Extended RE's
UNIX pioneered the use of additional operators and notation for RE's:

- $E? = 0$ or 1 occurrences of $E = \epsilon + E$.
- $E^+ = 1$ or more occurrences of $E = EE^*$.
- **Character classes** $[a \rightarrow zGx] =$ the union of all (ASCII) characters from a to z, plus the characters G and X, for example.

Algebraic Laws for RE's
If two expressions E and F have no variables, then $E = F$ means that $L(E) = L(F)$ (not that E and F are identical expressions).

- Example: $1^+ = 11^*$.

If E and F are RE's with variables, then $E = F$ (E is **equivalent to** F) means that whatever languages we substitute for the variables (provided we substitute the same language everywhere the same variable appears), the resulting expressions denote the same language.

- Example: $R^+ = RR^*$.

With two notable exceptions, we can think of union ($+$) as if it were addition with \emptyset in place of the identity 0, and concatenation, with ϵ in place of the identity 1, as multiplication.

- $+$ and concatenation are both associative.
- $+$ is commutative.
- Laws of the identities hold for both.
- \emptyset is the annihilator for concatenation.
- The exceptions:
 1. Concatenation is **not** commutative: $ab \neq ba$.
 2. $+$ is **idempotent**: $E + E = E$ for any expression E.

Checking a Law
Suppose we are told that the law $(R + S)^* = (R^*S^*)^*$ holds for RE's. How would we check that this claim is true?

- Think of R and S as if they were single symbols, rather than placeholders for languages, i.e., $R = \{0\}$ and $S = \{1\}$.
- Then the left side is clearly “any sequence of 0’s and 1’s.

- The right side also denotes any string of 0’s and 1’s, since 0 and 1 are each in $L(0^*1^*)$.
- That test is **necessary** (i.e., if the test fails, then the law does not hold.
- We have particular languages that serve as a counterexample.
- But is it **sufficient** (if the test succeeds, the law holds)?

Proof of Sufficiency
The book has a fairly simple argument for why, when the “concretized” expressions denote the same language, then the languages we get by substituting any languages for the variables are also the same.

- But if you think that’s obvious, the book also has an example of “RE’s with intersection” where the same statement is false.
- Also — is it clear that we can tell whether two RE’s without variables denote the same language?
- Algorithm to do so will be covered.

Closure Properties

- Not every language is a regular language.
- However, there are some rules that say “if these languages are regular, so is this one derived from them.
- There is also a powerful technique — the pumping lemma — that helps us prove a language **not** to be regular.
- Key tool: Since we know RE’s, DFA’s, NFA’s, \(\epsilon\)-NFA’s all define exactly the regular languages, we can use whichever representation suits us when proving something about a regular language.

Pumping Lemma
If L is a regular language, then there exists a constant n such that every string w in L, of length n or more, can we written as $w = xyz$, where:

1. $0 < |y|$.
2. $|xy| \leq n$.

3. For all \(i \geq 0 \), \(wy^i z \) is also in \(L \).
 - Note \(y^i = y \) repeated \(i \) times; \(y^0 = \varepsilon \).
 - The alternating quantifiers in the logical statement of the PL makes it very complex:
 \(\forall L(\exists n)(\exists y, z)(\forall i) \).

Proof of Pumping Lemma

- Since we claim \(L \) is regular, there must be a DFA \(A \) such that \(L = \delta(A) \).
- Let \(A \) have \(n \) states; choose \(n \) for the pumping lemma.
- Let \(w \) be a string of length \(\geq n \) in \(L \), say \(w = a_1a_2\cdots a_m \), where \(m \geq n \).
- Let \(q_1 \) be the state \(A \) is in after reading the first \(i \) symbols of \(w \).
 - \(q_0 = \) start state, \(q_1 = \delta(q_0, a_1), q_2 = \delta(q_0, a_1a_2), etc. \)
- Since there are only \(n \) different states, two of \(q_0, q_1, \ldots, q_n \) must be the same; say \(q_i = q_j \), where \(0 \leq i < j \leq n \).
- Let \(x = a_1\cdots a_i; y = a_{i+1}\cdots a_j; z = a_{j+1}\cdots a_m \).
- Then by repeating the loop from \(q_i \) to \(q_j \) with label \(a_{i+1}\cdots a_j \) zero times once, or more, we can show that \(xy^i z \) is accepted by \(A \).

PL Use

We use the PL to show a language \(L \) is not regular.

