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Abstract

We study the parameterized complexity of the pseudo-achromatic number problem: Given an undi-
rected graph and a parameter k, determine if the graph can be partitioned into at least k groups such
that every two groups are connected by at least one edge. This problem has been extensively studied in
graph theory and combinatorial optimization. We show that the problem has a kernel of size at most
(k — 2)(k + 1) vertices that is computable in time O(my/n + k3m), where n and m are the number of
vertices and edges, respectively, in the graph, and k is the parameter. This directly implies that the
problem is fixed-parameter tractable. We also study generalizations of the problem and show that they
are parameterized intractable.
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1 Introduction

The PSEUDO-ACHROMATIC NUMBER problem is to determine whether an undirected graph G can be
partitioned into at least k groups/classes (Gi,Go, ..., Gi) such that every two groups G; and G;, 1 < i <
j < k, are connected by at least one edge. The problem is also referred to in the literature as the GRAPH
COMPLETE PARTITION problem, and is formally defined as follows:

Definition 1 Let G be an undirected graph. We say that G has pseudo-achromatic number at least k if
there exists a surjective function f : V(G) — {1,...,k}, such that: for all i # j satisfying 1 <i,j <k,
there exists u € f1(i), v € f1(4) such that (u,v) € E(G), where f 1(q) denotes the preimage of ¢ under

The PSEUDO-ACHROMATIC NUMBER problem is:

PSEUDO-ACHROMATIC NUMBER: Given an undirected graph G and a positive integer k, deter-
mine whether G has pseudo-achromatic number at least k.

We will be using the informal definition more frequently than the formal one.

It is easy to see that the PSEUDO-ACHROMATIC NUMBER problem is a generalization of the graph
coloring problem (or the achromatic number problem), the latter problem requiring the groups in the
partition to be independent sets.

The PSEUDO-ACHROMATIC NUMBER problem was first introduced by Gupta in 1969 [10], and since
then it has been studied extensively [1, 2, 3, 4, 8, 12, 13]. The problem is known to be NP-complete even
on restricted classes of graphs [3, 8, 12].

Kortsarz et al. [12] studied the approximability of the PSEUDO-ACHROMATIC NUMBER problem. It
was proved in [12] that the problem has a randomized polynomial-time approximation algorithm of ratio
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O(y/1gn), which can be de-randomized in polynomial time. This upper bound on the approximation ratio
was shown to be asymptotically tight under the randomized model.

The PSEUDO-ACHROMATIC NUMBER problem was also considered from the extremal graph theoretic
point of view on special classes of graphs [2, 4, 13, 14, 15]. Balsubramanian et al. [1] gave a complete
characterization of when the pseudo-achromatic number of the join of two graphs is the sum of the pseudo-
achromatic number of the two graphs.

In the current paper we study the parameterized complexity of the PSEUDO-ACHROMATIC NUMBER
problem. We show that the problem has a kernel of size at most (k —2)(k + 1) vertices that is computable
in time O(m+/n + k*m), where n and m are the number of vertices and edges, respectively, in the graph.
This kernelization result directly gives an algorithm for the PSEUDO-ACHROMATIC NUMBER running in
time O(k(kfz)(k“) -my/n), thus showing that the problem is fixed-parameter tractable. The upper bound
on the kernel size is obtained by developing elegant and highly non-trivial structural results, that are of
independent interest.

We also study generalizations of the of the PSEUDO-ACHROMATIC NUMBER problem and prove that
they are parameterized intractable. In particular, we consider the VERITEX GROUPING problem, in which
an input instance has the form (G, H, k), where G and H are two graphs, and k = |V(H)|. The problem
asks for the existence of a surjective function f : V(G) — V(H) satisfying the property that Yu,v €
V(H),(u,v) € E(H) if and only if 3z € f(u),y € f !(v) such that (z,y) € E(G). The PSEUDO-
ACHROMATIC NUMBER problem is a special case of the VERITEX GROUPING problem in which the graph H
is the complete graph on k vertices. The VERTEX GROUPING problem falls into the category of clustering
problems, where a clustering of the graph G into |V (H)| clusters is sought such that the inter-cluster
properties are imposed by the graph H. We prove some (parameterized) intractability results for the
VERTEX GROUPING problem. For example, we show that the problem is W[1]-hard, even when the graph
H is the h-star graph (i.e., Kip_1).

2 Preliminaries

The reader is referred to Downey and Fellows’” book [7] for more details about parameterized complexity
theory.

