

3.5. THE MODULES SYSTEM IN PRACTICE 81

structure Symbol : SYMBOL = Symbol

type entry = ...

type table = ...

fun mktable() = ...

fun lookup(sym,table) = ...

end;

- signature PARSER_PIECES =

sig

structure SymbolTable : SYMBOLTABLE

structure AbstSyntax : ABSTSYNTAX

end;

- functor ParserFun(Pieces: PARSER_PIECES): PARSER =

struct

structure AbstSyntax : ABSTSYNTAX = Pieces.AbstSyntax

structure SymbolTable : SYMBOLTABLE = Pieces.SymbolTable

val symtable = SymbolTable.mktable();

fun parse(str) =

... SymbolTable.lookup(AbstSyntax.idname(t), symtable) ...

end;

The signature PARSER PIECES is the signature of the two components on

which the parser depends, the symbol table and the abstract syntax. The

functor ParserFun depends on such a pair in order to construct a parser. The

functor SymbolFun takes no arguments since it has no dependent structures

in our setup.

The system is built up from these functors by the following sequence of

declarations. You should be able to convince yourself that they result in the

same static con�guration that we de�ned above.

- structure Symbol : SYMBOL = SymbolFun();

- structure Pieces : PARSER_PIECES =

struct

structure SymbolTable : SYMBOLTABLE = SymbolTableFun(Symbol)

structure AbstSyntax : ABSTSYNTAX = AbstSyntaxFun(Symbol)

end;

- structure Parser : PARSER = ParserFun(Pieces);

We have glossed over a problem with ParserFun, however. Recall that we

said that the function parse de�ned in Parser is type correct only by virtue

82 CHAPTER 3. THE MODULES SYSTEM

of the fact that SymbolTable and AbstSyntax have the same substructure

Symbol, and hence the same type of symbols. Now in ParserFun, the function

parse knows only the signatures of these two structures, and not that they

are implemented in a compatible way. Therefore the compiler is forced to

reject ParserFun, and our policy of using functors to support modularity

appears to be in trouble.

There is a way around this, called the sharing speci�cation. The idea is

to attach a set of equations to the signature PARSER PIECES that guarantees

that only a compatible pair of symbol table and abstract syntax structures

can be passed to ParserFun. Here is a revised de�nition of PARSER PIECES

that expresses the requisite sharing information:

- signature PARSER_PIECES =

sig

structure SymbolTable : SYMBOLTABLE

structure AbstSyntax : ABSTSYNTAX

sharing SymbolTable.Symbol = AbstSyntax.Symbol

end;

The sharing clause ensures that only compatible pairs of symbol table and

abstract syntax modules may be packaged together as PARSER PIECES (where

\compatible" means \having the same Symbol module".) Using this revised

signature, the declaration of ParserFun is now legal, and can be used to

construct the con�guration of structures that we described above.

There are, in general, two forms of sharing speci�cation, one for types and

one for structures. In the above example we used a structure sharing speci�-

cation to insist that two components of the parameters be equal structures.

Two structures are equal if and only if they result from the same evalua-

tion of the same struct expression or functor application. For example, the

following attempt to construct an argument for ParserFun fails because the

sharing speci�cation is not satis�ed:

- structure Pieces : PARSER_PIECES =

struct

structure SymbolTable = SymbolTableFun(SymbolFun())

structure AbstSyntax = AbstSyntaxFun(SymbolFun())

end;

3.5. THE MODULES SYSTEM IN PRACTICE 83

The problem is that each application of SymbolFun yields a distinct structure,

and therefore SymbolTable and AbstSyntax fail the compatibility check.

The second form of sharing speci�cation is between types. For example,

the following version of PARSER PIECES might su�ce if the only important

point is that the type of symbols be the same in both the symbol table

module and the abstract syntax module:

- signature PARSER_PIECES =

sig

structure SymbolTable : SYMBOLTABLE

structure AbstSyntax : ABSTSYNTAX

sharing SymbolTable.Symbol.symbol = AbstSyntax.Symbol.symbol

end;

Type equality is similar to structure equality in that two data types are equal

if and only if they result from the same evaluation of the same declaration.

So, for example, if we have two syntactically identical data type declarations,

the types they de�ne are distinct.

