CS301
Session 9

Agenda

- The uScheme interpreter
- Approaches to solving the homework problem

Abstract syntax: top level

datatype toplevel = EXP of exp
| DEFINE of name * lambda
| VAL of name * exp
| USE of name

Abstract syntax: expressions

datatype
exp = LITERAL of value
| VAR of name
| SET of name * exp
| IFX of exp * exp * exp
| WHILEX of exp * exp
| BEGIN of exp list
| LETX of let_kind *
| LAMBDA of lambda
| APPLY of exp * exp list
and let_kind = LET | LETREC | LETSTAR
Abstract syntax: values

and value =
 NIL
 | BOOL of bool
 | NUM of int
 | SYM of name
 | PAIR of value * value
 | CLOSURE of lambda * value ref env
 | PRIMITIVE of primitive

withtype primitive = value list -> value
and lambda = name list * exp

Design choices

- ML has all the features of uScheme (and then some)
- ...so interpreting uScheme in ML is pretty easy
- Choice: when do we represent a uScheme feature directly by the same feature in ML?
- Example: the store

Environment and store

- ML types for generic environments
 type name = string
 type 'a env = (name * 'a) list

- Instantiate to get a mapping from names to locations:
 value ref env

- We're using the ML store to represent the uScheme store!

Manipulating environments

(* lookup and assignment of existing bindings *)
exception NotFound of name
fun find (name, []) = raise NotFound name
 | find (name, (n, v)::tail) = if name = n then v else find(name, tail)

(* adding new bindings *)
exception BindListLength
fun bind(name, v, rho) = (name, v) :: rho
fun bindList(n::vars, v::vals, rho) = bindList (vars, vals, bind(n, v, rho))
 | bindList([], [], rho) = rho
 | bindList _ = raise BindListLength
Initial environment

val emptyEnv = []

fun initialEnv() =
 let val rho = foldl
 (fn ((name, prim), rho)
 => bind(name, ref (PRIMITIVE prim), rho))
 emptyEnv
 ("+", arithOp op +) ::
 ("-", arithOp op -) ::
 ...
 in
 end

The function eval

fun eval(e, rho) =
 let fun ev(LITERAL n) = n
 | ev(VAR v) = ...
 | ev(SET (n, e)) = ...
 | ev(IFX (e1, e2, e3)) = ...
 | ev(WHILEX (guard, body)) = ...
 | ev(BEGIN es) = ...
 | ev(LAMBDA l) = ...
 | ev(APPLY (f, args)) = ...
 | ev(LETX (LET, bs, body)) = ...
 | ev(LETX (LETSTAR, bs, body)) = ...
 | ev(LETX (LETREC, bs, body)) = ...
 in ev e
 end

Why is there no parameter "sigma"? Note the handling of "rho"!

Translating semantics to code

Variables

- Lookup

\[
\begin{align*}
 \text{x} \in \text{dom } \rho & \quad \rho(x) \in \text{dom } \sigma \\
 \langle \text{VAR}(x), \rho, \sigma \rangle \Downarrow \langle \sigma(\rho(x)), \sigma \rangle \\
 \text{ev}(\text{VAR } v) & = ! (\text{find}(v, \rho))
\end{align*}
\]

- What's that ! doing there? Where does \(\rho \) come from?
Assignment

- $x \in \text{dom} \rho \quad \rho(x) = l \quad (e, \rho, \sigma) \downarrow (v, \sigma')$

 $\langle \text{SET}(x, e), \rho, \sigma \rangle \downarrow \langle v, \sigma'[l \mapsto v] \rangle$

| $\text{ev(SET (n, e))} =$ |
| let val $v = \text{ev e}$ |
| in find (n, rho) := v; |
| v |
| end |

- What does \downarrow mean? What's the reason for $;$?

Let* binding

- $l_1, \ldots, l_n \not\in \text{dom} \sigma$

 $\langle e_1, \rho, \sigma \rangle \downarrow \langle v_1, \sigma' \rangle$

 $\rho_1 = \rho[x_1 \mapsto l_1]$ $\sigma_1 = \sigma'[l_1 \mapsto v_1]$

 \vdots

 $\langle e_n, \rho_{n-1}, \sigma_{n-1} \rangle \downarrow \langle v_n, \sigma'_n \rangle$

 $\rho_n = \rho_{n-1}[x_n \mapsto l_n]$ $\sigma_n = \sigma'_{n-1}[l_n \mapsto v_n]$

 $\langle e, \rho_n, \sigma_n \rangle \downarrow \langle v, \sigma' \rangle$

| $\text{let(LET (LET, bs, body))} =$ |
| let val (names, values) = ListPair.unzip bs |
| in eval (body, bindList(names, map (ref o ev) values, rho)) |
| end |

- Where do the fresh locations come from? Notice the environment used for eval!