A parameterized problem is a set of instances of the form (x, k), where x € ¥* for a finite alphabet set
Y, and k is a non-negative integer called the parameter. A parameterized problem @ is fixed parameter
tractable, or simply FPT, if there exists an algorithm A that on input (z,k) decides if (z,k) is a yes-
instance of Q in time f(k)n®(), where f is a recursive function independent of n = |z|. In analogy to
the polynomial time hierarchy, a hierarchy for parameterized complexity, called the W-hierarchy, has been
defined. At the Oth level of this hierarchy lies the class of fixed-parameter tractable problems FPT. The
class of all problems at the ith level of the W-hierarchy (i > 0) is denoted by W/[i]. A parameterized-
complexity preserving reduction (FPT-reduction) has been defined as follows. A parameterized problem
Q is FPT-reducible to a parameterized problem ' if there exists an algorithm of running time f(k)|x|°
that on an instance (z, k) of @ produces an instance (2/,g(k)) of Q" such that (z,k) is a yes-instance of
Q if and only if (2/,¢g(k)) is a yes-instance of @', where the functions f and g depend only on k, and
c is a constant. A parameterized problem @ is W/i/-hard if every problem in W[i] is FPT-reducible to
Q. Many well-known problems have been proved to be W[l]-hard including: CLIQUE, INDEPENDENT SET,
SET PACKING, DOMINATING SET, HITTING SET and SET COVER. The parameterized complexity hypothesis,
which is a working hypothesis for parameterized complexity theory, states that W[i] # FPT for every
1> 0.

The notion of the fixed-parameter tractability of a problem turns out to be closely related to the
notion of the problem having a good data reduction (or preprocessing) algorithm. Formally speaking, a
parameterized problem () is kernelizable if and only if there exists a polynomial-time computable reduction
that maps an instance (z,k) of @ to another instance (2/,k") of @ such that: (1) |z’'| < g(k) for some



recursive function g, (2) ¥’ < k, and (3) (z, k) is a yes-instance of ) if and only if (2, k") is a yes-instance of
Q. The instance 2’ is called the kernel of x. It was shown that a parameterized problem is fixed-parameter
tractable if and only if it admits a kernelization [9].

For a graph G we denote by V(G) and E(G) the set of vertices and edges of G, respectively. A matching
M in a graph G is a set of edges such that no two edges in M share an endpoint. A matching M of G is
said to mazimum if the cardinality of M is maximum over all matchings in GG. For a vertex v and a set of
vertices I' in G, we say that v is connected to I if v is adjacent to some vertex in I'. Similarly, for two sets
of vertices I and I in GG, we say that I' is connected to I if there exists a vertex in I' that is connected to
I, For a vertex v € G we denote by N(v) the set of neighbors of v in G. For a set of vertices I' in G we
denote by N(I') the set of neighbors of all the vertices of I' in G, i.e., N(I') = J,ep N(v). We denote by
Sy, the (h + 1)-star graph (i.e., K ). The vertex of degree h in Sj, is referred to as the root of the star,
and the other h vertices are referred to as the leaves of the star. The size of the star S} is the number
of vertices in it, which is h + 1. We say that a graph G contains S}, if Sj, is a subgraph (not necessarily
induced) of G.

For a background on network flows we refer the reader to [6], or to any standard book on combinatorial
optimization.

3 The kernel

In this section we show how to construct a kernel of size (number of vertices) at most (k—2)(k+1) for the
parameterized PSEUDO-ACHROMATIC NUMBER problem. We start by presenting some structural results
that are essential for the kernelization algorithm, and that are of independent interest on their own.

3.1 Structural results

The following lemma ascertain that graphs with large matchings have large pseudo-achromatic number.

Lemma 3.1 If a graph G contains a matching of size at least (k — 1)k/2, then the instance (G, k) is a
yes-instance of the PSEUDO-ACHROMATIC NUMBER problem.

PROOF. Assuming that G contains a matching of at least (k — 1)k/2 edges, we show how to group the
vertices of G into k groups (G, Ga, ..., k) so that every pair of groups is connected by at least one edge.
For every pair of groups (G;,G;) where 1 < i < j < k, we use a distinct edge (u,v) of the matching to
connect this group by mapping the vertex u to §; and v to G;. The remaining vertices of G are mapped
arbitrarily to the groups. Since there are exactly (k— 1)k/2 pairs of groups and at least (k—1)k/2 edges in
the matching, every pair of groups is connected under this mapping. It follows that (G, k) is a yes-instance
of the PSEUDO-ACHROMATIC NUMBER problem. L]

Lemma 3.2 If a graph G contains a set of k —1 (mutually) vertex-disjoint stars of sizes 2, ...k, respec-
tively, then the instance (G, k) is a yes-instance of the PSEUDO-ACHROMATIC NUMBER problem.

