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Abstract

Determining whether a parameterized problem is kernelizable and has a small kernel size
has recently become one of the most interesting topics of research in the area of parameterized
complexity and algorithms. Theoretically, it has been proved that a parameterized problem is
kernelizable if and only if it is fixed-parameter tractable. Practically, applying a data-reduction
algorithm to reduce an instance of a parameterized problem to an equivalent smaller instance
(i.e, a kernel) has led to very efficient algorithms, and now goes hand-in-hand with the design of
practical algorithms for solving NP-hard problems. Well-known examples of such parameterized
problems include the vertex cover problem, which is kernelizable to a kernel of size bounded
by 2k, and the planar dominating set problem, which is kernelizable to a kernel of size
bounded by 335k. In this paper we develop new techniques to derive upper and lower bounds
on the kernel size for certain parameterized problems. In terms of our lower bound results, we
show, for example, that unless P = NP , planar vertex cover does not have a problem
kernel of size smaller than 4k/3, and planar independent set and planar dominating
set do not have kernels of size smaller than 2k. In terms of our upper bound results, we further
reduce the upper bound on the kernel size for the planar dominating set problem to 67k,
improving significantly the 335k previous upper bound given by Alber et al. This latter result is
obtained by introducing a new set of reduction and coloring rules, which allows the derivation of
nice combinatorial properties in the kernelized graph leading to a tighter bound on the size of the
kernel. The paper also shows how this improved upper bound yields a simple and competitive
algorithm for the planar dominating set problem.

Keywords. parameterized algorithm, planar graph, dominating set, vertex cover, independent
set, kernel

1 Introduction

Many practical algorithms for NP-hard problems start by applying data reduction subroutines to
the input instances of the problem. The hope is that after the data reduction phase the instance
of the problem has shrunk to a moderate size. This makes the applicability of a second phase,
such as a branch-and-bound phase, to the resulting instance more feasible. Weihe showed in [41]
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how a practical pre-processing algorithm for a variation of the dominating set problem, called
the red/blue dominating set problem, resulted in breaking up input instances of the problem
into much smaller instances. Abu-Khzam et al. [2], in their implementation of algorithms for the
vertex cover problem, observed the following: “In many cases, reduction was so effective that
it eliminated the core completely, and with it the need for decomposition and search”. Similar
success was reported with dominating set as well in [3].

On the other hand, many applications seek solutions of very small sizes to fairly large input
instances of NP-hard problems. This has been the main concern for the area of parameterized
computation. A parameterized problem is a set of instances of the form (x, k), where x is the input
instance, and k is a nonnegative integer called the parameter. A parameterized problem is said to be
fixed-parameter tractable [17] if there is an algorithm that solves the problem in time f(k)|x|c, where
c is a fixed constant and f(k) is a recursive function. The development of efficient parameterized
algorithms has provided a new approach for practically solving problems that are theoretically in-
tractable. For example, parameterized algorithms for the NP-hard problem vertex cover [9, 13]
have found applications in biochemistry [10] and variants thereof are applicable to problems arising
in chip manufacturing [11, 21, 24], and parameterized algorithms in computational logic [35] have
provided an effective method for solving practical instances of the ml type-checking problem,
which is complete for the class exptime [30].

The notion of a parameterized problem being parameterized tractable, and of the problem
having a good data reduction algorithm, turn out to be very closely related. Informally speaking, a
kernelization—precisely defined below, is a data reduction procedure that reduces an instance of the
problem to another (smaller) instance called the kernel. It has been proved that a parameterized
problem is fixed-parameter tractable if and only if the problem is kernelizable [18].

Designing efficient parameterized algorithms and constructing kernels of reasonable sizes have
been two of the main topics of research in the area of parameterized computation recently. More
specifically, constructing a problem kernel has become one of the main components in the design
of an efficient parameterized algorithm for a problem [9, 11, 12, 13], and designing efficient param-
eterized algorithms for a parameterized problem now goes hand-in-hand with the construction of
a problem kernel of a moderate size for the problem. Two of the most celebrated problems that
have been receiving a lot of attention recently from both perspectives, are the vertex cover
and planar dominating set problems. After a long sequence of algorithms, the vertex cover
problem can be solved in time O(1.274k + kn) [14]. Moreover, the vertex cover problem enjoys
a kernel of size bounded by 2k, and reducing this bound further seems to be a very challenging
task, since it would probably lead to an approximation algorithm for the problem of ratio smaller
than 2—a result believed by many people to be unlikely. The planar dominating set problem
as well has undergone some extensive study which culminated in a recent algorithm solving the

problem in time O(215.13
√

k + n3) [25]. Recently, and after many strenuous efforts, it was shown
that the planar dominating set problem has a problem kernel of size 335k that is computable in
O(n3) time [5]. The question of whether such a bound on the problem kernel could be significantly
improved remained open.

In this paper we develop new techniques to derive upper and lower bounds on the kernel size
for certain parameterized problems. We define the notion of duality of a parameterized problem.
Many parameterized tractable problems are the dual of parameterized intractable problems (see
[19, 34, 38]). As an example, consider the vertex cover and independent set problems. If
n denotes the number of vertices in the whole graph G, then it is well-known that (G, k) is a
YES-instance of vertex cover if and only if (G, kd), where kd = n − k, is a YES-instance of
independent set. In this sense, independent set is the parametric dual problem of vertex
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cover. While vertex cover is fixed-parameter tractable on general graphs, independent set
is not [17]. Similarly, while dominating set is fixed-parameter intractable on general graphs, its
parametric dual, called nonblocker, is fixed-parameter tractable, see [15]. The landscape changes
when we turn our attention towards special graph classes, e.g., problems on planar graphs [6]. Here,
for example, both independent set and dominating set are fixed-parameter tractable. In fact,
and in contrast to what was stated above, there are quite many problems for which both the
problem itself and its dual are fixed-parameter tractable. This is also true for problems on graphs
of bounded genus, as well as on graphs of bounded degree.

The beauty of problems which are together with their dual problems fixed-parameter tractable
is that this constellation allows from an algorithmic standpoint for a two-sided attack on the
original problem. This two-sided attack enabled us to derive lower bounds on the kernel size
for such problems (under classical complexity assumptions). For example, we show that unless
P = NP , planar vertex cover does not have a kernel of size smaller than 4k/3, and planar
independent set and planar dominating set do not have kernels of size smaller than 2k. To
the authors’ knowledge, this is the first group of results establishing lower bounds on the kernel
size of parameterized problems. We also show that some lower bound results obtained using the
techniques devised in this paper are sharp by exhibiting a family of graph classes on which the
lower bound on the kernel size of the restricted NP-hard vertex cover problem approaches the
upper bound 2k with an arbitrary precision.

Whereas the lower bounds on the kernel size for planar vertex cover and planar inde-
pendent set come close to the known upper bounds of 2k and 4k on the kernel size for the two
problems, respectively, the lower bound derived for planar dominating set is still very far from
the 335k upper bound on the problem kernel, which was given by Alber et al. [5]. To bridge this
gap, we investigate the problem of finding a kernel of smaller size for the planar dominating
set problem, and derive better upper bounds on the problem kernel for the problem. We improve
the reduction rules proposed in [5], and introduce new rules that color the vertices of the graph
enabling us to observe many new combinatorial properties of its vertices. These properties allow
us to prove a much stronger bound on the number of vertices in the reduced graph. We show that
the planar dominating set problem has a kernel of size 67k that is computable in O(n3) time.
This is a significant improvement over the results in [5]. We finally show how the resulting bound
on the kernel size yields a very simple algorithm for the planar dominating set problem that
beats some previous algorithms for the problem, and whose running time comes even close to some
of the recently proposed algorithms.

2 Preliminaries

A graph G is said to be planar if G can be embedded on the plane such that no two edges in G cross.
It is well-known that deciding whether a graph is planar, and constructing a planar embedding of
the graph in such case, can be done in linear time [31]. The number of edges in a planar graph
with n vertices for n ≥ 3 is bounded by 3n − 6 [16].

A dominating set in a graph G is a set of vertices D such that every vertex in G is either in D or
adjacent to at least one vertex in D. The size of a dominating set D is the number of vertices in D.
A minimum dominating set of G is a dominating set with the minimum size. We will denote by γ(G)
the size of a minimum dominating set in G. The planar dominating set problem, abbreviated
planar-DS henceforth, is the following: given a planar graph G and a positive integer k, either
construct a dominating set for G of size at most k, or report that no such a dominating set exists.
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It is well-known that the planar-DS problem is NP-complete [27].
A parameterized problem P is a subset of Σ∗ × N, where Σ is a fixed alphabet and N is the

set of all non-negative integers. Therefore, each instance of the parameterized problem P is a pair
(I, k), where the second component k is called the parameter. The language L(P ) is the set of all
YES-instances of P . We say that the parameterized problem P is fixed-parameter tractable [17] if
there is an algorithm that decides whether an input (I, k) is a member of L(P ) in time f(k)|I|c,
where c is a fixed constant and f(k) is a recursive function independent of the input length |I|.
The class of all fixed parameter tractable problems is denoted by FPT.

A mapping s : Σ∗ × N → N is called a size function for a parameterized problem P if:

• 0 ≤ k ≤ s(I, k),

• s(I, k) ≤ |I|, and

• s(I, k) = s(I, k′) for all appropriate k, k′ (independence). Hence, we can also write s(I) for
s(I, k).

A problem P together with its size function s are denoted (P, s). The dual problem Pd of P is
the problem whose corresponding language (i.e., the set of YES-instances) L(Pd) = {(I, s(I) − k) |
(I, k) ∈ L(P )}. The dual of the dual of a problem (with a given size function) is again the original
problem. We give some examples below.

d-hitting set
Given: A hypergraph G = (V,E) with edge degree bounded by d, i.e., ∀e ∈ E, |e| ≤ d
Parameter: k
Question: Is there a hitting set of size at most k, i.e.,

∃C ⊆ V, |C| ≤ k,∀e ∈ E,C ∩ e 6= ∅?

The special case in which d = 2 corresponds to the vertex cover problem in undirected
graphs. Let L(d-HS) denote the language of d-hitting set. Taking as size function s(G) = |V |,
it is clear that the dual problem obeys (G, kd) ∈ L(d-HSd) if and only if G has an independent set
of cardinality kd.

dominating set
Given: A (simple) graph G = (V,E)
Parameter: k
Question: Is there a dominating set of size at most k, i.e.,

∃D ⊆ V, |D| ≤ k, ∀v ∈ V \ D ∃w ∈ D, (w, v) ∈ E?

Taking as size function s(G) = |V |, it is clear that the dual problem obeys (G, kd) ∈ L(DSd) if
and only if G has a nonblocker set (i.e., the complement of a dominating set) of cardinality kd.

Generally speaking, it is easy to “correctly” define the dual of a problem for the so-called
selection problems as formalized in [7]. The concept of duality is less clear say for weighted graph
problems (with the slight exception of ROMAN domination; see [22]). Also, different graph
parameterizations like treewidth seem to possess no natural dualization.
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A kernelization (reduction) for a parameterized problem P with size function s is a polynomial-
time computable reduction which maps an instance (I, k) onto (I ′, k′) such that: (1) s(I ′) ≤ g(k) (g
is a recursive function), (2) k′ ≤ k, and (3) (I, k) ∈ L(P ) if and only if (I ′, k′) ∈ L(P ). I ′ is called
the problem kernel of I. It is known (see [18]) that a parameterized problem is fixed-parameter
tractable if and only if it has a kernelization. Of special interest to us in this paper are problems
with linear kernels in which g(k) = αk for some constant α > 0. Such small kernels are known for
many important graph problems restricted to planar graphs.