- Start by assuming \(L \) is regular.
- Then there must be some \(n \) that serves as the PL constant.
 - We may not know what \(n \) is, but we can work the rest of the “game” with \(n \) as a parameter.
- We choose some \(w \) that is known to be in \(L \).
 - Typically, \(w \) depends on \(n \).
- Applying the PL, we know \(w \) can be broken into \(xyz \), satisfying the PL properties.
 - Again, we may not know how to break \(w \), so we use \(x, y, z \) as parameters.
- We derive a contradiction by picking \(i \) (which might depend on \(n, x, y, \) and/or \(z \)) such that \(xy^i z \) is not in \(L \).

Example

Consider the set of strings of \(0 \)'s whose length is a perfect square; formally \(L = \{ 0^i \mid i \) is a square \}.

- We claim \(L \) is not regular.
- Suppose \(L \) is regular. Then there is a constant \(n \) satisfying the PL conditions.
- Consider \(w = 0^{n^2} \), which is surely in \(L \).
- Then \(w = xyz \), where \(|x|^2 \leq n \) and \(y \neq \varepsilon \).
- By PL, \(xy^2z \) is in \(L \). But the length of \(xy^2z \) is greater than \(n^2 \) and no greater than \(n^2 + n \).
- However, the next perfect square after \(n^2 \) is \((n+1)^2 = n^2 + 2n + 1 \).
- Thus, \(xy^2z \) is not of square length and is not in \(L \).
- Since we have derived a contradiction, the only unproved assumption — that \(L \) is regular — must be at fault, and we have a “proof by contradiction” that \(L \) is not regular.

Closure Properties

Certain operations on regular languages are guaranteed to produce regular languages.

- Example: the union of regular languages is regular; start with RE’s, and apply + to get an RE for the union.

Substitution

- Take a regular language \(L \) over some alphabet \(\Sigma \).
- For each \(a \) in \(\Sigma \), let \(L_a \) be a regular language.
- Let \(s \) be the substitution defined by \(s(a) = L_a \) for each \(a \).
 - Extend \(s \) to strings by \(s(a_1a_2\cdots a_n) = s(a_1)s(a_2)\cdots s(a_n) \); i.e., concatenate the languages \(L_{a_1}L_{a_2}\cdots L_{a_n} \).
 - Extend \(s \) to languages by \(s(M) = \cup_{w \in M} s(w) \).
- Then \(s(L) \) is regular.

Proof That Substitution of Regular Languages Into a Regular Language is Regular

- Let \(R \) be a regular expression for language \(L \).
Let R_a be a regular expression for language $s(a) = L_a$, for all symbols a in Σ.

- Construct a RE E for $s(L)$ by starting with R and replacing each symbol a by the RE L_a.
- Proof that $L(E) = s(L)$ is an induction on the height of (the expression tree for) $RE R$.

Basis: R is a single symbol, a. Then $E = R_a$, $L = \{a\}$, and $s(L) = s(\{a\}) = L(R_a)$.

Cases where R is ϵ or \emptyset easy.

Induction: There are three cases, depending on whether $R = R_1 + R_2$, $R = R_1 R_2$, or $R = R_1^*$. We’ll do only $R = R_1 R_2$.

- $L = L_1 L_2$, where $L_1 = L(R_1)$ and $L_2 = L(R_2)$.
- Let E_1 be R_1, with each a replaced by R_a, and E_2 similarly.
- By the IH, $L(E_1) = s(L_1)$ and $L(E_2) = s(L_2)$.
- Thus, $L(E) = s(L_1) s(L_2) = s(L)$.

Applications of the Substitution Theorem

- If L_1 and L_2 are regular, so is $L_1 L_2$.
 - Let $s(a) = L_1$ and $s(b) = L_2$. Substitute into the regular language $\{ab\}$.
 - So is $L_1 \cup L_2$.
 - Substitute into $\{a, b\}$.
 - Ditto L_1^*.
 - Substitute into $L(a^*)$.
- Closure under homomorphism = substitution of one string for each symbol.
 - Special case of a substitution.

Example: Homomorphism

Let $L = L(0^*1^*)$, and let h be a homomorphism defined by $h(0) = aa$ and $h(1) = \epsilon$.

- Then $h(L) = L(aa)^*$ = all strings of an even number of a’s.

Closure Under Inverse Homomorphism

- $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}$.

- See argument in course reader. Briefly:
 - Given homomorphism h and regular language L, start with a DFA A for L.
 - Construct DFA B for $h^{-1}(L)$, by having B go from state q to state p on input a if $\delta(q, h(a)) = p$.

Closure Under Reversal

- The reverse of a string $w = a_1a_2\cdots a_n$ is $a_n\cdots a_2a_1$.
 - Denoted w^R.
 - Note $e^R = e$.
- The reverse of a language L is the set containing the reverse of each string in L.
- If L is regular, so is L^R.
 - Proof: use RE’s, recursive reversal as in course reader.