Returning to our motivating example, suppose that we wish to �x a bug

in the symbol manipulation routines. How, then, is our program to be re-

constructed to re
ect the change? First, we �x the bug in SymbolFun, and

re-evaluate the functor binding for SymbolFun. Then we repeat the above

sequence of functor applications in order to rebuild the system with the new

symbol routines. The other functors needn't be recompiled, only reapplied.

Chapter 4

Input-Output

ML provides a small collection of input/output primitives for performing sim-

ple character I/O to �les and terminals. The fundamental notion in the ML

I/O system is the character stream, a �nite or in�nite sequence of characters.
There are two types of stream, instream for input streams, and outstream

for output streams. An input stream receives its characters from a producer,
typically a terminal or disk �le, and an output stream sends its characters

to a consumer, also often a terminal or disk �le. A stream is initialized by

connecting it to a producer or consumer. Input streams may or may not

have a de�nite end, but in the case that they do, ML provides primitives for

detecting this condition.

The fundamental I/O primitives are packaged into a structure BasicIO

with signature BASICIO, de�ned as follows:

- signature BASICIO = sig

(* Types and exceptions *)

type instream

type outstream

exception io_failure: string

(* Standard input and output streams *)

val std_in: instream

val std_out: outstream

(* Stream creation *)

84

85

val open_in: string -> instream

val open_out: string -> outstream

(* Operations on input streams *)

val input: instream * int -> string

val lookahead: instream -> string

val close_in: instream -> unit

val end_of_stream: instream -> bool

(* Operations on output streams *)

val output: outstream * string -> unit

val close_out: outstream -> unit

end;

BasicIO is implicitly open'd by the ML system, so these identi�ers may be

used without a quali�ed name.

The type instream is the type of input streams and the type outstream

is the type of output streams. The exception io failure is used to represent

all of the errors that may arise in the course of performing I/O. The value

associated with this exception is a string representing the type of failure,

typically some form of error message.

The instream std in and the outstream std out are automatically con-

nected to the user's terminal1

The open in and open out primitives are used to associate a disk �le

with a stream. The expression open in(s) creates a new instream whose

producer is the �le named s and returns that stream as value. If the �le

named by s does not exist, the exception io failure is raised with value

"Cannot open "^s. Similarly, open out(s) creates a new outstreamwhose

consumer is the �le s, and returns that stream.

The input primitive is used to read characters from a stream. Evaluation

of input(s,n) causes the removal of n characters from the input stream s.

If fewer than n characters are currently available, then the ML system will

wait until they become available from the producer associated with s.2 If the

1Under UNIX, they are actually connected to the ML process's standard input and

standard output �les, which may or may not be a terminal.
2The exact de�nition of \available" is implementation-dependent. For instance, oper-

ating systems typically bu�er terminal input on a line-by-line basis so that no characters

86 CHAPTER 4. INPUT-OUTPUT

end of stream is reached while processing an input, fewer than n characters

may be returned. In particular, input from a closed stream returns the null

string. The function lookahead(s) returns the next character on instream

s without removing it from the stream. Input streams are terminated by the

close in operation. It is not ordinarily necessary to close input streams, but

in certain cases it is desirable to do so due to host system limitations. The

end of an input stream is detected by end of stream, a derived form that is

de�ned as follows:

- val end_of_stream(s) = (lookahead(s)="")

Characters are written to an outstream with the output primitive. The

string argument consists of the characters to be written to the given outstream.

The function close out is used to terminate an output stream. Any further

attempts to output to a closed stream cause io failure to be raised with

value "Output stream is closed".

In addition to the basic set of I/O primitives de�ned above, ML also

provides a few extended operations. One is called input line, of type

instream->string, which reads an entire line from the given input stream.

A line is de�ned to be a sequence of characters terminated by a newline char-

acter, \n. Another is the function use of type string list->unit, which

takes a list of �le names, which are to be loaded into the ML system as

though they had been typed at top level. This primitive is very useful for

interacting with the host system, particularly for large programs.

Exercise 4.0.1 Modify your towers of hanoi program so that it prints out

the sequence of moves.

Exercise 4.0.2 Write a function to print out your solutions to the queens
problem in the form of a chess board.

are available until an entire line has been typed.

Bibliography

[1] Harold Abelson and Gerald Sussman, Structure and Interpretation of

Computer Programs, The MIT Press, 1985.

[2] Rod Burstall, David MacQueen, and Donald Sannella, HOPE: An Ex-

perimental Applicative Language, Edinburgh University Internal Report

CSR-62-80, 1980.