3 Lower bounds on kernel size

Practice in the study of parameterized algorithms has suggested that improved kernelization can
lead to improved parameterized algorithms. Many efforts have been made towards obtaining smaller
kernels for well-known NP-hard parameterized problems (see for example [5, 13, 18]). A natural
question to ask along this line of research is about the limit of polynomial time kernelization. In this
section we develop techniques for deriving lower bounds on the kernel size for certain well-known
NP-hard parameterized problems.

3.1 General lower bound results

Theorem 3.1 Let (P, s) be an NP-hard parameterized problem (with size function s). Suppose
that P admits an αk kernelization and its dual Pd admits an αdkd kernelization, where α,αd ≥ 1.
If (α − 1)(αd − 1) < 1 then P = NP.

Proof. Suppose that the assumption of the theorem is true, and let r(·) denote the assumed
linear kernelization reduction for P . Similarly, let rd(·) be the linear kernelization reduction for Pd.
Consider the following reduction R, which on input (I, k) of P performs the following:

if k ≤ αd

α+αd
s(I) then compute r(I, k);

else compute rd(I, s(I) − k).

Let (I ′, k′) be the instance computed by the reduction R. If k ≤ αd

α+αd
s(I), then s(I ′) ≤ αk ≤

ααd

α+αd
s(I). Otherwise:

s(I ′) ≤ αdkd

= αd(s(I) − k)

< αd

(

s(I) − αd

α + αd
s(I)

)

=
ααd

α + αd
s(I).

Since (α − 1)(αd − 1) < 1, or equivalently ααd

α+αd
< 1, by repeatedly applying R (at most

polynomially-many times), the problem P can be solved in polynomial time. This completes the
proof.

The condition “α,αd ≥ 1” in the previous theorem is not crucial in the light of the following
lemma.

Lemma 3.2 Let (P, s) be a parameterized problem such that P admits a kernelization r(·) with
s(r(I, k)) ≤ αk for some α < 1. Then P is in P.
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Proof. According to our definition of the size function, we have s(I ′) ≥ k′ for each instance
(I ′, k′). This is in particular true for the parameter k′ of the problem kernel instance I ′ = r(I, k).
Therefore, k′ ≤ αk for some α < 1. By repeated kernelization, we arrive at a problem with
arbitrarily small parameter, and hence of arbitrarily small size. In fact, we need O(log k) many
such kernelizations, each of them requiring polynomial time. It follows that the given problem can
be decided in polynomial time.

Remark. The assumption s(I) ≥ k is crucial here. As a concrete “counterexample,” consider
the decision tree problem, specified by n objects X = {x1, . . . , xn}, t boolean tests T = {T1, . . . , Tt}
and a parameter k. In this setting, a decision tree is a binary tree B whose leaves are (uniquely)
labeled with objects and whose inner nodes are labeled with tests such that on the path from the
root to the leaf labeled xi, tests are performed that uniquely distinguish xi from all other objects.
The overall length of all paths from the root to each leaf is usually considered as the cost function.
The question is if there exists a decision tree with cost bounded by k. This problem is known to
be NP-complete (see [32]).

If n = 2`, the decision tree with optimal cost is surely the complete binary tree (possibly
not attainable with the given set of tests), since it is optimally balanced. Hence, we have k >
n log2 n (otherwise, an algorithm can simply answer NO); this can be seen as a trivial kernelization
algorithm. Therefore, n ∈ o(k). This can be interpreted as giving the (to our knowledge) first
natural parameterized problem having a sub-linear kernel. On the other hand, this relation also
implies that s(I, k) < k is true here, so that the previous lemma does not lead to a contradiction
with the known NP-hardness result.

The problem here is the seemingly innocuous choice of the size function as being n = |X|.
Observe that any “reasonable” encoding of an instance would rather use n log n bits, since each
element of X would need to get a name. This way, the problem would disappear.

3.2 Concrete lower bound results

From Theorem 3.1, and assuming P 6= NP , we immediately obtain the following list of corollaries.

• Corollary 3.3 For any ε > 0, there is no (4/3 − ε)k kernel for planar vertex cover.

Proof. The four-color theorem implies a 4k-kernelization for planar independent set,
which is the dual problem of planar vertex cover.

• Corollary 3.4 For any ε > 0, there is no (2 − ε)k kernel for planar independent set.
This result remains true if we restrict the problem to graphs of maximum degree bounded
by three, or even to planar graphs of maximum degree bounded by three (both problems are
NP-hard).

Proof. The general vertex cover problem, which is the dual of the independent set
problem, has a 2k-kernelization [13] (based on a result of Nemhauser and Trotter). This
kernelization is both planarity and bounded-degree preserving.

• Corollary 3.5 For any ε > 0, there is no (3/2 − ε)k-kernelization for vertex cover re-
stricted to triangle-free planar graphs (this problem is still NP-hard [40, Chapter 7]).
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Proof. Based on a theorem by Grötzsch (which can be turned into a polynomial-time
coloring algorithm; see [29]) it is known that planar triangle-free graphs are 3-colorable. This
implies a 3k kernel for independent set restricted to this graph class, which gives the
result. Observe that the mentioned 2k-kernelization for vertex cover on general graphs
preserves planarity and triangle-freeness, which implies that this restriction of the problem
has a 2k-kernelization.

• Corollary 3.6 For any ε > 0, there is no (335/334− ε)kd kernel for planar nonblocker.

Proof. A 335k kernel for planar-DS was derived in [5].

• Corollary 3.7 For any ε > 0, there is no (2 − ε)k kernel for planar-DS. This remains
true when further restricting the graph class to planar graphs of maximum degree three (the
problem is still NP-hard).

Proof. In [20], a 2kd-kernelization for nonblocker on general graphs which preserves
planarity and degree bounds, was derived (see also [37, Theorem 13.1.3]).

Corollary 3.8 (see [15]) For any ε > 0, there is no (2− ε)k kernel for dominating set on
cubic graphs.

This is interesting, since that case is the best match between upper and lower bounds for
domination problems.

The above results open a new line of research, and prompt us to ask whether we can find
examples of problems such that the derived kernel sizes are optimal (unless P = NP), and whether
we can close the gaps between the upper bounds and lower bounds on the kernel size. According to
our previous discussion, planar vertex cover on triangle-free graphs is our “best match:” we
know how to derive a kernel of size 2k, and (assuming P 6= NP) we know that no kernel smaller
than 3k/2 exists. On the other hand, the 335k upper bound on the kernel size for planar-DS [5]
is very far from the 2k lower bound proved above. In the next sections, we improve this upper
bound to 67k in an effort to bridge the huge gap between the upper bound and lower bound on the
kernel size for this problem. This allows us to state:

Corollary 3.9 Assuming P 6= NP, there is no (67/66− ε)kd kernel for planar nonblocker for
any choice of ε > 0.

Remark. Since “Euler-type” theorems exist for graphs of bounded genus g, it can be shown that
there is a constant cg such that each graph of genus g is cg-colorable. Therefore, lower bounds on
the kernel sizes of vertex cover on graphs of genus g can be derived. For triangle-free graphs
of genus g, Thomassen has shown that the corresponding constant c′g is in O(g1/3(log g)−2/3) (see
[28, 39]).

Remark. Recently, Fomin and Thilikos [26] were able to extend the linear kernel result for
dominating set to graphs on surfaces of bounded genus. Therefore, our lower bound results
extend to these more general graph classes as well.
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3.3 Can we improve on the lower bounds?

In the following, we reproduce a construction that is essentially due to Paul Seymour.1 This
construction shows that the lower bound results obtained using the techniques devised in this
section can be sharp for certain problems.

Consider the following family Gn of graph classes. A graph G is in Gn if and only if it satisfies
the following two conditions.

1. G = (V,E) can be partitioned into 2n + 1 mutually disjoint independent sets, i.e., V =
I1 ∪ · · · ∪ I2n+1, Ii ∩ Ij = ∅ for all 1 ≤ i < j ≤ 2n + 1, and the induced graphs G[Ii] contain
no edges.

2. The edge set E can be partitioned into 2n + 1 groups E1, . . . , E2n+1 such that

Ei = E(G[Ii ∪ Ii mod (2n+1)+1]).
2
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Figure 1: An example of a graph in Gn.

Figure 1 provides an example of a graph in Gn.
Since each of these classes is closed under taking induced subgraphs, we can deduce by the

Nemhauser-Trotter kernelization [13]:

Lemma 3.10 vertex cover restricted to Gn admits a kernel of size 2k (within Gn).

Since the graphs in Gn are “nearly bipartite,” we have the following result.

Lemma 3.11 independent set restricted to Gn admits a kernel of size (2 + 1/n)kd (within Gn).

Proof. Let G = (V,E) ∈ Gn with an independent set decomposition V = I1 ∪ · · · ∪ I2n+1 that

1Personal communication (12.07.05).
2We assume that the graph G is given with a certificate of membership in Gn, which is a partitioning of its vertex

set into the 2n + 1 subsets.
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certifies this membership. To simplify the notation, we assume that additions and subtractions of
indices are all performed modulo 2n + 1. Consider the sets:

Ji = Ii ∪ Ii+2 ∪ · · · ∪ Ii−3 1 ≤ i ≤ 2n + 1.

Ji greedily collects “every second” set starting at Ii so that each set Ji forms an independent
set of G. It can be easily verified that:

2n+1
∑

i=1

|Ji| = n|V |.

This shows that there exists an index i for which the set Ji contains at least a fraction n/(2n+1)
of all the vertices. Moreover, such a Ji can be found in polynomial time. Therefore, we can
answer YES straightaway whenever we are given a graph G = (V,E) ∈ Gn with a parameter kd ≤
(n/(2n + 1))|V |, as an instance of independent set. This means that we have |V | < (2 + 1/n)kd

for all the remaining instances.

Theorem 3.12 For each n, vertex cover restricted to Gn is NP-complete.

Proof. Membership in NP is inherited from the general vertex cover problem. We will
show that 3-SAT is polynomial-time reducible to vertex cover restricted to Gn. We highlight
the main elements in the reduction here and leave the verification of some of the details to the
interested reader.

Let C = {C1, . . . , Cm} be a collection of clauses. Without loss of generality, we can assume that
|Ci| = 3 for all 1 ≤ i ≤ m. Let `j

i refers to the jth literal in clause Ci, i.e., `j
i = yj

i or `j
i = ȳj

i for

some variable yj
i ∈ X = {x1, . . . , xr}.

We construct a graph G = (V,E) ∈ Gn as follows. For each variable xi, we introduce a cycle
(v1

i , . . . , v
4n+2
i ) of even length. Clearly, 2n + 1 of these vertices will be in any feasible vertex cover.

For each clause Ci, we introduce a cycle (u1
i , . . . , u

2n+1
i ) of odd length. Clearly, n + 1 of these

vertices will be in any feasible vertex cover. Summarizing, the graph described so far will have at
least r(2n + 1) + m(n + 1) vertices in any feasible cover. Since we will now add more edges to this
graph, the lower bound on the size of the vertex cover will still be valid. At the same time, we will
maintain the property that Ij = {vj

i , v
j+2n+1
i | 1 ≤ i ≤ r}∪{uj

i | 1 ≤ i ≤ m}, where 1 ≤ j ≤ 2n+1,
are all independent sets.

If `1
i = y1

i = xq, then we will make u1
i adjacent to v2

q . If `2
i = y2

i = xq, then we will make u2
i

adjacent to v2n+2
q . If `3

i = y3
i = xq, then we will make u3

i adjacent to v2
q .

