Equivalence of CFG's and PDA's

The title says it all.

- We'll show a language \(L \) is \(L(G) \) for some CFG if and only if it is \(N(P) \) for some PDA \(P \).

Only If (CFG to PDA)

Let \(L = L(G) \) for some CFG \(G = (V, \Sigma, P, S) \).

- Idea: have PDA \(A \) simulate LM derivations in \(G \), where a left-sentential form is represented by:

 1. The sequence of input symbols that \(A \) has consumed from its input, followed by
 2. \(A \)'s stack, topmost.

- Example: If \((q, abcd, S) \overset{*}{\rightarrow} (q, cd, ABC) \), then the LSF represented is \(abABC \).

Moves of \(A \)

- If a terminal \(a \) is on top of the stack, then \(A \) consumes \(a \) from the input and pops it from the stack, if so.
 - The LSF represented doesn't change!
- If a variable \(B \) is on top of the stack, then PDA \(A \) has a choice of replacing \(B \) on the stack by the body of any production with head \(B \).

Formal Construction of \(A \)

\[
A = (\{q\}, \Sigma, V \cup \Sigma, \delta, q_0, S), \quad \text{where } \delta \text{ is defined by:}
\]

1. If \(B \) is in \(V \), then \(\delta(q, \epsilon, B) = \{(q, \alpha) \mid B \rightarrow \alpha \text{ is in } P\} \).
2. If \(a \) is in \(\Sigma \), then \(\delta(q, a, a) = \{(q, \epsilon)\} \).

Example

\[
G = (\{S, A\}, \{0, 1\}, P, S), \quad \text{where } P \text{ consists of } S \rightarrow AS \mid \epsilon; \quad A \rightarrow 0A1 \mid A1 \mid 01.
\]

- \(A = (\{q\}, \{0, 1\}, \{0, 1, A, S\}, \delta, q_0, S), \) where \(\delta \) is defined by:
 - \(\delta(q, \epsilon, S) = \{(q, AS), (q, \epsilon)\} \)
 - \(\delta(q, \epsilon, A) = \{(q, 0A1), (q, A1), (q, 01)\} \)
 - \(\delta(q, 0, 0) = \{(q, \epsilon)\} \)
 - \(\delta(q, 1, 1) = \{(q, \epsilon)\} \)

Only-If Proof (i.e., Grammar \(\Rightarrow \) PDA)

- Prove by induction on the number of steps in the derivation \(\overset{*}{\rightarrow} \) that for any \(x \),
 \((q, wx, S) \overset{*}{\rightarrow} (q, x, \beta) \), where
 1. \(w\beta = \alpha \).
 2. \(\beta \) is the suffix of \(\alpha \) that begins at the leftmost variable (\(\beta = \epsilon \) if there is no variable).
- Also prove the converse, that if \((q, wx, S) \overset{*}{\rightarrow} (q, x, \beta) \), then \(S \Rightarrow w\beta \).
- Inductive proofs in reader.
- As a consequence, if \(y \) is a terminal string, then \(S \Rightarrow y \) iff \((q, y, S) \overset{*}{\rightarrow} (q, \epsilon, \epsilon) \), i.e., \(y \) is in \(L(G) \) iff \(y \) is in \(N(A) \).

PDA to CFG

Assume \(L = L(P) \), where \(P = (Q, \Sigma, \delta, q_0, Z_0) \).

- Key idea: units of PDA action have the net effect of popping one symbol from the stack, consuming some input, and making a state change.
- The triple \([qZp] \) is a CFG variable that generates exactly those strings \(w \) such that \(P \) can read \(w \) from the input, pop \(Z \) (net effect), and go from state \(p \) to state \(q \).
 - More precisely, \((q, w, Z) \overset{*}{\rightarrow} (p, \epsilon, \epsilon) \).
 - As a consequence of above, \((q, wx, Za) \overset{*}{\rightarrow} (p, x, \alpha) \) for any \(x \) and \(\alpha \).
- It's a Zen thing: \([qZp] \) is at once a triple involving states and symbols of \(P \), and yet to the CFG we construct it is a single, indivisible object.
 - OK; I know that's not a Zen thing, but you get the point.
- Complete proof is in the reader. We'll just give some examples and the idea behind the construction.
- Example: a popping rule, e.g., \((p, \epsilon) \) in \(\delta(q, a, Z) \).
 - \([qZp] \rightarrow a \)
• A rule that replaces one symbol and state by others, e.g., \((p, Y)\) in \(\delta(q, a, Z)\).
 • For all states \(r\): \([qZr] \rightarrow a[pZr]\)
• A rule that replaces one stack symbol by two, e.g., \((p, XY)\) in \(\delta(q, a, Z)\).
 • For all states \(r\) and \(s\): \([qZs] \rightarrow a[pXr][rYs]\)

Deterministic PDA’s

Intuitively: never a choice of move.
• \(\delta(q, a, Z)\) has at most one member for any \(q, a, Z\) (including \(a = \epsilon\)).
• If \(\delta(q, \epsilon, Z)\) is nonempty, then \(\delta(q, a, Z)\) must be empty for all input symbols \(a\).

Why Care?

Parsers, as in YACC, are really DPDA’s.
• Thus, the question of what languages a DPDA can accept is really the question of what programming language syntax can be parsed conveniently.

Some Language Relationships

• Acceptance by empty stack is hard for a DPDA.
 • Once it accepts, it dies and cannot accept any continuation.
 • Thus, \(N(P)\) has the prefix property: if \(w\) is in \(N(P)\), then \(wx\) is NOT in \(N(P)\) for any \(x \neq \epsilon\).
• However, parsers do accept by emptying their stack.
 • Trick: they really process strings followed by a unique endmarker (typically \(\$\)) e.g., if they accept \(w\$\), they consider \(w\) to be a correct program.
• If \(L\) is a regular language, then \(L\) is a DPDA language.
 • A DPDA can simulate a DFA, without using its stack (acceptance by final state).
• If \(L\) is a DPDA language, then \(L\) is a CFL that is not inherently ambiguous.
 • A DPDA yields an unambiguous grammar in the standard construction.