[3] Luca Cardelli, ML under UNIX, AT&T Bell Laboratories, 1984.

[4] Michael Gordon, Robin Milner, and Christopher Wadsworth, Edinburgh

LCF, Springer{Verlag Lecture Notes in Computer Science, vol. 78, 1979.

[5] Robert Harper, David MacQueen, and Robin Milner, Standard ML, Ed-

inburgh University Internal Report ECS{LFCS{86-2, March, 1986.

[6] David MacQueen, Modules for Standard ML, in [5].

[7] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Stan-

dard ML. MIT Press, 1990.

87

Appendix A

Answers

Answer 2.3.1:

1. Unbound value identifier: x

2. > val x = 1: int

> val y = 3: int

> val z = 2: int

3. > 3: int

Answer 2.4.1:

The computer would match hd::tl::nil against

"Eat"::"the"::"walnut"::nil. The lists are of di�erent length

so the pattern matching would fail.

Answer 2.4.2:

1. { b=x, ... }

2. _::_::x::_ or [_, _, x, _, _]

3. [_, (x,_)]

Answer 2.5.1:

local val pi = 3.141592654

in fun circumference r = 2.0 * pi * r

fun area r = pi * r * r

end

88

89

Answer 2.5.2:

fun abs x = if x < 0.0 then ~x else x

Answer 2.5.3:

To evaluate fact(n), the systemmust evaluate newif(n=0,1,fact(n-1)).

The arguments to this function must be evaluated before the call

to the function. This involves evaluating fact(n-1), even when

n<= 0. The function will therefore loop.

Answer 2.5.5:

This is an ine�cient de�nition of a function to reverse the order

of the elements in a list.

Answer 2.5.6:

fun isperfect n =

let fun addfactors(1) = 1

| addfactors(m) =

if n mod m = 0

then m + addfactors(m-1) else addfactors(m-1)

in (n < 2) orelse (addfactors(n div 2) = n) end;

Answer 2.5.7:

fun cons h t = h::t

fun powerset [] = [[]]

| powerset(h::t) =

let val pst = powerset t in (map (cons h) pst) @ pst end;

Answer 2.5.8:

fun cc(0,_) = 1

| cc(_,[]) = 0

| cc(amount, kinds as (h::t)) =

if amount < 0 then 0

else cc(amount-h,kinds) + cc(amount, t);

fun count_change coins amount = cc(amount, coins);

90 APPENDIX A. ANSWERS

Answer 2.5.9:

fun nth(0,l) = l | nth(n,h::t) = nth(n-1,t);

fun count_change coins sum =

let fun initial_table [] = [[0]]

| initial_table (h::t) = []::(initial_table t)

fun count(amount,table) =

let fun count_using([],l) = l

| count_using(h::t,h1::t1) =

let val t1' as ((c::_)::_) =

count_using(t,t1)

val diff = amount - h

val cnt = c + if diff < 0 then 0

else if diff = 0 then 1

else hd(nth(h-1,h1))

in (cnt::h1)::t1'

end

in if amount > sum then hd(hd table)

else count(amount+1,count_using(coins,table))

end

in count(0, initial_table coins) end;

Answer 2.5.10:

local

fun move_disk(from, to) = (from, to);

fun transfer(from, to, spare, 1) = [move_disk(from, to)]

| transfer(from, to, spare, n) =

transfer(from, spare, to, n-1)

@ [move_disk(from, to)]

@ transfer(spare, to, from, n-1)

in

fun tower_of_hanoi(n) = transfer("A","B","C",n)

end;

91

An alternative solution, that explicitlymodels the disks, and checks for illegal

moves, could be written as follows.

local

fun incl(m,n) = if m>n then [] else m::incl(m+1,n)

fun move_disk((f,fh::fl), (t,[]), spare) =

((f,fl), (t,[fh]), spare)

| move_disk((f,fh::fl), (t,tl as (th::tt)), spare) =

if (fh: int) > th then error "Illegal move"

else ((f,fl), (t,fh::tl), spare);

fun transfer(from, to, spare, 1) = move_disk(from, to, spare)

| transfer(from, to, spare, n) =

let val (f1,s1,t1) = transfer(from, spare, to, n-1)

val (f2,t2,s2) = move_disk(f1, t1, s1)

val (s3,t3,f3) = transfer(s2, t2, f2, n-1)

in (f3,t3,s3) end

in

fun tower_of_hanoi(n) =

transfer(("A",incl(1,n)),("B",[]),("C",[]),n)

end;