If `1
i = ȳ1

i = x̄q, then we will make u1
i adjacent to v2n+3

q . If `2
i = ȳ2

i = x̄q, then we will make u2
i

adjacent to v1
q . If `3

i = ȳ3
i = x̄q, then we will make u3

i adjacent to v2n+3
q .

Now, if xi is set to true in a satisfying assignment of the given 3-SAT instance, then we put
vj
i into the vertex cover if and only if j is even. If xi is set to false in a satisfying assignment of

the given 3-SAT instance, then we put vj
i into the vertex cover if and only if j is odd. It is not

difficult to verify that a satisfying assignment of C can be translated into a feasible vertex cover of
size r(2n + 1) + m(n + 1).

The same identification of vertices from vj
i with variable settings allows to translate a feasible

vertex cover of size r(2n+1)+m(n+1) into a satisfying assignment for the given 3-SAT instance.
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Corollary 3.13 Unless P = NP, the vertex cover problem restricted to Gn does not have a
kernel of size (2 − ε)k for any ε > 0.

Proof. This follows from Lemma 3.11 and Theorem 3.1.

Remark. The above corollary shows that the lower bound results on the kernel size for vertex
cover restricted to Gn obtained using the techniques in this paper are tight. It also shows that it is
unlikely that the vertex cover problem on general graphs admits a kernelization of size (2− ε)k
with the property that the produced kernel is a subgraph of the original graph. The reason being
that such a kernelization would also be a kernelization for the vertex cover problem restricted to
the class Gn with the same kernel bound.

3.4 A possible two-sided attack for exact algorithms

With problems having both FPT algorithms for their primal and for their dual parameterizations,
we have the possibility of converting both algorithms into a non-parameterized algorithm. This
is like attacking the problem from two sides. This means that we can use either of the two FPT
algorithms, depending on “to which side” our concrete problem instance is closer.

Theorem 3.14 Let (P, s) be a parameterized problem and Pd its dual. Assume that both P and
Pd are in FPT. Let f be a monotone function. Assume that there is an algorithm A that solves an
instance (I, k) of P in time O(f(βk)p(s(I))) for some polynomial p, and that Ad is an algorithm
that solves an instance (I, kd) of Pd in time O(f(βdkd)pd(s(I))) for a polynomial pd.

Then, there is an algorithm A′ for solving the non-parameterized problem instance I running
in time

O(f(
ββd

β + βd
s(I))p′(s(I))),

for some polynomial p′.

Proof. The idea is to use algorithm A as long as it is better than using Ad. This means that
we have to compare

f(βk) to f(βd(s(I) − kd)).

Since f is monotone, this means we can simply compare

βk to βd(s(I) − kd).

Some simple algebra shows that we can have the following algorithm A′ for the non-parameterized
problem P , given an instance I:

for all parameter values k do:
if k ≤ βd

β+βd
s(I) then compute A(I, k);

else compute Ad(I, s(I) − k);
output the ‘best’ of all computed solutions.

Considering the boundary case k = βd

β+βd
s(I) gives the claimed worst case running time. Here,

p′(j) = j(p(j) + pd(j)).
Unfortunately, up till now we are lacking good examples that prove this approach superior to

published (problem-tailored) exact algorithms.
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4 Reduction and coloring rules

In this section we show how to improve the upper bound on the kernel size for the planar-DS
problem to 67k. In the remainder of the paper we will always assume that the graph we are dealing
with is planar.

In this section we present an O(n3) time preprocessing scheme that reduces the graph G to
a graph G′, such that γ(G) = γ(G′), and such that given a minimum dominating set for G′, a
minimum dominating set for G can be constructed in linear time. We will color the vertices of
the graph G with two colors: black and white. Initially, all vertices are colored black. Informally
speaking, white vertices will be those vertices that we know for sure when we color them that there
exists a minimum dominating set for the graph excluding all of them. The black vertices are all
other vertices. Note that it is possible for white vertices to be in some minimum dominating set,
but the point is that there exists at least one minimum dominating set that excludes all white
vertices. Hence, the black-and-white coloring is only an auxiliary structure and not part of the
problem definition. We start with the following definitions that are adopted from [5] with minor
additions and modifications.

For a vertex v in G denote by N(v) the set of neighbors of v, and by N [v] the set N(v) ∪ {v}. By
removing a vertex v from G, we mean removing v and all the edges incident on v from G. For a
vertex v in G, we partition its set of neighbors N(v) into three sets: N1(v) = {u ∈ N(v) | N(u) −
N [v] 6= ∅}; N2(v) = {u ∈ N(v)−N1(v) | N(u)∩N1(v) 6= ∅}; and N3(v) = N(v)− (N1(v)∪N2(v)).
For two vertices v and w we define N(v,w) = N(v) ∪ N(w) and N [v,w] = N [v] ∪ N [w]. We
partition N(v,w) into three sets: N1(v,w) = {u ∈ N(v,w) | N(u)−N [v,w] 6= ∅}; N2(v,w) = {u ∈
N(v,w) − N1(v,w) | N(u) ∩ N1(v,w) 6= ∅}; and N3(v,w) = N(v,w) − (N1(v,w) ∪ N2(v,w)).

Definition 4.1 Let G = (V,E) be a plane graph. A region R(v,w) between two vertices v and w
is a closed subset of the plane with the following properties:

1. The boundary of R(v,w) is formed by two simple paths P1 and P2 in G which connect v and
w, and the length of each path is at most three.

2. All vertices that are strictly inside (i.e., not on the boundary) the region R(v,w) are from
N(v,w).

For a region R = R(v,w), let V [R] denote the vertices in R, i.e.,

V [R] := {u ∈ V | u sits inside or on the boundary of R}.

Let V (R) = V [R] − {v,w}.

Definition 4.2 A region R = R(v,w) between two vertices v and w is called simple if all vertices
in V (R) are common neighbors of both v and w, that is, V (R) ⊆ N(v) ∩ N(w).

We introduce the following definitions.

Definition 4.3 A region R = R(v,w) between two vertices v and w is called quasi–simple if
V [R] = V [R′] ∪ R+, where R′ = R′(v,w) is a simple region between v and w, and R+ is a set of
white vertices satisfying the following conditions:

1. Every vertex of R+ sits strictly inside R′.

2. Every vertex of R+ is connected to v and not connected to w, and is also connected to at
least one vertex on the boundary of R′ other than v.

11



A vertex in V (R) is called a simple vertex, if it is connected to both v and w, otherwise it is
called non–simple. The set of vertices R+, which consists of the non-simple vertices in V (R), will
be referred to as R+(v,w).

For a vertex u ∈ V , denote by B(u) the set of black vertices in N(u), and by W (u) the set
of white vertices in N(u). We describe next the reduction and coloring rules to be applied to the
graph G. The reduction and coloring rules are applied to the graph until the application of any of
them does not change the structure of the graph nor the color of any vertex in the graph. The first
two reduction rules, Rule 1 and Rule 2, are slight modifications of Rule 1 and Rule 2 introduced
in [5]. The only difference is that in the current paper they are only applied to black vertices, and
not to all the vertices as in [5].

Rule 1 ([5]). If N3(v) 6= ∅ for some black vertex v, then remove the vertices in N2(v) ∪ N3(v)
from G, and add a new white vertex v′ and an edge (v, v′) to G.

Rule 2 ([5]). If N3(v,w) 6= ∅ for two black vertices v, w, and if N3(v,w) cannot be dominated by
a single vertex in N2(v,w) ∪ N3(v,w), then we distinguish the following two cases.

Case 1. If N3(v,w) can be dominated by a single vertex in {v,w} then: (1.1) if N3(v,w) ⊆
N(v) and N3(v,w) ⊆ N(w), remove N3(v,w) and N2(v,w) ∩ N(v) ∩ N(w) from G and add two
new white vertices z, z′ and the edges (v, z), (w, z), (v, z′), (w, z′) to G; (1.2) if N3(v,w) ⊆ N(v)
and N3(v,w) 6⊆ N(w), remove N3(v,w) and N2(v,w) ∩ N(v) from G and add a new white vertex
v′ and the edge (v, v′) to G; and (1.3) if N3(v,w) ⊆ N(w) and N3(v,w) 6⊆ N(v), remove N3(v,w)
and N2(v,w) ∩ N(w) from G and add a new white vertex w′ and the edge (w,w′) to G.

Case 2. If N3(v,w) cannot be dominated by a single vertex in {v,w}, then remove N2(v,w)∪
N3(v,w) from G and add two new white vertices v′, w′ and the edges (v, v′), (w,w′) to G.

Rule 3. For each black vertex v in G, if there exists a black vertex x ∈ N2(v) ∪ N3(v), color x
white, and remove the edges between x and all other white vertices in G.

Rule 4. For every two black vertices v and w, if N3(v,w) 6= ∅, then for every black vertex
x ∈ N2(v,w) ∪ N3(v,w) that does not dominate all vertices in N3(v,w), color x white and remove
all the edges between x and the other white vertices in G.

Rule 5. For every quasi-simple region R = R(v,w) between two vertices v and w, if v is black,
then for every black vertex x ∈ N2(v,w) ∪ N3(v,w) strictly inside R that does not dominate all
vertices in N2(v,w) ∪ N3(v,w) strictly inside R, color x white and remove all the edges between x
and the other white vertices in G.

Rule 6. For every two white vertices u and v, if N(u) ⊆ N(v), and u ∈ N2(w) ∪ N3(w) for some
black vertex w, then remove v.

Rule 7. For every black vertex v, if every vertex u ∈ W (v) is connected to all the vertices in B(v),
then remove all the vertices in W (v) from G.

Rule 8. For every two black vertices v and w, let W (v,w) = W (v) ∩ W (w). If |W (v,w)| ≥ 2 and
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there is a degree-2 vertex u ∈ W (v,w), then remove all vertices in W (v,w) except u, add a new
degree-2 white vertex u′, and connect u′ to both v and w.

Figure 2 illustrates Rules 4, 6, and 8.
A graph G is said to be reduced if every vertex in G is colored white or black, and the application

of Rules 1–8 leaves the graph G unchanged. That is, the application of any of the above rules
does not change the color of any vertex in G, nor does it change the structure of G. We have the
following theorem.

Theorem 4.1 Let G be a planar graph with n vertices. Then in time O(n3) we can construct a
planar graph G′ from G such that: (1) G′ is reduced, (2) γ(G′) = γ(G), (3) there exists a minimum
dominating set for G′ that excludes all white vertices of G′, and (4) from a minimum dominating
set for G′ a minimum dominating set for G can be constructed in linear time.

Proof. Given a graph G, we first color all its vertices black. We then apply Rule 1 – Rule 8
given above until the application of any of these rules leaves G unchanged. Let G′ be the resulting
graph. Then G′ is reduced by the definition of a reduced graph. Alber et al [5] noted that each
successful application of Rule 1 and Rule 2 (i.e., an application that changes the structure of the
graph G) reduces the number of vertices in the graph by at least one. Hence, the total number of
applications of these two rules is bounded by n. By looking at Rule 3 – Rule 7, it is easy to see
that each of these rules either reduces the number of vertices in G by at least one, or changes the
color of at least one black vertex to white without adding any new vertices to the graph. Moreover,
none of Rule 1 – Rule 7 increases the number of edges in the graph. If we look at Rule 8, it is
not difficult to see that each successful application of this rule reduces the number of edges in the
graph by at least 1. This is true since in a successful application of the rule either |W (v,w)| > 2
and in this case the number of vertices and edges decrease after the application of the rule, or
|W (v,w)| = 2 and there is a vertex in W (v,w) of degree larger than 2 (otherwise the application of
the rule does not change the structure of the graph), and hence the removal of W (v,w) decreases
the number of edges in the graph. Noting that the number of edges in a planar graph is linear in
the number of vertices, and that the application of the rules become unnecessary if the graph does
not contain any black vertices, we conclude that the total number of successful applications of the
operations in Rule 1 – Rule 8 is O(n). Alber et al. [5] also showed that Rule 1 and Rule 2
can be executed in time O(n2) when the graph is planar. Similarly, one can show that Rules 3–8
can also be executed in O(n2) time (we leave the verification of this simple fact to the interested
reader). This, together with the fact that the total number of successful applications of all the
rules is O(n), implies that the time needed to construct G′ is O(n3).