PROOF. Let S = {s1,...,sr_1} be a set of vertex-disjoint stars in G, where s; is a copy of the star graph
Si. We will map the vertices in S to k groups (Gi1,Ga, ..., Gk) such that every pair of groups is connected
by at least one edge.

Fori=1,...,k—1, we map the root of s; to group G;;1, and we map its leaves, in a one-to-one fashion,
to groups (Gi,Ga,...,G;). The remaining vertices in G are mapped arbitrarily to the groups. Since there
is no overlap between the vertices of any two stars in .S, this mapping is well defined. It is very easy to
verify now that every two distinct groups in (Gy, G, ..., Gg) are connected under the defined mapping. It
follows that (G, k) is a yes-instance of the PSEUDO-ACHROMATIC NUMBER problem. [



Lemma 3.3 If a graph G contains a collection of (mutually) vertez-disjoint stars each of size at least 2
and at most k + 1, and such that the total number of vertices in all the stars is more than (k — 2)(k + 1),
then the instance (G, k) is a yes-instance of the PSEUDO-ACHROMATIC NUMBER problem.

PROOF.  Suppose that G contains a collection P of vertex-disjoint stars, each containing at least two
vertices and at most k+1 vertices, and such that the total number of vertices of the stars in P is more than
(k—2)(k 4+ 1). Assume, to get a contradiction, that (G, k) is a no-instance of the PSEUDO-ACHROMATIC
NUMBER problem.

Let s be a copy of the star graph Sy, and s’ be a copy of S} such that s and s" are vertex-disjoint. By
merging s and s’ we mean creating a copy of Sp1p. Note that the size of the merged star is 1 less than
the size of s plus the size of s'.

We construct from P a sequence of vertex-disjoint stars S = (sg_1,...,s,), such that s; has size at
least i + 1, for r < i < k — 1. The procedure that constructs these stars is as follows.

For i = k—1 down to 1 do: if the largest star in P is an S;, where j > i, assign it to s;, and remove it
from P; Otherwise, recursively merge the two stars of largest size in P until either there is only one star
left in P, and in which case the procedure halts, or the largest star in P is an S;, where j > i, and in
which case we assign it to s;, remove it from P, and proceed to the next value of 7 in the for loop.

If a star s; in S was created without merging stars in P, we call s; a single star, otherwise, we call s;
a merged star.

Note the following: if s; is a merged star created from merging a collection of stars, and if s; is used to
produce a valid grouping of GG, then clearly the stars that s; was merged from can replace s; to produce a
valid grouping of G. Therefore, assuming that (G, k) is a no-instance of the PSEUDO-ACHROMATIC NUMBER
problem, the last star s, constructed by the above procedure before halting must satisfy r > 2. Otherwise,
the sequence S would contain a set of k — 1 vertex-disjoint stars of sizes 2,...,k, and by Lemma 3.2, the
instance (G, k) would be a yes-instance of the problem, contradicting our assumption.

Now assume that the above procedure halts after constructing a sequence of vertex-disjoint stars
S = (sk_1,---,5r), such that s; has size at least i + 1, for 2 <r <i <k —1.

We define a monotone subsequence of S to be a consecutive subsequence (s;,5;_1...,s;) of S such
that either s; s;—1...,s; are all single stars, or they are all merged stars. A monotone subsequence
(8i,8i—1...,85) of S is maximal if it is maximal under containment.

Let (si,Si—1.--,8i—¢+1), £ > 1, be a maximal monotone subsequence of S, and note that i — ¢ +1 > 2
(since r > 2). We will show that the total number of vertices in the stars of P that were used to form the
subsequence (s;, Sj—1...,8; ¢+1) is at most 2(i + (i — 1) + ...+ (i — £ + 1)). We distinguish two cases:

e Case 1. (sy,8i—1,...,8;_¢+1) consists of single stars. We distinguish two subcases:

— Subcase 1.1. ¢ = k — 1. Since every single star contains at most k + 1 vertices by the
statement of the lemma, the total number of vertices in the stars in the subsequence is bounded
by ¢(k+1) < 2(k—14+k—2+...+k—{). The last inequality is true because ((k—1)—¢+1) > 2.