Answer 2.7.1:

fun samefrontier(empty,empty) = true

| samefrontier(leaf x, leaf y) = x = y

| samefrontier(node(empty,t1), node(empty,t2)) =

samefrontier(t1,t2)

| samefrontier(node(leaf x,t1), node(leaf y,t2)) =

x = y andalso samefrontier(t1,t2)

| samefrontier(t1 as node _, t2 as node _) =

samefrontier(adjust t1, adjust t2)

| samefrontier(_,_) = false

and adjust(x as node(empty,_)) = x

| adjust(x as node(leaf _,_)) = x

| adjust(node(node(t1,t2),t3)) = adjust(node(t1,node(t2,t3)));

92 APPENDIX A. ANSWERS

An alternative solution, using exceptions (section 2.8) is given below.

fun samefrontier(tree1,tree2) =

let exception samefringe : unit

fun check_el(empty, empty, rest_t2) = rest_t2

| check_el(leaf x, leaf y, rest_t2) =

if x = y then rest_t2 else raise samefringe

| check_el(el, node(l,r), rest_t2) =

check_el(el, l, r::rest_t2)

| check_el(_, _, _) = raise samefringe

fun check(_, []) = raise samefringe

| check(empty, tree2) =

check_el(empty, hd tree2, tl tree2)

| check(l as leaf(el), tree2) =

check_el(l, hd tree2, tl tree2)

| check(node(t1,t2), tree2) =

check(t2, check(t1, tree2))

in null(check(tree1,[tree2])) handle samefringe => false

end;

Answer 2.7.2:

abstype 'a set = set of 'a list

with val emptyset = set []

fun singleton e = set [e]

fun union(set l1, set l2) = set(l1@l2)

fun member(e, set []) = false

| member(e, set (h::t)) =

(e = h) orelse member(e, set t)

fun intersection(set [], s2) = set []

| intersection(set(h::t), s2) =

let val tset as (set tl) = intersection(set t, s2)

in if member(h,s2) then set(h::tl) else tset end

end;

Answer 2.7.3:

abstype 'a set = set of ('a list *

93

{ eq: 'a * 'a -> bool,

lt: 'a * 'a -> bool })

with fun emptyset ops = set([], ops)

fun singleton(e, ops) = set([e], ops)

fun member(e, set (l,{eq,lt})) =

let fun find [] = false

| find (h::t) =

if eq(e, h) then true

else if lt(e, h) then false

else find(t)

in find l end

fun union(set(l,ops as {eq,lt}), set(l',_)) =

let fun merge([],l) = l

| merge(l,[]) = l

| merge(l1 as (h1::t1), l2 as (h2::t2)) =

if eq(h1,h2) then h1::merge(t1,t2)

else if lt(h1,h2) then h1::merge(t1,l2)

else h2::merge(l1,t2)

in set(merge(l,l'),ops) end

fun intersect(set(l,ops as {eq,lt}), set(l',_)) =

let fun inter([],l) = []

| inter(l,[]) = []

| inter(l1 as (h1::t1), l2 as (h2::t2)) =

if eq(h1,h2) then h1::inter(t1,t2)

else if lt(h1,h2) then inter(t1,l2)

else inter(l1,t2)

in set(inter(l,l'),ops) end

end;

Answer 2.8.1:

1. The exception bound to the outer exn is distinct from that

bound to the inner exn; thus the exception raised by f(200),

94 APPENDIX A. ANSWERS

with excepted value 200, could only be handled by a han-

dler within the scope of the inner exception declaration - it

will not be handled by the handler in the program, which

expects a boolean value. So this exception will be reported

at top level. This would apply even if the outer exception

declaration were also of type int; the two exceptions bound

to exn would still be distinct.

2. If p(v) is false but q(v) is true, the recursive call will evalu-

ate f(b(v)). Then, if both p(b(v)) and q(b(v)) are false, this

evaluation will raise an exn exception with excepted value

d(b(v)). But this packet will not be handled, since the ex-

ception of the packet is that which is bound to exn by the

inner - not outer - evaluation of the exception declaration.