Letrec binding

- Left as an exercise for the reader

- Where is rho bound in the second line? In the third line? How is the sequencing controlled?
Evaluating functions

\[\text{\texttt{\textbf{λ}}}(x_1, \ldots, x_n, \epsilon, \rho, \sigma) \Downarrow \langle\langle(\text{\textbf{λ}})(x_1, \ldots, x_n), \epsilon\rangle, \rho\rangle, \sigma \rangle \]

- \text{ev(\text{\textbf{λ}})} = \text{\textbf{CLOSURE}}(1, \text{\textbf{ρ}})
- Remember:
 - datatype value = NIL
 - ... \quad | \text{CLOSURE} \text{ of lambda} \ast \text{ value ref env}
- This is the main key point for the assignment. What’s the current type of the result of evaluating a lambda? What do you want to change it to?

Applying primitive functions

\[\text{\textbf{ev(APPLY}} (f, \text{args}) = \]

- (case \text{\textbf{ev f}} of PRIMITIVE \text{ prim} => \text{ prim (map \text{\textbf{ev args}})}
- Another crucial point for the assignment: if lambda expressions are going to evaluate to a value of the same type as primitive functions, how should we expect to apply them to arguments?

Applying defined functions

\[\langle \epsilon, \rho, \sigma \rangle \Downarrow \langle\langle(\text{\textbf{λ}})(x_1, \ldots, x_n), \epsilon\rangle, \rho\rangle, \sigma \rangle \]

\[\langle \epsilon_\rho_\sigma \epsilon_\rho_\sigma_{l_1 \ldots l_n} \Downarrow \langle i_1 \ldots i_n \rightarrow l_i \rangle, \sigma \rangle \]

- ev(APPLY (f, args)) = (case \text{\textbf{ev f}} of ...)
- \text{\textbf{CLOSEURE}} \text{ clo} =>
 - let val ((\text{\textbf{formals}, body}, \text{\textbf{savedrho}}) = \text{\textbf{clo}}
 - val \text{\textbf{actuals}} = \text{\textbf{map \text{\textbf{ev args}}}}
 - in \text{\textbf{eval(body, bindList(formals, map ref actuals, \text{\textbf{savedrho}}))}}
 - handle BindListLength => raise Runtime\text{\textbf{Error}} (...)
 - end

Changing it

- What will happen to the code for applying user functions in your new version of the interpreter?
- How will you make sure the function body is evaluated in the correct environment?
- How will you test to make sure you did the right thing?
Approaching the assignment

- Big clue: "rename PRIMITIVE to PROCEDURE"
- Why? because now all procedures will have the same representation.
- A useful sidetrack: understand exactly how ML functions +, - etc. are used to construct the uScheme primitives.

Some clues

- The design choice being explored has to do with which uScheme features are to be represented by the corresponding ML features
- For a complete answer, pay attention to error handling; but in the beginning, ignore it
- A slight emendation: the result of the eval of a lambda has the same type as a primitive function

More clues

- Virtually all the code you need is already there in the interpreter. You just have to reorganize.
- It's a lot of work to do this the wrong way. It's very little work to do it the right way. Remember, the change is described as a "simplification"!
Agenda

- Introduction to type systems
- A monomorphic type system for Impcore
- Types for arrays

Static vs. dynamic checking

- Dynamic checking in uScheme:

  ```scheme
  -> (define appendfoo (l) (append 'foo l))
  appendfoo
  -> (appendfoo '(1 2))
  error: car applied to non-pair foo in (car l1)
  ```

- Static checking in ML:

  ```ml
  fun appendfoo l = "foo" @ l;
  ! Toplevel input:
  ! fun appendfoo l = "foo" @ l;
  ! """"""""""
  ! Type clash: expression of type
  ! string
  ! cannot have type
  ! 'a list
  ```

Checking and interpreters

- Dynamic type checks: integrated with evaluation - a single-stage interpreter
- Static type checks: first phase of a two-stage interpreter
Static type checking: why?
- Not just to annoy novice programmers
- Support for serious programming
- Catch mistakes at compile time and reduce dependency on completeness of testing
- Document the intended behavior of programs
- Define interfaces between modules
- Support for optimizing compilers

Where we're going
- Typed Impcore: a simple - and annoying - type system
- Typed uScheme: a powerful - and still annoying - type system ...
- ... that motivates type inference as implemented for ML, Haskell, etc.