To show parts (2) and (3) of the theorem, we prove that after the execution of any of the rules,
the resulting graph satisfies conditions (2) and (3) in the theorem. The proof will then follow by
an inductive argument on the number of applications of the rules. Denote by H the graph before a
rule is executed, and by H ′ the resulting graph after the rule is executed. Denote by D a minimum
dominating set for H excluding all white vertices in H. Initially, H = G and all vertices in H are
black. Thus, H trivially satisfies conditions (2) and (3) in the theorem. Suppose now that one of
the rules is executed on a graph H satisfying conditions (2) and (3) in the theorem to yield the
graph H ′. We need to show that H ′ satisfies conditions (2) and (3) as well.

Suppose that Rule 1 is executed. The same argument used in [5] shows that γ(H) = γ(H ′).3

3The fact that this statement holds true can be easily verified by the reader.
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Figure 2: Illustrations of Rule 4 (top figure), Rule 6 (middle figure), and Rule 8 (bottom figure).
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What is left is showing that H ′ has a minimum dominating set consisting only of black vertices.
Let D be a minimum dominating set for H consisting of black vertices. Since N3(v) 6= ∅, D must
contain a vertex in N2(v) ∪N3(v) ∪ {v}. If D contains a vertex in N2(v) ∪N3(v), then clearly this
vertex can be replaced by v which is black. Thus we can assume that D contains v and no vertex
in N3(v) ∪ N2(v). Then D is also a dominating set for H ′ consisting only of black vertices, and
since γ(G) = γ(H) = γ(H ′), D is a minimum dominating set for H ′. It follows that H ′ satisfies
conditions (2) and (3). The proof of Rule 2 is of the same flavor.

If Rule 3 is executed, then the black vertices in the set N2(v) ∪ N3(v), where v is black, will
be colored white, and the edges between the white vertices are removed. It suffices to show that
after the coloring of one vertex x in N2(v) ∪ N3(v) white, and removing the edges between x and
the other white vertices, conditions (2) and (3) still hold (the same argument can then be applied
repetitively to every such vertex). By our inductive hypothesis, before the application of Rule 3
to H, H had a minimum dominating set D of size equal to γ(G) that excludes all white vertices
in H. If D contains x, we can substitute x with v and have a minimum dominating set of H
consisting only of black vertices in H. Thus, we can assume, without loss of generality, that D
does not include x. Since x is the only vertex whose color has changed to white, D consists only
of black vertices in H ′. Moreover, it is not difficult to see that D is also a dominating set in H ′

since the edges removed from H are not used to dominate any vertices in H (these edges were
incident on vertices that are not in D). Since by removing edges from the graph the size of the
minimum dominating set can only increase, we conclude that D is a minimum dominating set for
H ′ excluding all white vertices, and γ(H ′) = γ(H) = γ(G).

Suppose Rule 4 is executed. Similarly, we only need to show that conditions (2) and (3) still
hold after a vertex x has been colored white. If D contains x, then by the assumption in Rule
4, x does not dominate all the vertices in N3(v,w), and D must also contain at least another
vertex x′ in N2(v,w) ∪ N3(v,w) ∪ {v,w} to dominate N3(v,w). This is true since only vertices in
N2(v,w) ∪ N3(v,w) ∪ {v,w} can dominate vertices of N3(v,w). In such case we can substitute x
and x′ by v and w and have a minimum dominating set that consists only of black vertices in H.
Since x is the only vertex whose color has changed to white, D excludes all white vertices in H ′. It
is easy to see that the edges that connect white vertices in H are not used by D to dominate any
vertex. By an argument similar to the above, it follows that D is a minimum dominating set for
H ′ excluding all white vertices in H ′, and γ(H ′) = |D| = γ(H) = γ(G).

Suppose Rule 5 is executed and a vertex x is colored white. Let R = R(v,w) be the quasi-
simple region that was being processed in the rule, and note that all the vertices in R+(v,w) are
connected to v. Let the boundary of R be (v, y, w, z, v). Let D be a dominating set for H consisting
only of black vertices. If D contains x, then by the assumption in Rule 5, x does not dominate
all the vertices in N2(v,w) ∪ N3(v,w) strictly inside R, and D must contain another black vertex
x′ ∈ R(v,w) in N2(v,w) ∪ N3(v,w) ∪ {v,w, y, z} to dominate the vertices in N2(v,w) ∪ N3(v,w)
that are strictly inside R. Observe that, by the definition of a quasi-simple region, the only vertex
that can be dominated by x and not by v is w. We distinguish the following cases:

Case 1. x′ = v. Since at least one vertex r ∈ {y,w, z} must be black (w is connected to both y
and z and no edges exist between white vertices, so it is not possible for all the vertices in {y,w, z}
to be white) and since all the vertices in {y,w, z} dominate w, we can substitute x by r (note that
x is dominated by v) to obtain a dominating set consisting of black vertices that excludes x.

Case 2. x′ 6= v. If x′ does not dominate w, then x′ must be one of those vertices in R+ that
connect only to v and to the vertices on the boundary of R other than w. Since all such boundary
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vertices are dominated by v, and x′ is dominated by v as well, we can substitute x′ by v in D
and the case reduces to Case 1 above. If x′ dominates w, then we can substitute x by v to get a
dominating set consisting of black vertices that excludes x.

Thus, we can assume, without loss of generality, that D does not include x. Since x is the only
vertex whose color has changed to white, D consists only of black vertices in H ′. By an argument
similar to above, it follows that D is a minimum dominating set for H ′ excluding all white vertices
in H ′, and γ(H ′) = |D| = γ(H) = γ(G).

Suppose Rule 6 is executed and a vertex v is removed as described in the rule. Let D be a
minimum dominating set for H excluding all white vertices in H. Thus D does not contain v. Since
v is the only vertex removed, and no vertices are colored, it follows that D is a dominating set for
H ′ excluding all white vertices in H ′. What is left is proving that D is a minimum dominating
set for H ′. Suppose that H ′ has a minimum dominating set D′ of size strictly smaller than D.
Then D′ has to cover u, and hence, D′ either contains u or a neighbor of u in H ′. If D′ contains
u, since every neighbor of u is also a neighbor of w, and u is a neighbor of w, (D′ ∪ {w}) − {u}
is a minimum dominating set for H of size smaller than D, a contradiction (note that since w is
a neighbor of u, w is a neighbor of v as well, and hence, dominates v). On the other hand, if D′

contains a neighbor of u, since N(u) ⊆ N(v), D′ also contains a neighbor of v in H, and hence
dominates v. Thus, D′ is a dominating set for H of size smaller than D, a contradiction. It follows
that |D| = γ(H ′) = γ(H) = γ(G).

Suppose Rule 7 is executed on a black vertex v, and all vertices in W (v) were removed as
described in the rule. Let D be a minimum dominating set for H excluding all white vertices in H.
Thus, D does not contain any vertex in W (v). Since the vertices in W (v) are the only vertices that
were removed, and no vertices in the graph were colored, it follows that D is a dominating set for
H ′ excluding all white vertices in H ′. What is left is proving that D is a minimum dominating set
for H ′. Suppose that H ′ has a minimum dominating set D′ of size strictly smaller than D. Then
D′ has to cover v. Hence D′ either contains v, or a neighbor of v in B(v) because all the vertices
in W (v) were removed. In either case, D′ dominates all the removed vertices in W (v) in H, since
every vertex in W (v) is adjacent to all vertices in B(v). Therefore D′ is also a dominating set for
H of size smaller than D, a contradiction. It follows that |D| = γ(H ′) = γ(H) = γ(G).

To prove the statement for Rule 8, let D be a minimum dominating set for H excluding all
white vertices in H. Again, D is a dominating set for H ′ excluding all white vertices in H ′. Let D′

be a minimum dominating set for H ′ and suppose, to get a contradiction, that |D′| < |D|. Without
loss of generality, we can assume that D′ contains either v or w (or both), otherwise, to dominate
u and u′, D′ has to contain both u and u′, which can be substituted by v and w. Now D′ is also
a dominating set for H of smaller size than D, a contradiction. It follows that D is a minimum
dominating set for H ′ excluding all white vertices in H ′, and γ(H ′) = γ(H) = γ(G).

To prove part (4) of the theorem, note the following: (1) from a minimum dominating set for
G′ one can construct in O(n) time a minimum dominating set for G′ containing only black vertices
(this can be achieved by associating, during the reduction phase, with the vertices colored white
the black vertices that can replace them); and (2) a minimum dominating set for G′ consisting only
of black vertices is also a minimum dominating set for G. This completes the proof.
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5 A problem kernel

Let G be a reduced graph, and let D be a minimum dominating set for G consisting of black vertices
such that |D| = k. In this section, we will show that the number of vertices n in G is bounded by
67k. The following definitions are adopted from [5].

Given any dominating set D in a graph G, a D-region decomposition of G is a set < of regions
between pairs of vertices in D such that:

1. For any region R = R(v,w) in <, no vertex in D is in V (R). That is, a vertex in D can only
be an endpoint of a region in <.

2. No two distinct regions R1, R2 ∈ < intersect. However, they may touch each other by having
common boundaries.

Note that all the endpoints of the regions in a D-region decomposition are vertices in D. For
a D-region decomposition <, define V [<] =

⋃

R∈< V [R]. A D-region decomposition is maximal, if

there is no region R such that <′
= < ∪ R is a D-region decomposition with V [<] ( V [<′

].
For a D-region decomposition <, associate a planar graph G<(V<, E<) with possible multiple

edges, where V< = D, and such that there is an edge between two vertices v and w in G< if and
only if R(v,w) is a region in <. A planar graph with multiple edges is called thin, if there is a
planar embedding of the graph such that for any two edges e1 and e2 between two distinct vertices
v and w in the graph, there must exist two more vertices which sit inside the disjoint areas of the
plane enclosed by e1 and e2.

Alber et al. [5] showed that the number of edges in a thin graph of n vertices is bounded
by 3n − 6. They also showed that for any plane graph G and a dominating set D of G, there
exists a maximal D-region decomposition for G such that G< is thin. Since the maximal D-region
decomposition in [5] starts with any dominating set D and is not affected by the color a vertex
can have, the same results in [5] hold true for our reduced graph G whose vertices are colored
black/white, and with a minimum dominating set D consisting only of black vertices. The above
discussion is summarized in the following proposition.

Proposition 5.1 Let G be a reduced graph and D a dominating set of G consisting of black vertices.
Then there exists a maximal D-region decomposition < of G such that G< is thin.

Corollary 5.2 Let G be a reduced graph with a minimum dominating set D consisting of k black
vertices, and let < be a maximal D-region decomposition of G such that G< is thin. Then the
number of regions in < is bounded by 3k − 6.