— Subcase 1.2. i < k — 1. By the maximality of the subsequence, s;11 is a merged star. Since
s; is a single star, it is easy to verify that s; has size exactly 7+ 1. The total number of vertices
in the stars in the subsequence is bounded by #(i +1) < 2(i +i—1+...4+i— £+ 1) because
i—0+1>2.

e Case 2. (sj,8i_1,...,8j—¢41) consists of merged stars. Let s; be any star in this subsequence, and
suppose that s; was constructed by merging stars ¢1,...,t, in P. By the construction of s;, the total
number of leaves in the stars ¢q,...,%, 1 is less than j (otherwise these starts would be sufficient to
produce s;), and the size of t, is the smallest among ¢1,...,t,—1. Therefore, we have:



bl = L Jtol = Lo | — 1<~ L, (1)

and

It < ([ta] + [t2] + ... + [tg-1]) /(g = 1). (2)
Combining Inequality (1) with Inequality (2), and noting that ¢ < j, we obtain:
It + [t2] + .+ [ty < 24. (3)

Inequality (3) shows that the total number of vertices in the stars of P forming s; is at most 2j. By
applying this inequality to each star s; in the maximal monotone subsequence (s;, Si—1,...,8;_¢+1) of
merged stars, and by the linearity of addition, we obtain that the total number of vertices of P used to
form the stars in (s;, $j-1,...,8i—¢y1) iSat most 2(i + (i — 1)+ ...+ (i — €+ 1)).

It follows from the above that, for any maximal monotone subsequence (s;, s;—1,...,S;_¢+1) of S, the
total number of vertices of P used to form the stars in this subsequence is at most 2(i+(i—1)+. ..+ (i—¢+1)).
Applying the above bound to every maximal monotone subsequence of S, and by the linearity of addition,
we conclude that the total number of vertices in P forming all the stars in S is at most (k—r)(k+7—1).

Noting that the number of remaining non-empty stars in P cannot form an s,_1, P has the maximum
number of vertices when » = 2, and there are no remaining stars in P to form s;. It follows that the total
number of vertices in P is at most (k — 2)(k + 1), contradicting the hypothesis of the lemma.

This completes the proof. L]

3.2 The decomposition of G and the auxiliary flow network .J’'

Let M be a maximum matching in G. Let I = V(G) \ V(M), and note that I is an independent set in G.
We partition M into three sets My, M; and My as follows: Mo is the set of edges (u,v) € M such that
both u and v are connected to I; M, is the set of edges (u,v) € M such that exactly one vertex in the set
{u,v} is connected to I; and My contains all the remaining edges in M—these are the edges (u,v) € M
such that neither u nor v is connected to I.

For a vertex u € V(M) we denote by Ny(u) the set N(u)NI. We denote by N;(Mz) the set N (V(Maz))N
1. We have the following lemma:

Lemma 3.4 Let (u,v) be an edge in Ms. Then Ni(u) = Ny(v) = {w}.

PROOF. By definition, each of Ny(u) and Ny(v) is nonempty. Let w; € Nj(u) and we € Ny(v). It suffices
to show that w; = wy. If not, then the path (wi,wu, v, ws) would be an augmenting path with respect to
M in G, contradicting the maximality of M. Ul

Let D = I\ Ny(Msy). We partition the set V(M;) into two sets L and R such that R is the set of
vertices in V(M) that are connected to D, and L is the set of remaining vertices in V(M7). Note that, by
the definition of M, for every edge (u,v) € M, exactly one vertex in {u,v} is in R and the other vertex
is in L.

Let J be subgraph of G whose vertex-set is R U D and whose edge-set is {(u,v) | u € R and v € D}.
We construct the flow network .J' as follows. Add a source s and a sink ¢ to .J. For every vertex u € R
add a directed edge (s,u) of capacity k — 1 units. Direct every edge (u,v) between a vertex v € R and a
vertex v € D from u to v, and assign it a capacity of 1 unit. For every vertex v in D, add a directed edge
(v,t) of capacity 1 unit. This completes the construction of J'.



Let f* be an integer-valued maximum flow in J’. Define the flow through a vertex u, denoted by f,
to be the total outgoing flow from vertex u, i.e., Xy w)ep)f*(u, w). Call a vertex u € R saturated if the
value of f is k — 1. For simplicity, if an edge (resp. vertex) in J' — {s,t} is saturated, then we say that
its corresponding edge (resp. vertex) in G is saturated. With this in mind, we will identify the vertices
and edges in J' — {s,t} with their counterparts in G, and we will be working on the graph G.