What Impcore types do
- In a well-typed Impcore program we know:
 - Every function (including primitives) receives the right number and type of actual parameters
 - Only Booleans are used for flow control (if and while)
 - ...and we know this without ever running the program!

What they don't do
- We don't know if
 - there is division by 0
 - application of car or cdr to the empty list
 - illegal array indexing
 - infinite looping or recursion
 - wrong answers
Extending Impcore

- Values: integers, Booleans, arrays
- Add typing rules and a static type checker
- Show type soundness: if a well-typed expression e evaluates to v, then v is compatible with the type of e
 - `int` yields a number
 - `bool` yields 0 or 1 (!)
 - etc.

Extending the syntax

- Argument and result types must be declared, e.g.

 \[
 \text{(define int exp ((int b) (int e))}
 \]

 \[
 \text{(if (= 0 e) 1}
 \text{(* b (exp b (- e 1))))})
 \]

Extending the syntax (2)

- Array syntax example:

 \[
 \text{-> (define (array int) nzeros ((int n))}
 \text{(array-make n 0))}
 \]

 \[
 \text{nzeros}
 \text{- (nzeros 10)}
 \text{[0 0 0 0 0 0 0 0 0 0]}
 \]

The types of tImpcore

- Base types
 - `int`
 - `bool`
 - `unit`
- Array types
 - `(array type)`
Booleans

- Absence of Boolean literals leads to some oddities:

 \[
 \begin{align*}
 \text{-} & (= 0 0) \\
 & 1 \\
 \text{-} & (= 0 1) \\
 & 0 \\
 \text{-} & (\text{if } 1 2 3) \\
 & \text{type error: Condition in if expression has type int, which should be bool} \\
 \text{-} & (\text{if } (= 0 0) 2 3) \\
 & 2 \\
 \text{-} & (\text{val true } (= 0 0)) \\
 & 1 \\
 \text{-} & (\text{if true } 2 3) \\
 & 2
 \end{align*}
 \]

Reminder: Impcore semantics

- Remember that we needed three environments for Impcore: \(\xi, \phi, \rho \) for global variables, functions, and formal parameters
- In our type system (sometimes called a static semantics) we have three type environments \(\Gamma_\xi, \Gamma_\phi, \Gamma_\rho \) to record the types of global variables, functions, and parameters

Type system

- Simple types: \(\tau = \text{INT} | \text{BOOL} | \text{UNIT} | \text{ARRAY}(\tau) \)
- Function types: \(\tau_f = \tau_1 \times \ldots \times \tau_n \rightarrow \tau \)
- Typing judgment for expressions: \(\Gamma_\xi, \Gamma_\phi, \Gamma_\rho \vdash e : \tau \)
- Typing judgement for top-level items:
 \[
 \langle t, \Gamma_\xi, \Gamma_\phi \rangle \rightarrow \langle \Gamma'_\xi, \Gamma'_\phi \rangle
 \]
- Properties: deterministic, sound w.r.t. evaluation

Literals and variables

- Literals are numbers
 \[
 \Gamma_\xi, \Gamma_\phi, \Gamma_\rho \vdash \text{LITERAL}(v) : \text{INT}
 \]
- Variable types are kept in the type environments
 \[
 x \in \text{dom } \Gamma_\rho \quad \Gamma_\xi, \Gamma_\phi, \Gamma_\rho \vdash \text{VAR}(x) : \Gamma_\rho(x)
 \]
 \[
 x \not\in \text{dom } \Gamma_\rho \quad x \in \text{dom } \Gamma_\xi
 \]
 \[
 \Gamma_\xi, \Gamma_\phi, \Gamma_\rho \vdash \text{VAR}(x) : \Gamma_\xi(x)
 \]
Assignments

- To parameters
 \[x \in \text{dom } \Gamma_{\rho} \quad \Gamma_{\rho}(x) = \tau \]
 \[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e : \tau \]

- To globals
 \[x \notin \text{dom } \Gamma_{\rho} \quad x \in \text{dom } \Gamma_{\xi} \]
 \[\Gamma_{\xi}(x) = \tau \]
 \[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e : \tau \]

Typing an if-expression

- The two arms must have the same type - why?