Proof. The number of regions in < is the number of edges in G<. Since G< has |D| = k vertices,
by [5], the number of edges in G< is bounded by 3k − 6.

In the remainder of this section, < will denote a maximal D-region decomposition of G such
that G< is thin. Let u and v be two vertices in G. We say that u and v are boundary-adjacent if
(u, v) is an edge on the boundary of some region R ∈ <. For a vertex v ∈ G, denote by N∗(v) the
set of vertices that are boundary-adjacent to v. Note that for a vertex v ∈ D, since v is black, by
Rule 3, all vertices in N2(v)∪N3(v) must be white. Note also that, by the definition of a D-region
decomposition, all the endpoints of the regions in < are vertices in D, and hence are colored black.

Proposition 5.3 Let v ∈ D. The following are true.
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(a) (Lemma 6, [5]) Every vertex u ∈ N1(v) is in V [<].

(b) The vertex v is an endpoint of a region R ∈ <. That is, there exists a region R = R(x, y) ∈ <
such that v = x or v = y.

(c) Every vertex u ∈ N2(v) which is not in V [<] is connected only to v and to vertices in N∗(v).

Proof. The proof of part (a) appears in [5].
To prove (b), suppose to get a contradiction that v is not the endpoint of any region in <.

Since v ∈ D, and by the definition of a region, v must be outside every region in <. Now v must
have a vertex in N1(v), otherwise, all vertices in N(v) would be white, and hence removed by
Rule 7 (we assume, without loss of generality, that G does not contain any isolated vertices). Let
u ∈ N1(v). By part (a) above, u must belong to some region R = R(x, y). Observe that u must
be on the boundary of R, otherwise v would be a vertex in V [R]. Again, by the definition of a
region, u is either boundary-adjacent to x or to y. Suppose, without loss of generality, that u is
boundary-adjacent to x. But then the degenerated region formed by (x, u, v) does not cross < (it
only touches R), contradicting the maximality of <.

To prove part (c), let u be a vertex in N2(v) and note that u is white, and suppose that u is
connected to a vertex w 6= v such that w /∈ N∗(v). Note that w must be in N1(v) (otherwise w
would be white and u and w cannot be adjacent), and hence, by part (a) above, must belong to
some region R = R(x, y). Since u /∈ V [<], w cannot be inside R, and hence, is on the boundary
of R. Moreover, by the definition of a region, w must be boundary-adjacent to either x or y.
Without loss of generality, assume w is boundary-adjacent to x. Now w /∈ N∗(v), so w cannot be
boundary-adjacent to v, and x 6= v. Consider the degenerated region formed by (v, u,w, x). This
region cannot cross any region in <, otherwise it crosses it via (u,w) and u would be in V [<]. But
this contradicts the maximality of < since u /∈ V [<].

Let x be a vertex in G such that x /∈ V [<]. Then by part (b) in Proposition 5.3, x /∈ D. Thus,
x ∈ N(v) for some black vertex v ∈ D ⊆ V [<]. By part (a) in Proposition 5.3, x /∈ N1(v), and
hence, x ∈ N2(v) ∪ N3(v). By Rule 3, the color of x must be white. Let R = R(v,w) be a region
in V [<] of which v is an endpoint (such a region must exist by part (b) of Proposition 5.3). We
distinguish two cases.

Case A. x ∈ N3(v). Since v is black, by Rule 1, this is only possible if deg(x) = 1 and N2(v) = ∅
(in this case x will be the white vertex added by the rule). In such case it can be easily seen that
we can flip x and place it inside R without affecting the planarity of the graph.

Case B. x ∈ N2(v). Note that in this case N3(v) = ∅ by Rule 1 (otherwise N2(v) ∪ N3(v) would
be removed), and x is only connected to v and N∗(v) by part (c) in Proposition 5.3. If deg(x) = 2,
by a similar argument to Case A above, x can be flipped and placed inside R.

According to the above discussion, it follows that the vertices in G can be classified into two
categories: (1) those vertices that are in V [<]; and (2) those that are not in V [<], which are those
vertices of degree larger than two that belong to N2(v) for some vertex v ∈ D, and in this case
must be connected only to vertices in N∗(v). To bound the number of vertices in G we need to
bound the number of vertices in the two categories. We start with the vertices in category (2).

Let O denote the set of vertices in category (2). Note that all vertices in O are white, and no
two vertices u and v in O are such that N(u) ⊆ N(v). To see why the latter statement is true,
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note that every vertex in O must be in N2(w) for some black vertex w ∈ D. So if N(u) ⊆ N(v),
then by Rule 6, v would have been removed from the graph. To bound the number of vertices in
O, we will bound the number of vertices in O that are in N2(v) where v ∈ D. Let us denote this
set by N †(v). Let N∗

† (v) be the set of vertices in N∗(v) that are neighbors of vertices in N †(v).

Note that every vertex in N †(v) has degree ≥ 3, is connected only to v and to N∗
† (v), and no two

vertices x and y in N †(v) are such that N(x) ⊆ N(y).

Assumption 5.4 For the sake of counting the number of vertices in N †(v), it is safe to assume
that: (1) every vertex in N †(v) has degree exactly 3; (2) no two vertices x and y in N †(v) are such
that N(x) ⊆ N(y); and (3) vertices in N †(v) are only connected to v and to vertices in N∗

† (v).

Proof. Since properties (2) and (3) are already satisfied by the vertices in N †(v), we only
need to show how we can make the vertices in N †(v) satisfy property (1) without reducing their
number, and without affecting properties (2) and (3). To satisfy property (1), we will remove some
edges between vertices in N †(v) and N∗

† (v) without affecting the other properties. This can be

done as follows. List the vertices in N †(v) in an arbitrary order 〈u1, . . . , ur〉. Start by picking
u1, then choose any two neighbors of u1 in N∗

† (v) and remove all edges that join u1 to all its
neighbors other than v and these two chosen neighbors. Inductively, suppose we have processed
vertex ui−1, we process vertex ui as follows. Pick two neighbors wi

1 and wi
2 of ui in N∗

† (v) such

that no vertex in {u1, . . . , ui−1} has both wi
1 and wi

2 as its picked neighbors. Delete all the edges
that join ui to all vertices other than v, wi

1, and wi
2. We need to show that it is always possible

to carry out this step. Suppose not, and let i be the smallest index such that this is not possible.
It is easy to verify using the facts that every vertex in N †(v) has degree larger than two, and
no two vertices x and y are such that N(x) ⊆ N(y), that i > 3. Note that it must be the case
that deg(ui) > 3, otherwise, since this step cannot be carried out, the only two neighbors of ui

other than v must be neighbors of some other vertex uj ∈ {u1, . . . ui−1}, and hence we would have
N(ui) ⊆ N(uj) for some uj ∈ {u1, . . . , ui−1}, contradicting the properties satisfied by category-(2)
vertices as discussed above. Let a, b, c be three neighbors of ui other than v. Since this step cannot
be carried out successfully, there must exist three distinct vertices up, uq, us ∈ {u1, . . . , ui−1} such
that {a, b} ⊂ N(up), {a, c} ⊂ N(uq), and {b, c} ⊂ N(us). Consider the subgraph H of G induced
by the set of vertices {v, up, uq, us, ui, a, b, c}. Then the following is true about the vertices in H:
(1) ui, up, uq, us, a, b, c are neighbors of v in H; (2) v, a, b, c are neighbors of ui in H; (3) v, a, b are
neighbors of up in H; (4) v, a, c are neighbors of uq in H; (5) v, b, c are neighbors of us in H; (6)
v, ui, up, uq are neighbors of a in H; (7) v, ui, up, us are neighbors of b in H; and (8) v, ui, uq, us are
neighbors of c in H. Using all this information, it is not difficult to verify that H is non-planar
(identify vertex a with vertex b along the path (a, up, b) to obtain a copy of K3,3), contradicting
the planarity of G. This completes the proof.

Proposition 5.5 |N †(v)| ≤ 3/2|N∗
† (v)|.

Proof. To simplify the counting, by Assumption 5.4, we can assume that: every vertex in N †(v)
has degree exactly 3; no two vertices x and y in N †(v) are such that N(x) ⊆ N(y); and vertices
in N †(v) are only connected to v and N∗

† (v). Let x be the number of vertices in N∗
† (v), and let

f(x) = |N †(v)|. We will show that f(x) ≤ 3/2(x − 1). We proceed by induction on x. If x = 1,
it is clear that f(x) = 0 ≤ 3/2(x − 1) since by Assumption 5.4, each vertex in N †(v) has degree
exactly 3. If x = 2, then clearly f(x) ≤ 1 ≤ 3/2(x − 1) since at most one vertex can be connected
to v and the two vertices in N∗

† (v) without violating properties (1)–(3) in Assumption 5.4 above.
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If x = 3, then f(x) ≤ 3 since at most three vertices can be connected to N∗
† (v) without violating

properties (1)–(3) in Assumption 5.4 above, each connected to v and to two other vertices in N∗
† (v).

Inductively, suppose that if N∗
† (v) contains y vertices with 3 ≤ y < x, then the number of vertices

f(y) in N †(v) satisfies f(y) ≤ 3/2(y − 1). Suppose now that |N∗
† (v)| = x. Let u be a vertex in

N †(v), and let a, b be its neighbors in N∗
† (v). The vertex u is called hollow if the interior of the

region enclosed by (u, a, v, b, u) contains no vertices of N∗
† (v). If every vertex in N †(v) is hollow,

then it is clear that f(x) ≤ x ≤ 3/2(x − 1) for x > 3, and the bound f(x) = x is attained when
there are x vertices in N †(v), and every vertex u in N †(v) is adjacent to v and the two neighbors
a and b in N∗

† (v) immediately to the left and right in the clockwise (or anticlockwise) ordering,

respectively, of u in the embedding. Suppose now that there is a vertex u ∈ N †(v) such that
u is not hollow. The edges (u, a), (u, v), (u, b), (v, a), (v, b) separate the plane into three faces:
F1 enclosed by the cycle (u, a, v, u), F2 enclosed by the cycle (u, v, b, u), and F3 is the outer face
determined by the cycle (u, a, v, b, u). Let x1 be the number of vertices in N∗

† (v) that are in F1

including the boundary, x2 that in F2, and x3 that in F3. Note that 1 ≤ x1 < x since a ∈ F1

and b /∈ F1, 1 ≤ x2 < x since b ∈ F2 and a /∈ F2, and 2 ≤ x3 < x since a and b are in F3 and
at least one vertex in N∗

† (v) is not in F3 since u is hollow, and hence, the interior of the face
(u, a, v, b, u) contains at least one vertex in N∗

† (v). Moreover, x1 + x2 + x3 = x + 2, since a and b
are the only vertices counted twice when we add the vertices in N∗

† (v) that are in F1, F2, and F3.

Now every vertex in N †(v) is either: (1) connected to two vertices in N∗
† (v) in F1, (2) connected

to two vertices in N∗
† (v) in F2, or (3) connected to two vertices in N∗

† (v) in F3. Note that vertex
u satisfies property (3). Since x1, x2, x3 < x, by the inductive hypothesis, the number of vertices
satisfying (1) is bounded by f(x1) ≤ 3/2(x1 − 1), the number of vertices satisfying (2) is bounded
by f(x2) ≤ 3/2(x2−1), and the number of vertices satisfying (3) is bounded by f(x3) ≤ 3/2(x3−1).
Now f(x) ≤ f(x1) + f(x2) + f(x3) ≤ 3/2(x1 + x2 + x3) − 9/2 = 3x/2 − 3/2 = 3/2(x − 1). This
completes the proof.