Answer 2.8.2:

fun threat((x:int,y), (x',y')) =

(x = x')

orelse (y = y')

orelse (x+y = x'+y')

orelse (x-y = x'-y')

fun conflict(pos, []) = false

| conflict(pos, h::t) = threat(pos,h) orelse conflict(pos,t);

exception conflict;

fun addqueen(i,n,place) =

let fun tryqueen(j) =

(if conflict((i,j), place) then raise conflict

else if i=n then (i,j)::place

else addqueen(i+1,n,(i,j)::place))

handle conflict =>

if j = n then raise conflict else tryqueen(j+1)

in tryqueen(1) end;

fun queens(n) = addqueen(1, n, [])

95

Answer 2.8.3:

exception conflict: ((int * int) list) list;

fun addqueen(i,n,place,places) =

let fun tryqueen(j, places) =

(if conflict((i,j), place)

then raise conflict with places

else if i=n

then raise conflict with ((i,j)::place)::places

else addqueen(i+1,n,(i,j)::place,places))

handle conflict with newplaces =>

if j = n then raise conflict with newplaces

else tryqueen(j+1, newplaces)

in tryqueen(1,places) end;

fun allqueens(n) =

addqueen(1,n,[],[]) handle conflict with places => places;

Answer 2.9.1:

val primes =

let fun nextprime(n,l) =

let fun check(n,[]) = n

| check(n,h::t) =

if (n mod h) = 0 then check(n+1,l)

else check(n,t)

in check(n,l) end

fun primstream (n,l) =

mkstream(fn () => let val n' = nextprime(n,l)

in (n', primstream(n'+1,n'::l)) end)

in primstream(2,[]) end;

Answer 2.9.2:

abstype 'a stream = stream of (unit -> ('a * 'a stream)) ref

with fun next(stream f) =

let val res = (!f)() in (f := fn () => res; res) end

fun mkstream f = stream(ref f)

end;

96 APPENDIX A. ANSWERS

An alternative solution, that is more verbose but perhaps clearer, is given

below.

abstype 'a stream = stream of 'a streamelmt ref

and 'a streamelmt = uneval of (unit -> ('a * 'a stream))

| eval of 'a * 'a stream

with fun next(stream(r as ref(uneval(f)))) =

let val res = f() in (r := eval res; res) end

| next(stream(ref(eval(r)))) = r

fun mkstream f = stream(ref(uneval f))

end;

Answer 2.9.3:

abstype 'a stream = stream of (unit -> ('a * 'a stream)) ref

with local exception endofstream in

fun next(stream f) =

let val res = (!f)()

in (f := fn () => res; res)

end

fun mkstream f =

stream(ref f)

fun emptystream() =

stream(ref(fn () => raise endofstream))

fun endofstream(s) =

(next s; false) handle endofstream => true

end

end;

Answer 3.2.1:

structure INTORD: ORD =

struct

type t = int

val le: int * int -> bool = op <

end

structure RSORD: ORD =

struct

97

type t = real * string

fun le((r1:real, s1:string), (r2,s2)) =

(r1 < r2) orelse ((r1 = r2) andalso (s1 < s2))

end

Answer 3.2.2:

The signature requires the type of n to be an 'a list, i.e. if a

structure Tmatches SIG, then true::(T.n) should be legitimate.

This cannot be the case if we were allowed to supply a value for

n with a more speci�c type such as int list. Therefore the

declaration is disallowed.

Answer 3.2.3:

sig type 'a t val x: bool * int end

and

sig type 'a t val x: bool t end

Answer 3.2.4:

Only sig type t val f: t -> t end satis�es the signature

closure rule (the others contain free references to the structure

A).

Answer 3.2.5:

signature STACK =

sig

datatype 'a stack = nilstack | push of 'a * 'a stack

exception pop: unit and top: unit

val empty: 'a stack -> bool

and pop: 'a stack -> 'a stack

and top: 'a stack -> 'a

end

structure Stack: STACK =

struct

98 APPENDIX A. ANSWERS

datatype 'a stack = nilstack | push of 'a * 'a stack

exception pop: unit and top: unit

fun empty(nilstack) = true | empty _ = false

fun pop(push(_,s)) = s | pop _ = raise pop

fun top(push(x,_)) = x | top _ = raise top

end

Answer 3.2.6:

structure Exp: EXP =

struct

datatype id = Id of string

datatype exp = Var of id

| App of id * (exp list)

end

signature SUBST =

sig

structure E: EXP

type subst

val subst: (E.id * E.exp) list -> subst

val lookup: E.id * subst -> E.exp

val substitute: subst -> E.exp -> E.exp

end

structure Subst: SUBST =

struct

structure E = Exp

type subst = (E.id * E.exp) list

fun subst(x) = x

fun lookup(id, []) = E.Var id

| lookup(id, (id',e)::l) =

if id = id' then e else lookup(id,l)

fun substitute s (E.Var id) = lookup(id,s)

| substitute s (E.App(id,args)) =

E.App(id, map (substitute s) args)

end

Answer 3.3.1:

99

abstraction Rect: COMPLEX =

struct

datatype complex = rect of real * real

exception divide : unit

fun rectangular { real, imag } = rect(real, imag)

fun plus(rect(a,b), rect(c,d)) = rect(a+c,b+d)

fun minus(rect(a,b), rect(c,d)) = rect(a-c,b-d)

fun times(rect(a,b), rect(c,d)) = rect(a*c - b*d, a*d + b*c)

fun divide(rect(a,b), rect(c,d)) =

let val cd2 = c*c + d*d

in if cd2 = 0.0

then raise divide

else rect((a*c + b*d)/cd2, (b*c - a*d)/cd2) end

fun eq(rect(a,b), rect(c,d)) = (a=c) andalso (b=d)

fun real_part(rect(a,_)) = a

fun imag_part(rect(_,b)) = b

end;

Answer 3.4.1:

signature ORD =

sig

type elem

val eq: elem * elem -> bool

val le: elem * elem -> bool

end

signature SET =

sig

type set

structure O: ORD

val emptyset: set

val singleton: O.elem -> set

val member: O.elem * set -> bool

val union: set * set -> set

val intersect: set * set -> set

end

100 APPENDIX A. ANSWERS

functor Set(O: ORD): SET =

struct

datatype set = set of O.elem list

structure O = O

val emptyset = set []

fun singleton e = set [e]

fun member(e, set l) =

let fun find [] = false

| find (h::t) =

if O.eq(e, h) then true

else if O.lt(e, h) then false

else find(t)

in find l end

fun union(set l, set l') =

let fun merge([],l) = l

| merge(l,[]) = l

| merge(l1 as (h1::t1), l2 as (h2::t2)) =

if O.eq(h1,h2) then h1::merge(t1,t2)

else if O.lt(h1,h2) then h1::merge(t1,l2)

else h2::merge(l1,t2)

in set(merge(l,l')) end

fun intersect(set l, set l') =

let fun inter([],l) = []

| inter(l,[]) = []

| inter(l1 as (h1::t1), l2 as (h2::t2)) =

if O.eq(h1,h2) then h1::inter(t1,t2)

else if O.lt(h1,h2) then inter(t1,l2)

else inter(l1,t2)

in set(inter(l,l')) end

end;

Answer 4.0.1:

local

fun incl(m,n) = if m>n then [] else m::incl(m+1,n)

101

fun move_disk((f,fh::fl), (t,tl), spare) =

if not(null tl) andalso (fh: int) > hd tl

then error "Illegal move"

else

(output(std_out,

"Move " ^ (makestring fh) ^

" from " ^ f ^ " to " ^ t ^ "\n");

((f,fl), (t,fh::tl), spare));

fun transfer(from, to, spare, 1) = move_disk(from, to, spare)

| transfer(from, to, spare, n) =

let val (f1,s1,t1) = transfer(from, spare, to, n-1)

val (f2,t2,s2) = move_disk(f1, t1, s1)

val (s3,t3,f3) = transfer(s2, t2, f2, n-1)

in (f3,t3,s3) end

in

fun tower_of_hanoi(n) =

(transfer(("A",incl(1,n)),("B",[]),("C",[]),n); ())

end;

Answer 4.0.2:

fun printboard(place,n,s) =

let fun present(pos: (int*int), []) = false

| present(pos, h::t) = (pos=h) orelse present(pos,t)

fun printcolumn(i,j) =

if j > n then ()

else

(output(s,if present((i,j), place)

then " Q " else " . ");

printcolumn(i,j+1))

fun printrow(i) =

if i > n then ()

else (printcolumn(i,1);

output(s,"\n");

printrow(i+1))

102 APPENDIX A. ANSWERS

in (printrow(1); output(s,"\n")) end;