Let T = {v1,..., v} be the set of vertices in D such that f; =0, fori =1,...,¢, and let 7" = D\ T.
We will show next that the set of vertices 1" can be removed from the graph G without affecting the
pseudo-achromatic number of G.

Define the sequence of subgraphs G;, ¢ =0, ..., ¢, inductively as follows: Gy = G, and G; = G;_1 — v;,
for i =1,...,£. We also define the corresponding sequence of flow networks: Jj = J', and J = J/_; — v,
for i = 1,...,£. Note that since f; = 0, f* is a maximum flow in Jj, for i = 0,...,¢. We have the
following key lemmas:

Lemma 3.5 For i = 1,...,¢, if the pseudo-achromatic number of G;_1 is at least k then the pseudo-
achromatic number of G; is at least k.

PROOF.  Assuming that the pseudo-achromatic number of G;_; is at least k, there exists a grouping
‘H of G;_1 that maps the vertices of G;_; into k groups such that each pair of groups is connected. For
a vertex v € Gj_1, denote by G(v) the group that contains v in H. We call an edge e in G;_1 a critical
edge (with respect to H) if there exists a pair of groups in H such that e is the only edge between the two
groups in this pair; otherwise, e is called a noncritical edge. We call a vertex v in G;_1 a critical vertex
(with respect to H) if there exists a critical edge incident on v; otherwise, v is called a noncritical vertex.
For any vertex v € (G;_1, there are at most k — 1 critical edges incident on v, otherwise, by the Pigeon
Hole principle, there would be at least two critical edges between some two groups in H.

Since G; = G;_1—w;, if v; is a noncritical vertex in G;_1, then the grouping ‘H of G;_1 is also a grouping
of G;, and we are done. Suppose now that v; is a critical vertex in G;_;. It suffices to show that there
exists a grouping H’ with respect to which v; is a noncritical vertex. The rest of the proof is dedicated to
proving the previous statement.

Consider a partitioning of the set of vertices R in V(M;) (recall that R is the set of vertices in V' (M)
that are connected to D) into (Ry, R2) such that R; is the set of saturated vertices in R, and Ry = R\ R;.

For a vertex u € Ry, since u is incident on exactly k — 1 saturated edges in G;_1, and since there are
at most k — 1 critical edges incident on u, the number of critical unsaturated edges incident on u is less
than or equal to the number of noncritical saturated edges incident on u. Therefore, we can define a one-
to-one function ® that, for every critical unsaturated edge e incident on u, associates with e a noncritical
saturated edge ®(e).

We call a path P : (v; = wo, ..., wy) from v; in G;_1 a strongly alternating path if (wg;, wej11) is a
critical unsaturated edge and (wgj41,w2j42) is a noncritical saturated edge, for j = 0,...,s — 1. Note
that the vertices wq;, j = 0,...,s, on a strongly alternating path belong to D, and the vertices ws;1, for
Jj=0,...,5s—1, belong to R. Note also that any vertex ws;, j = 0,...,s — 1, on a strongly alternating
path is only connected to R, otherwise, there exists a vertex u € Ry such that the subpath of P from
v; to way, followed by the edge (waj,u), is a flow augmenting path with respect to f*, contradicting the
maximality of f*.

We call a critical vertex v € D important if there exists a strongly alternating path that ends at v.
By definition, the statement that v; is an important vertex is vacuously true. Note that any critical edge
which is incident on an important vertex v is unsaturated because there exists a noncritical saturated edge
incident to v, on the strongly alternating path to v.

Let v be an important vertex. Define a recursive process Explore-Base(v) starting at v = v; as
follows. Let (uq,v),..., (u,,v) be the critical edges incident on v, and note that from the above discussion,
the edges (u;,v), j = 1,...,r, are unsaturated, and that the vertices u1,...,u, € R;. For every vertex u;,



Jj=1,...,r, there exists a vertex d; € D such that (u;,d;) = ®(u;,v). Since every vertex in D has only
one outgoing edge of capacity 1 to the sink ¢, the vertices dj;, j = 1,...,r, are all distinct; otherwise, there
would exist a vertex in {dy,...,d,} with an incoming flow of value greater than 1, contradicting the flow
properties. We call the set {dy,...,d,} the base of v and denote it by B,. If every vertex in the base of
v is not critical, then the process Explore-Base(v) halts. Otherwise, for every critical vertex d; in the
base of v, the strongly alternating path to v followed by the path (v, u;,d;) is a strongly alternating path
that ends at dj, and hence, d; is an important vertex; the process Explore-Base is then applied to d;.