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{1} : \text{BOOL} \quad \Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{2} : \tau \quad \Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{3} : \tau \]

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash \text{IF}(e_{1}, e_{2}, e_{3}) : \tau \]

Typing a while-loop

- The value returned is the uninteresting "unit"

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{1} : \text{BOOL} \quad \Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{2} : \tau \]

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash \text{WHILE}(e_{1}, e_{2}) : \text{UNIT} \]

Typing a sequence

- Types 1 ... n-1 are uninteresting

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{1} : \tau_{1} \ldots \Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{n} : \tau_{n} \]

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash \text{BEGIN}(e_{1}, \ldots, e_{n}) : \tau_{n} \]
Function application

- Using the function type environment

\[\Gamma_{\phi}(f) = \tau_1 \times \ldots \times \tau_n \rightarrow \tau \quad \Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_i : \tau_i \]

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash \text{APPLY}(f, e_1, \ldots, e_n) : \tau \]

- We check that the actual parameters have the required types

Function definition

- Extending the function type environment

\[\Gamma_{\xi}, \Gamma_{\phi}, \{ f \mapsto \tau_1 \times \ldots \times \tau_n \rightarrow \tau \}, \{ x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n \} \vdash e : \tau \]

\[(\text{DEFINE}(f, ((x_1 : \tau_1, \ldots, x_n : \tau_n), e : \tau)), \Gamma_{\xi}, \Gamma_{\phi}, \rightarrow (\Gamma_{\xi}, \Gamma_{\phi}(f \mapsto \tau_1 \times \ldots \times \tau_n \rightarrow \tau)) \]

- Notice how we assume the formals have the correct types while we are typing the body!

Top level value binding

- We extend the global type environment

\[\Gamma_{\xi}, \Gamma_{\phi}, \{ \} \vdash e : \tau \]

\[\langle \text{VAL}(x, e), \Gamma_{\xi}, \Gamma_{\phi} \rangle \rightarrow \langle \Gamma_{\xi}\{ x \mapsto \tau \}, \Gamma_{\phi} \rangle \]

Typing arrays

- Introduction rule

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_1 : \text{INT} \quad \Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_2 : \tau \]

\[(\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash \text{ARRAY-MAKE}(e_1, e_2) : \text{ARRAY}(\tau)) \]

- One of the elimination rules:

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_1 : \text{ARRAY}(\tau) \quad \Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_2 : \text{INT} \]

\[\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash \text{ARRAY-GET}(e_1, e_2) : \tau \]
A type-checking interpreter

Instead of a read-eval-print loop we have a read-check-eval-print loop

The type checking stage is a straightforward translation of the inference rules

Now we see the usefulness of the polymorphic environment type from the uScheme interpreter:

```haskell
typeof : exp * ty env * funty env * ty env -> ty
```

Abstract syntax

Types and expressions

```haskell
datatype ty    = INTTY | BOOLTY | UNITTY | ARRAYTY of ty
datatype funty = FUNTY of ty list * ty
datatype exp   = LITERAL of value
                 | VAR     of name
                 | SET     of name * exp
                 | IFX     of exp * exp * exp
                 | WHILEX  of exp * exp
                 | BEGIN   of exp list
                 | APPLY   of name * exp list
                 | AGET   of exp * exp
                 | ASET   of exp * exp * exp
                 | AMAKE of exp * exp
                 | ALEN  of exp
```

Typing a function definition

```haskell
fun topty (t, globals, functions) =
    case t
    ...
  | DEFINE (name, {returns, formals, ... . . . , xn ↦→τn} ⊢ e : τ
    ⟨define(f, (⟨x1 : τ1, . . . , xn : τn⟩, e : τ ), Γξ, Γφ , → ⟨Γξ, Γφ {f ↦→τ1 × . . . × τn → τ} }
```

Top level

```haskell
type userfun =
{ formals : (name * ty) list, body : exp, returns : ty }
datatype toplevel = EXP of exp
                 | DEFINE of name * userfun
                 | VAL of name * exp
                 | USE of name
```