Lemma 5.6 The number of vertices in category (2) (i.e., the number of vertices not in V [<]) is
bounded by 18k.

Proof. Let v and w be any two distinct vertices in D and observe the following. First,
N †(v) ∩ N †(w) = ∅, because if u ∈ N †(v) ∩ N †(w) then (v, u,w) would be a degenerated region
with u /∈ V [<] contradicting the maximality of <. Second, from the first observation it follows that
w /∈ N∗

† (v) and v /∈ N∗
† (w), and in general no vertex a ∈ D belongs to N∗

† (b) for any vertex b ∈ D;

otherwise, there exists a vertex u ∈ N †(v) that is connected to w, and hence u ∈ N †(v) ∩ N †(w),
contradicting the first observation. Third, N∗

† (v) ∩ N∗
† (w) = ∅; otherwise, there exists a vertex

u ∈ N∗
† (v) ∩ N∗

† (w) that is connected to a category-(2) vertex a ∈ N †(v) (or b ∈ N †(w)) and
the degenerated region (v, a, u,w) (or (w, b, u, v)) would contain the vertex a /∈ < (or b /∈ <),
contradicting the maximality of <.

Let B be the number of vertices not in D that are boundary-adjacent to vertices in D (i.e., in
N∗(v) − D for some v ∈ D). Combining the above observations with Proposition 5.5, it follows
that the number of category-(2) vertices is

∑

v∈D

|N †(v)| ≤ 3

2

∑

v∈D

|N∗
† (v)| ≤ 3B/2.

According to the definition of a region, each region in < has at most six vertices on its boundary
two of which are vertices in D. Thus, each region in < can contribute with at most four vertices to
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B. Note that from the above discussion no vertex a ∈ D belongs to N∗
† (b) for any vertex b ∈ D, and

hence the endpoints of the regions do not contribute to B. By Corollary 5.2, the number of regions
in < is bounded by 3k − 6. It follows that B ≤ 12k − 24, and hence, the number of category-(2)
vertices is bounded by 18k − 36 < 18k. This completes the proof.

To bound the number of vertices in category (1), fix a region R(v,w) between v,w ∈ D. We
have the following lemma whose proof is technical and based on case-by-case structural analysis.
The proof of the lemma appears in the appendix.

Lemma 5.7 (Appendix, Lemma 7.6) Let R = R(v,w) be a region in V [<]. The number of
vertices in V (R) is bounded by 16.

Theorem 5.8 The number of vertices in G is bounded by 67k.

Proof. By Lemma 5.6, the number of category-(2) vertices in G is bounded by 18k. Using this
bound, we can assume that each region in < is nice. By Corollary 5.2, the number of regions in
< is bounded by 3k − 6. According to Lemma 5.7, the number of vertices in V (R), where R ∈ <
is a nice region, is bounded by 16. It follows that the number of vertices in V (<) is bounded by
48k− 96. Thus, the number of vertices in V [<], and hence, in category (1), is bounded by 48k− 96
plus the number of vertices in D which are the endpoints of the regions in <. Therefore the number
of vertices in V [<] is bounded by 49k − 96, and the total number of vertices in G is bounded by
67k − 96 < 67k. This completes the proof.

Theorem 5.9 Let G be a planar graph with n vertices. Then in time O(n3), computing a domi-
nating set for G of size bounded by k can be reduced to computing a dominating set of size bounded
by k, for a planar graph G′ of n′ < n vertices, where n′ ≤ 67k.

Proof. According to Theorem 4.1, in time O(n3) we can construct a reduced graph G′ from G
where γ(G′) = γ(G), and such that a dominating set for G can be constructed from a dominating
set for G′ in linear time. Moreover, the graph G′ has no more than n vertices. If G has a dominating
set of size bounded by k, then G′ has a dominating set of size bounded by k (since γ(G) = γ(G′)),
and by Theorem 5.9, we must have n′ ≤ 67k. If this is the case, then we can work on computing
a dominating set for G′ of size bounded by k, from which a dominating set for G can be easily
computed. If this is not the case, then G does not have a dominating set of size bounded by k, and
the answer to the input instance is negative. This completes the proof.

6 A simple algorithm

In this section we present a simple algorithm for determining whether a graph G has a dominating
set of size bounded by k.

Let G = (V,E) be a planar graph given with an embedding in the plane. The layer decompo-
sition of G with respect to the embedding, is a partitioning of V into disjoint layers (L1, . . . , Lr)
defined inductively as follows. Layer L1 is the set of vertices that lie on the outer face of G, and
layer Li is the set of vertices that lie on the outer face of G−⋃i−1

j=1 Lj for 1 < i ≤ r. It is well-known
that a layer decomposition of a planar graph G can be computed in linear time in the number of
vertices in the graph [4].

A separator in a graph G is a set of vertices S whose removal disconnects G. If (L1, . . . , Lr) is a
layer decomposition of G, then clearly the vertices in any layer Li form a separator in G, separating
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the vertices in layers L1, . . . , Li−1 from those in layers Li+1, . . . , Lr. Let (G, k) be an instance of
the planar-DS problem. By Theorem 5.9, we can assume that G is reduced, and that the number
of vertices n of G satisfies n ≤ 67k. Let (L1, . . . , Lr) be a layer decomposition of G. Let c > 0
be a constant which will be determined later, and set l = dc

√
ke. Consider the families of layers

Fi, i = 1, . . . , l, where Fi consists of layers Li, Li+l, Li+2l, . . .. Assume for now that the number of
layers r ≥ l. We will show later how to handle the situation when this is not the case. The families
Fi, i = 1, . . . , l, are disjoint, and each family forms a separator separating the graph into connected
components that will be called chunks, where each chunk consists of at most l consecutive layers.
Since these l families are disjoint and partition the layers into l groups, and since the graph has
at most 67k vertices, there exists an index 1 ≤ µ ≤ l, such that the number of vertices in Fµ is
bounded by 67k/l. Again, observe that the removal of Fµ from G separates G into chunks, each
consisting of at most l consecutive layers. Let these chunks be G1, . . . , Gs.

The basic idea behind the algorithm is to apply a simple divide-and-conquer strategy by re-
moving the vertices in the family Fµ to split the graph into chunks, then to compute a minimum
dominating set for the resulting chunks using the algorithm introduced in [33], which is a variation
of Baker’s algorithm [8]. To do this, for each vertex v in the Fµ, we “guess” whether v is in the
minimum dominating set for G or not (basically, what we mean by guessing is enumerating all
sequences corresponding to the different possibilities). For each guess of all the vertices in Fµ, we
will solve the corresponding instance with respect to that guess. It was shown in [33] how this
guessing process can be achieved using at most three statuses per vertex. Hence, guessing the
vertices in Fµ can be done by enumerating at most 3|Fµ| ≤ 367k/l ternary sequences. After guessing
each vertex in the separator and updating the graph accordingly, the instance becomes an instance
of a variation of the minimum dominating set problem due to the constraints placed on some of the
vertices in the graph. Kanj and Perković introduced an algorithm in [33], which is a variation of
Baker’s algorithm [8], to solve this problem. The algorithm introduced in [33] solves this problem
on the chunks in time O(27d+1n), where d is the maximum number of layers in a chunk (i.e., the
maximum depth of a chunk). Noting that d ≤ l and that n ≤ 67k, we conclude that after guessing
all the vertices in Fµ, the problem can be solved in time O(27lk). If the number of layers r in G
is less than l, we can simply call the algorithm in [33] directly on G to solve the problem in time
O(27lk). The algorithm is given in Figure 3 below.

It is not difficult to verify that the running time of the algorithm is O(367k/l · 27l · k + n3),
where the O(n3) time is to count for the time taken to reduce G to its kernel. Niedermeier and
Rossmanith showed how to get rid of the k factor corresponding to the kernel size in the running
time of such algorithms [36]. Using their techniques, the running time of the algorithm becomes
O(n3 + 367k/l · 27l). We choose c, and hence l, so that the above expressing is minimized. It can be
shown that the expression is minimized when c =

√

67/3, and the running time of the algorithm

becomes O(n3 + 245
√

k).

Theorem 6.1 In time O(n3 + 245
√

k), it can be determined whether a planar graph on n vertices
has a dominating set of size bounded by k or not.

Theorem 6.1 shows that our algorithm for solving the planar-DS problem is competitive with
the previous algorithms using the similar technique of layer decomposition of a planar graph [4, 33].

The above algorithm improves the original O(270
√

kn) time algorithm given in [4] for the problem.
At the same time, our algorithm is much simpler than the algorithms in [4, 23, 25, 33], illustrating
the power of kernelization in the process of designing efficient algorithms for parameterized NP-
hard problems. Finally, after a kind of race resulting in better and better algorithms [4, 23, 25, 33],
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ALGORITHM. DS-solver

Input: a planar graph G of n vertices, and a parameter k
Output: a dominating set D of size ≤ k in case it exists;

1. use the results in Theorem 5.9 to kernelize G;
2. if the number of vertices n of G is > 67k then

Stop(“G does not have a dominating set of size ≤ k”);
3. let c =

p

67/3; l = dc
√

ke;
4. if the number of layers in G is < l then

use the algorithm in [33] to solve the problem in time O(245
√

kk); Stop;
5. let Fµ be a separator of size ≤ 67k/l separating the graph into chunks G1, . . . , Gs

each consisting of at most l consecutive layers;
6. for each assignment to the vertices in Fµ do

update D;
split the graph into its components;
compute a minimum dominating set D′ for the resulting graph using the algorithm in [33];
D = D ∪ D′;

7. output the smallest dominating set constructed in step 6 in case its size is bounded by k; otherwise
return (“G does not have a dominating set of size ≤ k”).

Figure 3: A simple algorithm solving planar-DS.

recently Fomin and Thilikos presented an O(n3 +215.13
√

k) time algorithm to solve the planar-DS
problem based on the concept of branchwidth [25]; the best treewidth based algorithm being only
slightly worse [23].

7 Summary and Extensions

In this paper we exhibited the first lower bound results on kernel sizes and, motivated by this
findings, we strived to improve on the (still huge) constants involved in the known linear kernel for
planar-DS.

Are there other, possibly more sophisticated arguments for showing lower bounds on kernel
sizes? In particular, it would be interesting to have arguments ruling out, for example, the existence
of a kernel of size o(k3) in a situation when a kernel of size O(k3) has been obtained. The algebra
we used in the proof of Theorem 3.1 does not extend to such cases.

We mention that the concept of a black-and-white graph we used for deriving the kernel upper
bound results for planar-DS also allows us to exhibit a small kernel for a variation of the dom-
inating set problem, called the red/blue dominating set problem, as studied by Weihe [41]:
Given a graph G = (V,E) with V partitioned into Vred ∪ Vblue, and a positive integer k, is there
a red/blue dominating set D ⊆ Vred with |D| ≤ k, i.e., Vblue ⊆ N(D)? Namely, if we consider the
red vertices as “black” in our notation and the blue vertices as “white”, and if we re-analyze our
reduction rules, we can state:

Corollary 7.1 Planar red/blue dominating set admits a problem kernel of size 67k.