We argue that if B, and B, are two bases for two important vertices p and ¢, then B, and B, must
be disjoint. Suppose not, and let w be the first vertex, with respect to the procedure Explore-Base, to
appear in two distinct bases B, and B,s. Since w € D, the incoming flow to w is at most 1. By definition,
any strongly alternating path to w must end in a saturated edge. Therefore, if w belongs to two different
bases, then the parents of w on the two strongly alternating paths corresponding to the two bases must
be the same. Since the function ® is one to one, the two grandparents of w, v and v/, must be identical,
and hence B, = By, contradicting the fact that B, and B, are distinct.

According to the above discussion, the process Explore-Base(v;) must eventually halt.

Note that if a vertex d; in B, is not critical, we can modify the grouping H so that vertex d; is mapped
to G(v), and the edge (v, u;) is no longer critical. Therefore, if every vertex in the base of v is noncritical,
then there exists another grouping where v is noncritical with respect to that grouping.

Let 7 be an auxiliary rooted tree defined as follows. The root of 7 is v;, and for a node v in 7, the
children of v in 7 are the vertices in B,. Then the leaves of 7 are noncritical vertices in G;_1. Let v
a non-leaf node in 7 whose children are all noncritical vertices. Then, by the above discussion, we can
modify the grouping H so that v is a noncritical vertex. Applying this operation to 7 in a bottom-up
fashion starting at the leaves of 7', the grouping H can be modified to obtain another grouping with
respect to which the vertex v; is a noncritical vertex. This completes the proof. U]

The above lemma shows that the set of vertices 1" can be safely removed from the graph G.

Lemma 3.6 Let G' = G—1', where T is the set of vertices defined above. Then V(G') can be decomposed
into a collection P of vertex-disjoint stars, each star of size at least 2 and at most k + 1.

PROOF. We will exhibit the collection of vertex-disjoint stars P in G'. We will denote by Vp the set of
vertices of the stars in the collection P, and by Ep the set of edges of the stars in P.

Note that since G is a subgraph of GG, the decomposition of G described before induces a decomposition
of G’. In particular, the set of vertices of G’ consists of the vertices in the matching M, the vertices in
Ni(Ms), and the vertices in D with a non-zero flow value. For a vertex uw in R, let S(u) be the star
graph formed by the incident edge to u in M, together with the set of saturated edges in G’ incident
on u. Clearly, each such star S(u) has size at least 2 and at most k + 1 since the capacity of u in J' is
k — 1. Moreover, for any two vertices u and v in R, the two star graphs S(u) and S(v) share no vertices;
otherwise, there would be a shared vertex w € S(u) N S(v) of capacity 1 in J' with two saturated edges
incident on it, contradicting the flow properties. We add all such stars S(u) to the collection P.

We also include in P a maximal set of disjoint Ss stars such that the root of each Ss star is a vertex in
N1(Ms) and its leaves are the end points of the same edge in My. Moreover, for every edge in M, whose
endpoints are not yet in Vp, we include it in P as an S7 stars. Finally we include in P the matching edges
in My as Sy stars.

It is clear that all the stars included in P are vertex-disjoint, and that each star has size at least 2 and
at most k + 1.

We claim that Vp contains all the vertices of G’. To see why, first observe that Ep contains all the
edges in M, and hence Vp contains their endpoints. Second, since every vertex v in 7" is incident on a
saturated edge in G', v is included in P. Moreover, since by definition every vertex u € Nj(Ms) forms
an Sy star with an edge (w,v) in Ms, and since by Lemma 3.4 no other vertex in N7(Ms) can form a



star with the edge (w,v), it follows from the construction of P that u € Vp. Therefore, every vertex u in
N;(Ms) is in P, and Vp contains all the vertices of G’ as desired. O

3.3 Putting it all together: the kernelization algorithm

Cousider the decomposition of G defined in Subsection 3.2, and let M and 7" be as defined in Subsection 3.2.
The kernelization algorithm is given in Figure 1.

Algorithm PseudoAchromaticNumberKernel
InpuT: (G, k)
OutpuT: (G, k')
1. compute a maximum matching M and the set of vertices 1" as described in Subsection 3.2;
if [M| > (k — 1)k/2 then return YES;
G'=G-T;
if [V(G)| > (k—2)(k + 1) then return YES;
return (G', k' = k);

oUW

Figure 1: The kernelization algorithm.

Theorem 3.7 Given an instance (G,k) of the PSEUDO-ACHROMATIC NUMBER problem, the algorithm
PseudoAchromaticNumberKernel cither decides the instance (G, k) correctly, or returns an instance
(G',K') of the problem such that G’ is a subgraph of G, k' < k, and (G, k) 1is a yes-instance if and only
if (G',K') is. Moreover, the algorithm runs in time O(m~/n +mk3), where n and m are the number of
vertices and edges, respectively, in G.

PrOOF. If the size of the maximum matching M in G is at least (k — 1)k/2, then by Lemma 3.1, G is
a yes-instance of the PSEUDO-ACHROMATIC NUMBER problem. Therefore, the algorithm PseudoAchro-
maticNumberKernel makes the right decision in step 2.

If the subgraph G’ = G — T has a valid grouping into k groups such that every pair of groups is
connected, then obviously so does G being a supergraph of G'. Conversely, if G has a valid grouping into k
groups, then by Lemma 3.5, so does G'. It follows that (G, k) is a yes-instance of the PSEUDO-ACHROMATIC
NUMBER problem if and only if (G', k') is.

It suffices to argue that if |[V(G')| > (k — 2)(k + 1) then G’, and hence G, is a yes-instance of the
PSEUDO-ACHROMATIC NUMBER problem, and the algorithm makes the right decision in step 4.

By Lemma 3.6, the set V(G’) can be decomposed into a collection of vertex-disjoint stars P, each
star of size at least 2 and at most k + 1. Since |V(G')| > (k — 2)(k + 1), it follows that the number of
vertices in P is more than (k — 2)(k 4+ 1). Consequently, P satisfies the statement of Lemma 3.3, and G
is a yes-instance of the PSEUDO-ACHROMATIC NUMBER problem.

Finally, to see that the algorithm PseudoAchromaticNumberKernel runs in time O(m/n+mk?),
note first that the maximum matching M can be computed in O(my/n) time by a standard maximum
matching algorithm [6]. Noting that the set R is a subset of M, and hence, has size O(k?) (otherwise the
algorithm would have returned YES in step 1), and that each vertex in R has capacity k — 1, it follows
that the value of the maximum flow |f*| in J’ is O(k?®). Consequently, the maximum flow f* in J’ can be
computed in time O(m|f*|) = O(mk?3) using the Ford-Fulkerson algorithm [6]. All other steps can be
performed in time O(m), and the theorem follows. L

Corollary 3.8 The PSEUDO-ACHROMATIC NUMBER problem has a kernel of at most (k—2)(k+1) vertices
that is computable in time O(m+/n+mk?3), where n and m are the number of vertices and edges, respectively,
in the graph, and k is the parameter.



Remark 3.9 Note that our upper-bound analysis of the size of the kernel returned by the algorithm Pseu-
doAchromaticNumberKernel is tight. This can be seen by considering a graph G that consists of
(k—1)k—2= (k—2)(k+ 1) vertices which are the endpoints of (k —1)k/2 — 1 edges in a matching. The
algorithm PseudoAchromaticNumberKernel on input (G, k) will return (G, k) as is, and without any
modifications. Clearly, (G, k) is a no-instance of the PSEUDO-ACHROMATIC NUMBER problem.

Using the (k — 2)(k + 1) upper bound on the kernel size, we can solve the PSEUDO-ACHROMATIC
NUMBER problem by enumerating all possible assignments of the vertices in the graph to the k groups,
then checking whether any such assignment yields a valid grouping. We have the following corollary:

Corollary 3.10 The PSEUDO-ACHROMATIC NUMBER problem can be solved in time O(kF=2)/k+1) .. /n)
and hence is fized-parameter tractable.
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4 Hardness results for the VERTEX GROUPING problem

Recall from Section 1 that in the VERTEX GROUPING problem we are given an instance (G, H, k), where
G and H are two graphs, and k& = |V (H)|, and the problem asks for the existence of a surjective function
f : V(G) — V(H) satistying the property that Vu,v € V(H),(u,v) € E(H) if and only if dz €
f~Hu),y € f~Y(v) such that (x,y) € E(G). The VERTEX GROUPING problem can be defined more
intuitively as follows.

Let G be an undirected graph. We define an operation on G, called vertex grouping, applied to a subset
of vertices S as follows: remove all the vertices in S from G, add a new vertex w, and connect w to all the
neighbors of S in G — S. The VERTEX GROUPING problem is:

VERTEX GROUPING: Given two graphs G and H, where H is a graph of k vertices, and k is the
parameter, decide if H can be obtained from G by a sequence of vertex grouping operations.