As exhibited in [4, 23], the possibly better known face cover problem can be solved with the
help of planar red/blue dominating set, by introducing “face vertices.” However, we are still
investigating if we could claim a small kernel for face cover, since we are not keeping the (face)
structure of the original problem. Notice that a cubic kernel was derived in [1, Theorem 1]. Based

on this sort of problem kernel, we could then arrive at an O∗(c
√

k) algorithm for face cover that
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is significantly better than what was obtained in [4], close to being competitive with [23], along the
lines of the preceding section.
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Appendix

In this section we prove Lemma 5.7. We first start with some observations and preliminary results.
Fix a region R(v,w) between v,w ∈ D. Without loss of generality, assume the boundary of

R is determined by the two paths (v, v1, w1, w) and (v, v2, w2, w). Note that all vertices in V (R)
belong to N(v,w), and that v1, v2 ∈ N∗(v), and w1, w2 ∈ N∗(w). If there is a degree-1 vertex x
connected to v (resp. w), then this vertex is in N3(v) (resp. N3(w)) and must be colored white by
Rule 3. Similarly, if there exists a degree-2 vertex y that is connected to v and either v1 or v2

(resp. w and either w1 or w2), then y is in N2(v) (resp. N2(w)) and must be colored white by Rule
3. Now if a degree-1 white vertex is connected to v, then since the vertices in N †(v) are white
and are neighbors of v, by Rule 6 we must have N †(v) = ∅. During the process of counting the
number of vertices in N †(v), we bounded the number of vertices in N †(v) by 3|N∗(v)|/2. This can
be looked at as each vertex in N∗(v) contributing 3/2 vertices to |N †(v)|. So if a degree-1 white
vertex is connected to v (note that at most one degree-1 vertex can be connected to v), this means
that N∗(v) which contains at least two vertices will not contribute to the number of vertices in
N †(v), and hence, the bound on |N †(v)| will be decreased by at least three. Similarly, if a degree-2
white vertex is connected to v and v1 (or v2) (again, note that there can be at most one degree-2
vertex connected to v and to v1 (or v2)), then no vertex in N †(v) can be connected to v1 (or v2).
This can be regarded as a reduction to the bound on |N †(v)| by 3/2. Thus, if we use the upper
bound on the number of vertices in category (2) computed above, we may assume without loss of
generality that no degree-1 vertex is connected to v or w, and that no degree-2 vertex is connected
to v and v1, v and v2, w and w1, or w and w2. We will also assume that the boundary of a region
R(v,w) consists of exactly six distinct vertices, that is, the region is not a degenerate region. The
case of a degenerate region obviously yields a better bound on the number of vertices in the region.
Let us call a region with all the above properties nice. We start with the following propositions.

Proposition 7.2 If there is no simple black vertex strictly inside a quasi-simple region R =
R(v,w), then V (R) contains at most two simple white vertices.

Proof. Suppose, to get a contradiction, that V (R) contains more than two simple white vertices,
and let a, b, and c be three such vertices. Since all the three vertices are simple, one vertex must
be engulfed within the area determined by v, w, and the other two vertices. Suppose that b is
situated within the area (v, a,w, c, v). Since, by the assumption of the proposition, all the simple
vertices strictly inside V (R) must be white, and since all the non-simple vertices inside V (R) (i.e.,
vertices in R+) are white by definition, and since no edges exist between white vertices, it follows
that the white simple vertex b, engulfed by the area (v, a,w, c, v), is only connected to v and w,
and hence has degree 2. Note that the color of both v and w must be black since there are simple
white vertices that are connected to both v and w. Now |W (v,w)| > 2 because {a, b, c} ⊆ W (v,w).
But this makes Rule 8 applicable contradicting the fact that G is reduced. This completes the
proof.

Proposition 7.3 Let R = R(v,w) be a quasi-simple region where the color of v is black, then
V (R) has at most 4 simple vertices.

Proof. Suppose first that R has six or more simple vertices. Let S be the set of those simple
vertices that are strictly inside R. Then |S| ≥ 4. Since the vertices in S are simple and hence
connect to both v and w, it is obvious that no vertex lying strictly inside R can dominate all
vertices in S. But S is a subset of those vertices in N2(v,w)∪N3(v,w) that are strictly inside R, it
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follows that no vertex that is strictly inside R can dominate all vertices in N2(v,w)∪N3(v,w). Now
all vertices that lie strictly inside R belong to N2(v,w) ∪ N3(v,w), thus, by Rule 5, all vertices
strictly inside R must be white. Noting that |S| ≥ 4, and that all the vertices in S are simple white
vertices, this contradicts Proposition 7.2.

Suppose now that R has five simple vertices. Let a, b, and c, be the three simple vertices
that lie strictly inside R. By an argument similar to the above, we can assume that vertex b is
engulfed within the area determined by v, a, w, and c. Again all the vertices strictly inside R must
belong to N2(v,w) ∪ N3(v,w). Since a does not dominate c, and vice versa, it follows that a and
c are colored white by Rule 5. Now a, b, and c are the only simple vertices strictly inside R, by
Proposition 7.2, no three simple white vertices can be contained in R. This forces b to be black,
and to be connected to both a and c (otherwise b would be colored white by Rule 5). Now all
other non-simple vertices in R must be connected to the boundary, and hence cannot be connected
to b (all the vertices other than a and c which can be connected to b have to belong to the area
engulfed by (v, a,w, c) and cannot be connected to the boundary). Thus, W (b) = {a, c}, and every
vertex in W (b) is connected to all vertices in B(b) = {v,w} (note that since a and c are white, and
are connected to w, w must be black). By Rule 7, W (b) = {a, c} should have been removed at this
point, a contradiction. Therefore, R has at most four simple vertices and the proof is complete.

Proposition 7.4 Let (v, y, w, z, v) be the boundary of a quasi-simple region R = R(v,w), and
suppose that v and y are black. Then there can be at most one white vertex in R+ = R+(v,w) that
is connected to both v and y.

Proof. Suppose, to get a contradiction, that there are at least two white vertices in R+ that are
connected to both v and y. Since all the vertices in R+ are white, and hence cannot be connected
together, there must exist two white vertices a and b in R+ satisfying that the area engulfed by
(v, a, y, v) is empty, and the area engulfed by (v, b, y, v) contains only the vertex a. Clearly, the
degree of a is exactly 2, and a belongs to N2(v) ∪N3(v). Now since both a and b are connected to
both v and y, we have N(a) ⊆ N(b). Given the fact that v is black, this is a contradiction to Rule
6.

Proposition 7.5 Let R = R(v,w) be a quasi-simple region, and suppose that v is black. Let
(v, y, w, z, v) be the boundary of R. If

(a) there are no simple vertices strictly inside R, or

(b) there are simple vertices strictly inside R and all vertices in R+ = R+(v,w) are connected to
y,

then V (R) ∪ {w} contains at most three white vertices. Moreover, if there are three white vertices
in V (R) ∪ {w}, then either R+ 6= ∅, or there is a simple black vertex interior to R.

Proof. To prove that part (a) implies the statement of the proposition, suppose that there are
no simple vertices lying strictly inside R. Then clearly all the white vertices in V (R) come from
R+ ∪ {y, z}. If y is white, then no vertex in R+ can be connected to y because the vertices in R+

are all white. On the other hand, since R+ ⊆ N2(v) ∪ N3(v), if y is black, by Proposition 7.4, at
most one white vertex in R+ can be connected to y. Similarly if z is black. Since every vertex in
R+ has to be connected to either y or z by the definition of a quasi-simple region, it follows from
the above that V (R) contains at most two white vertices, and hence V (R) ∪ {w} contains at most
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three white vertices. Now when V (R) ∪ {w} contains three white vertices, w must be white, and
hence, y and z are black. Thus, the two white vertices other than w in V (R)∪{w} come from R+,
and R+ 6= ∅.

To prove part (b), note first that, by Proposition 7.3, the number of simple vertices in R
including y and z is bounded by four. We will assume that the number of simple vertices in R is
exactly four. The cases when there are less than four simple vertices in R are simpler, and yield
the desired bound. Let a and b be the other two simple vertices, and assume that the four simple
vertices y, a, b, z appear in the preceding sequence in a clockwise order around v. Observe that
the white vertices in V (R) come from R+ ∪ {y, a, b, z}. Also observe that since all the vertices in
R+ are connected to y by the hypothesis of part (b), either y is white and R+ is empty, or y is
black and by Proposition 7.4, R+ contains at most one vertex. It follows that the number of white
vertices in R+ ∪ {y} is bounded by one. Now suppose to get a contradiction that V (R) ∪ {w}
contains four white vertices. Since no two white vertices are connected, and since all vertices in
{a, b, z} are connected to w, w must be black and all the three vertices a, b, and z must be white.
But then the degree of b is exactly 2, and |W (v,w)| > 2, contradicting Rule 8. To complete the
proof, suppose that V (R)∪ {w} contains exactly three white vertices, we need to show that either
R+ 6= ∅ or there exists a simple black vertex inside R. Suppose to get a contradiction that R+ = ∅
and the interior vertices to R, a, b, are all white. Then w must be black in this case and either y or
z is white. Without loss of generality, assume y is white. Since there are no edges between white
vertices, the degree of a must be two and {y, a, b} ⊆ W (v,w), again a contradiction to Rule 8.

Lemma 7.6 (Lemma 5.7) Let R = R(v,w) be a nice region in V [<]. The number of vertices in
V (R) is bounded by 16.

Proof. Every vertex in V (R) is in N(v,w), and hence, is either connected to v or w. We
distinguish two cases.

Case 1. N3(v,w) = ∅. In this case every vertex in V (R) − {v1, v2, w1, w2} has to be connected
to at least one vertex in {v1, v2, w1, w2} because v1, v2, w1, w2 are the only vertices in V (R) that
possibly belong to N1(v,w). Since R is nice, the vertices in V (R)−{v1, v2, w1, w2} can be classified
into the following categories, where a vertex is assigned to the first category that it satisfies:

(i) vertices connected to v and v1, but not connected to w1;
(ii) vertices connected to v and w1;
(iii) vertices connected to v and w2;
(iv) vertices connected to v and v2;
(v) vertices connected to w and w2, but not connected to v2;
(vi) vertices connected to w and v2;
(vii) vertices connected to w and v1; and
(viii) vertices connected to w and w1.

Note that one of categories (ii) and (vii) must be empty, otherwise, according to our placement of
the vertices in the categories, we have two distinct vertices in V (R) other than v1 and w1, one of
them is connected to v and w1 and the other to w and v1, contradicting the planarity of the graph.
Similarly, one of categories (iii) and (vi) must be empty. Without loss of generality, assume that
categories (iii) and (vii) are empty. If, in addition, any of categories (ii) or (vi) is empty, then
the situation becomes simpler leading to a better bound on the number of vertices in V (R). Thus,

29



v v

v

v

A
A
A

v

v

f

Q
Q

Q
Q

Q
Q

QQ

A
A

A
A

A

�
��

XXXXXXXXXX

f

f

f

v

v�
��

�����


















#
#

#
#

#
#

##

��������

�
�

�
�

�
�

�
�

�
�

"
"

"
"

"
"

"
"

"
"

""

�������������

�
�

�
�

�
�

�
�

�
�

"
"

"
"

"
"

"
"

"
"

"
""

�������������

(((((((((((((((

XXXXXXXXXX

Q
Q

Q
Q

Q
Q

QQ

A
A
A
A
A

�
�

�
�

�
�

�
�

�
�

,
,

,
,

,
,

,

���������v
A
A
A

hh

f

f

f

f

v

@
@

@
@

@
@

@
@

@
@ �

�
�

�
�

�
�

�
�

�

@
@

@

@
@

@
@

@
@

@
@

@
@�

�
�

�
�

�
�

�
�

�v w

v1 w1

v2 w2
Figure 4: Illustration of a possible worst-case scenario for Case 1. Empty circles represent white
vertices, and filled circles black vertices.

we will assume that both categories (ii) and (vi) are nonempty. Note also that since R is nice, no
vertex interior to R has degree 2, and every vertex in category (i) must be connected to some vertex
interior to R. Since category (ii) is nonempty, and by the planarity of G, a vertex in category (i)
can only be connected to vertices in category (ii). Moreover, since the vertices in category (i) are
only connected to v, and to neighbors of v including v1 (since these vertices can only be connected
to v and to vertices in category (ii)), all these vertices belong to N2(v)∪N3(v). Since v is black, by
Rule 3, all vertices in category (i) must be white. Now the vertices in category (i) and category
(ii), plus v, v1, and w1, form a quasi-simple region between v and w1, Q1 = R(v,w1). Moreover,
all the vertices in V (Q1), except those in category (i), are simple vertices because all vertices in
V (Q1), except those in category (i), have to be connected to both v and w1. Since v is black (all
the endpoints of regions in < are black), by Proposition 7.3, the number of vertices in V (Q1) except
those vertices in category (i), is bounded by 4. Now we bound the number of vertices in category
(i). Every vertex in category (i) is white and is connected to v and v1. If category (i) is nonempty,
then v1 must be black, and the vertices in category (i) are white vertices in Q+

1 (v,w1) that are
connected to v and v1. It follows from Proposition 7.4 that the number of vertices in category (i) is
bounded by 1. This shows that the number of vertices in V (Q1) is bounded by five. By symmetry,
the number of vertices in V (Q2), where Q2 is the quasi-simple region between w and v2 consisting
of the vertices in category (v) and category (vi), plus the vertices w, w2, v2, is bounded by five.
Now we bound the number of vertices in categories (iv) and (viii). We have the following claim.

Claim. The number of vertices in category (iv) (resp. category (viii)) is bounded by 2. Moreover,
at most one vertex in category (iv) (resp. category (viii)) is white.

Consider the vertices in category (iv). Suppose that there are three or more vertices in category
(iv), and let a1, a2, a3 be three vertices in category (iv) such that: no vertex is engulfed in the area
of the embedding determined by (v, a1, v2), a1 is the only vertex engulfed in the area determined
by (v, a2, v2), and a1 and a2 are the only two vertices engulfed in the area determined by (v, a3, v2).
Now a1 and a2 must belong to N2(v)∪N3(v). Since v is black, it follows from Rule 3 that a1 and
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a2 must be white, and no edge exists between a1 and a2. But this means that N(a1) ⊆ N(a2),
and since a1 ∈ N2(v) and v is black, then according to Rule 6, this leads to a contradiction. It
follows that at most two vertices can be in category (iv). By symmetry, at most two vertices can
be in category (viii). Note also that it follows from the above proof that if there are exactly two
vertices a1 and a2 in category (iv) (resp. category (viii)), then at most one vertex in {a1, a2} can
be white. This proves the claim.

Now the vertices in V (R) consist of vertices of V (Q1), vertices of V (Q2), category (iv) and cat-
egory (viii) vertices, and the two vertices v2 and w1 (in case these two vertices were not included
in any of the other categories). It follows that the number of vertices in R is bounded by 16. See
Figure 4 for an illustration of such a possible scenario.

Case 2. N3(v,w) 6= ∅. Let X be the set of white vertices in N2(v,w) that are in V (R), Y the
set of black vertices in N2(v,w) ∪ N3(v,w) that are in V (R), and Z the set of white vertices in
N3(v,w) that are in V (R). We first draw few observations.

Observation 1. |X| ≤ 7. We first show that |X| ≤ 8. Remove the vertices in N3(v,w) interior to
R, then define categories (i)− (viii) as above. Similar to Case 1, we can assume that the vertices
in category (i) and (ii), plus the vertices v, v1, and w1, form a quasi-simple region Q1 = R(v,w1),
and those in category (v) and (vi), plus the vertices w, w2, and v2, form a quasi-simple region
Q2 = R(w, v2). Since X ⊆ N2(v,w), every vertex in X must belong to one of categories (i)− (viii),
or possibly to the set {v1, v2, w1, w2}. From the definition of categories (i) and (ii), vertices in
category (i) form the set Q+

1 = Q+
1 (v,w1) in the quasi-simple region Q1, and all the vertices in

Q+
1 are connected to v1. Now add the vertices in N3(v,w) back, and note that no black vertex in

N3(v,w) that is not connected to w1 resides in Q1. The reason being that such a vertex would be
in N2(v) ∪ N3(v) (otherwise, this vertex will have to be connected to w1 — the only vertex in Q1

possibly not in N(v)) and hence colored white by Rule 3. Now Q1 plus the set of black vertices in
N3(v,w) that reside in Q1, minus the set of white vertices in N3(v,w) that reside in Q1, satisfies
condition (b) in Proposition 7.5, and the number of white vertices in Q1 is bounded by three. Since
no two white vertices are connected together, and hence the presence of the white vertices from
N3(v,w) in Q1 cannot increase the number of possible white vertices in Q1, we conclude that the
number of white vertices in Q1 that are not in N3(v,w), and hence, the number of vertices in X
that belong to Q1 is bounded by three. Similarly, the number of vertices in X that belong to Q2

is bounded by three. Moreover, the statement of the claim in Case 1 carries in a straightforward
manner to Case 2, and categories (iv) and (viii) contain at most one white vertex each. It follows
that the number of white vertices in the set X, is bounded by eight. Now if |X| = 8, then both Q1

and Q2 (plus the black vertices in N3(v,w) that reside in Q1 and Q2) contain three white vertices.
Since Q1 contains exactly three white vertices, by Proposition 7.5, either Q+

1 6= ∅, or Q1 must
contain an interior black vertex. If Q+

1 6= ∅, since R is nice, the vertex in Q+
1 must be connected to

some vertex interior to Q1 which must be black because the vertices in Q+
1 are white. Therefore,

if Q1 contains exactly three white vertices, then there must exist an interior black vertex p in Q1.
Similarly, there must exist an interior black vertex q in Q2. Since both p and q are black and are in
N2(v,w) ∪N3(v,w), by Rule 4, p and q must dominate all vertices in N3(v,w) 6= ∅. In particular,
p which is interior to Q1 must dominate q which is interior to Q2. This is a contradiction to the
planarity of the graph. It follows that |X| ≤ 7.

Observation 2. Every vertex in Y must dominate all vertices in N3(v,w).
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This observation follows from Rule 4 since the vertices in Y are black and are a subset of
N2(v,w) ∪ N3(v,w).

Let H be the graph obtained from G by identifying the vertex v with w along the path
(v, v1, w1, w). Clearly, H is planar. Let u be the resulting vertex by this identification. Let
Y ′ be the set of vertices in Y that are in H, and let y = |Y ′|. Similarly, let Z ′ be the set of vertices
in Z that are in H, and let z = |Z ′|. Observe that the vertex u is connected to all the vertices
in Y ′ and Z ′ in H, and that the only vertices that have been removed by this identification are
boundary vertices to R that belong to {v1, v2, w1, w2}.

Observation 3. If y > 1 and z > 1, then the number of vertices in V (R) is bounded by 16.

Suppose that y > 1 and z > 1. If y > 2, since every vertex in Y ′ must dominate the vertices
in Z ′, it follows that the subgraph of H induced by the set of vertices Y ′ ∪ Z ′ ∪ {u} contains a
copy of K3,3, contradicting the planarity of H (the vertices in Y ′ form the first bipartition and the
other vertices form the second bipartition). Suppose now that y = 2. If z > 2, then similarly, the
subgraph induced by Z ′ ∪ {u} ∪ Y ′ contains a copy of K3,3 (the vertices in Y ′ ∪ {u} form the first
bipartition, and those in Z ′ form the second bipartition). Suppose now that y = z = 2. Then the
number of vertices in X ∪Y ′ ∪Z ′ is bounded by 11. Since |V (R)| ≤ |X ∪Y ′ ∪Z ′∪{v1, v2, w1, w2}|,
it follows that the number of vertices in V (R) is bounded by 16.

Now we distinguish the following two subcases.

Subcase 2.1. z ≤ 1. Let Y1 = Y ′∩N2(v,w) be the set of black vertices in Y ′ that are in N2(v,w),
y1 = |Y1|, Y2 = Y ′ − Y1 be the set of black vertices in Y ′ that are in N3(v,w), and y2 = |Y2|. Note
that every vertex in Y ′ must be connected to all vertices in Y2 ∪ Z by Rule 4. If y = y1 + y2 < 5,
then since z ≤ 1 and the number of vertices in X is bounded by 7 by Observation 1, the number
of vertices in V (R) is bounded by 16. So we can assume that y ≥ 5. If y2 + z ≥ 4, then the
subgraph induced by the vertices {u} ∪ Y2 ∪ Z is a copy of K5. Thus, y2 + z < 4. If y2 + z = 3,
then the subgraph induced by the bipartition (Y2 ∪ Z, Y1 ∪ {u}) contains a copy of K3,3, whereas
if y2 + z = 2, then subgraph induced by the bipartition ({u} ∪ Y2 ∪ Z, Y1) contains a copy of K3,3.
Suppose now that y2 + z = 1. If y1 ≤ 4, then y + z ≤ 5, and hence, the number of vertices in R is
bounded by 16. Assume now that y1 ≥ 5. Let p be the vertex in Y2 ∪Z, then p is connected to all
vertices in Y1 in H, and hence in G. Moreover, every vertex in Y1 is either connected to v or w (or
both) in G. Since y1 ≥ 5, there must exist at least three vertices in Y1 that are connected either to
v, or to w in G. Let these vertices be p1, p2, and p3, and assume without loss of generality, that
these vertices are connected to v. Since p1, p2, and p3, are also connected to p, there must exist a
vertex in {p1, p2, p3}, say p2, that is interior to the region determined by v, p, and the other two
vertices. But p2 ∈ Y1 ⊆ N2(v,w), and hence p2 must be connected to the boundary of R (because
p2 must be connected to some vertex in N1(v,w)), a contradiction. Thus, the number of vertices
in V (R) is bounded by 16.

Subcase 2.2. y ≤ 1. If z ≤ 4, then y + z ≤ 5, and given that |X| ≤ 7 by Observation 1,
the total number of vertices in V (R) is bounded by 16. Suppose now that z ≥ 5. Observe first
that Y 6= ∅, otherwise, N2(v,w) ∪ N3(v,w) consists only of white vertices, and N3(v,w), which
contains at least five white vertices (Z ⊆ N3(v,w)), could not be dominated by a single vertex
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in N2(v,w) ∪ N3(v,w). This would make Rule 2 applicable, a contradiction. Let p1, p2, p3,
p4, and p5 be vertices in Z. Since each of these vertices must be connected to either w or v,
at least three vertices in {p1, p2, p3, p4, p5} are connected either to v, or to w. Suppose, without
loss of generality, that {p1, p2, p3} are connected to v, and note that by Observation 2, every
vertex in Y must be connected to all vertices in Z. If |Y | ≥ 2, then ({v} ∪ Y, {p1, p2, p3}) would
be a copy of K3,3. Suppose now that |Y | = 1, and let q be the single vertex in Y . Since p1,
p2, p3 are white and belong to N3(v,w), these vertices can only connect to vertices in {v, q, w}.
Again, by planarity, at least one vertex in {p1, p2, p3}, is not connected to w, and hence must be of
degree 2. But then |W (v, q)| ≥ 3, and W (v, q) contains a degree-2 vertex. This contradicts Rule 8.

It follows that in all cases the number of vertices in V (R) is bounded by 16. This completes the
proof.
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