If H in the above definition is the complete graph on k vertices, then the VERTEX GROUPING prob-
lem becomes the PSEUDO-ACHROMATIC NUMBER problem, and hence is fixed parameter tractable. The
following theorem shows that the VERTEX GROUPING problem is parameterized intractable in general.

Theorem 4.1 (Theorem 5.1, Appendiz) The VERTEX GROUPING problem is W/[1]-hard.

It was shown in [5] that, unless ETH fails, INDEPENDENT SET cannot be solved in time n°*). Using
the reduction from INDEPENDENT SET to VERTEX GROUPING given in the proof of Theorem 5.1 in the
appendix, we can show that the same holds true for the VERTEX GROUPING problem:

Theorem 4.2 Unless E'1'H fuils, the VERTEX GROUPING problem cannot be solved in time n°®) | where n
and k are the number of vertices in G and H, respectively.

Determining the complexity of the GRAPH ISOMORPHISM problem is an outstanding open problem that
has been attracting the attention of researchers in theoretical computer science for decades. Although
no polynomial time algorithm was developed for the problem, it seems unlikely that the problem is NP-
hard [11].

We illustrate a relationship between the GRAPH ISOMORPHISM problem and the VERTEX GROUPING
problem. Let Gy and G5 be two graphs on n vertices. We are interested in knowing how “similar” G and
G5 are, under the notion of vertex grouping defined above. For this purpose, we introduce the following
parameterized problem:

GRAPH STRUCTURAL SIMILARITY: given two graphs G; and G5 on n vertices, and a parameter
k, decide if there exists a graph H of k vertices such that both (G1, H, k) and (Ga, H, k) are
yes-instances of the VERTEX GROUPING problem.



Intuitively, the graph structural similarity measures the degree of similarity (i.e., k) between two
graphs under the notion of vertex grouping. In particular, if £ = n, then the GRAPH STRUCTURAL SIMI-
LARITY problem is equivalent to the GRAPH ISOMORPHISM problem. We have the following parameterized
intractability result for the GRAPH STRUCTURAL SIMILARITY problem:

Theorem 4.3 (Theorem 5.2, Appendiz) The GRAPH STRUCTURAL SIMILARITY problem is W[1]-hard.
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5 Appendix

Theorem 5.1 The VERTEX GROUPING problem is W/1]-hard.

PROOF. We reduce the W[l]-hard problem INDEPENDENT SET to the VERTEX GROUPING problem.

Let (G, k) be an instance of the INDEPENDENT SET problem. Construct a graph G’ by adding a new
vertex w to G and connecting w to every vertex in G. Let H be a (k + 1)-star with root rx. Define
the mapping 7 that, on an instance (G, k) of INDEPENDENT SET, produces the instance (G', H, k + 1) of
VERTEX GROUPING. Clearly, the mapping 7 is computable in polynomial time, and hence 7 is an FPT-
reduction. We show that (G, k) is an yes-instance of INDEPENDENT SET if and only if (G', H,k + 1) is an
yes-instance of VERTEX GROUPING.

In effect, suppose that (G, k) is a yes-instance of INDEPENDENT SET, and let I be an independent set
in G of size k. Counsider the function f : V(G') — V(H) that maps the k vertices of I in G’ to the k
leaves of the star H, in a one-to-one fashion, and maps all other vertices of G’ to the root ry of H. Then
it is easy to verify that H is a vertex grouping of G’ under the function f.

Conversely, suppose that H is a vertex grouping of G’ under a function f. Consider any set of vertices
I in G of cardinality k satisfying f(I) = V(H) \ {rg}. Clearly, such a set I exists by the definition of the
vertex grouping. Note that f is a bijection from I to V(H) \ {rg}. Now for any two distinct vertices u
and v of I, u and v are not adjacent in G, otherwise, by the definition of vertex grouping, f(u) and f(v)
would be adjacent in H. It follows that I is an independent set of size k in GG. This completes the proof.

O

Theorem 5.2 The GRAPH STRUCTURAL SIMILARITY problem is W[1]-hard.

PROOF.  As was shown in Theorem 4.1, the VERTEX GROUPING problem is W[1]-hard when the graph
H is a star. An FPT-reduction can be constructed that takes an instance (G, H,k), where G has n
vertices and H is a k-star, of the VERTEX GROUPING problem to an instance (G1, G2, k) of the GRAPH
STRUCTURAL SIMILARITY problem, where G; = G and Gy = H. The W/[l]-hardness of the GRAPH
STRUCTURAL SIMILARITY problem follows. U]
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