On Spanners and Lightweight Spanners of Geometric Graphs*

IvyaD A. KaNJt LJUBOMIR PERKOVICH GE XA

Abstract

We consider the problem of computing spanners of Euclidean and unit disk graphs em-
bedded in the 2-dimensional Euclidean plane. We are particularly interested in spanners that
possess useful properties such as planarity, bounded degree, and/or light weight. Such span-
ners have been extensively studied in the area of computational geometry and have been used
as the building block for constructing efficient and reliable wireless network communication
topologies.

We study the above problem under two computational models: the centralized and the
distributed model. In the distributed model we focus on algorithms that are local. Such
algorithms are suitable for the relevant applications (e.g., wireless computing).

Under the centralized model, we present an O(nlgn) time algorithm that computes a
bounded-degree plane spanner of a complete Euclidean graph, where n is the number of
points in the graph. Both upper bounds on the degree and the stretch factor significantly
improve the previous bounds. We extend this algorithm to compute a bounded-degree plane
lightweight spanner of a complete Euclidean graph.

Under the distributed model, we give the first local algorithm for computing a spanner
of a unit disk graph that is of bounded degree and plane. The upper bounds on the degree,
stretch factor, and the locality of the algorithm dramatically improve the previous results, as
shown in the paper. This algorithm can also be extended to compute a bounded-degree plane
lightweight spanner of a unit disk graph.

Our algorithms rely on structural and geometric results that we develop in this paper.

1 Introduction

A spanner of a weighted graph is a spanning subgraph in which the weight of a shortest path
between any pair of points is at most a constant times the weight of a shortest path in the
original graph. This constant is called the stretch factor of the spanner. A spanner of a graph is
lightweight if its weight is at most a constant times the weight of a minimum spanning tree of the
graph.

In this paper we consider the problem of computing spanners and lightweight spanners of a
complete Euclidean graph or a (connected) unit disk graph on n points in the plane. We are
interested in spanners that possess the following useful properties: bounded degree, planarity,
and light weight. The weight of an edge in the graph in this case is its Euclidean distance, and a

*Preliminary versions of the results in this paper appeared at STACS’08 and DISC’08.

¥School of Computing, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604. Email:
ikanj@cs.depaul.edu.

iSchool of Computing, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604. Email:
1lperkovic@cs.depaul.edu.

$Department of Computer Science, Lafayette College, Easton, PA 18042. Email: gexia@cs.lafayette.edu.

minimum spanning tree of the graph is a Euclidean Minimum Spanning Tree (abbreviated EMST
henceforth) on the point-set of the graph.

The problem of constructing a bounded degree or lightweight plane geometric spanner has
been extensively studied within computational geometry, and much of the early work on spanners
was done from that perspective under the centralized model of computation (for example, see [1,
4, 11, 12, 13, 16, 20, 22, 30], and the following book on spanners [26]). More recently, wireless
network researchers have approached the problem as well. Emerging wireless distributed system
technologies, such as wireless ad-hoc and sensor networks, are often modeled as a wunit disk
graph (UDG) in the Euclidean plane: the points of the UDG correspond to the mobile wireless
devices, and its edges connect pairs of points whose corresponding devices are in each other’s
transmission range equal to one unit. Spanners and lightweight spanners of UDGs are fundamental
to wireless distributed systems because they represent topologies that can be used for efficient
unicasting, multicasting, and/or broadcasting (see [4, 6, 16, 17, 21, 24, 28], to name a few). For
these applications, spanners are typically required to be planar and have bounded degree: the
planarity requirement is for efficient routing, while the bounded degree requirement is motivated
by interference issues and the physical limitations of wireless devices [4, 6, 16, 17, 21, 28].

When the problem is considered from the perspective of distributed wireless computing, fault
tolerance, scalability, and robustness are all major concerns. In this case the local distributed
computational model, in which the computation of any point in the system (graph) depends only
on the information available within its “vicinity” (to be defined precisely later), is a suitable
working model. Efficient local distributed algorithms are naturally fault-tolerant and robust
because faults and changes can be handled locally by such algorithms. These algorithms are
also scalable because the computation performed by a device does not depend on the size of the
network.

In this paper we study the problem of computing spanners and lightweight spanners of Eu-
clidean and unit disk graphs under both the centralized and the local distributed models of
computation. We present state-of-the-art results on this problem that improve the previous work
in several aspects. Our work reveals interesting structural results that are of independent interest.

We summarize below the main results of the paper and how they compare to the relevant
work in the literature.

1.1 Spanners

We start with the problem of constructing geometric spanners of complete Euclidean graphs, a
well studied problem (see, for example, the recent book [26] for a survey on geometric spanners
and their applications in networks). Dobkin et al. [15] showed that the Delaunay graph is a plane
geometric spanner of the complete Euclidean graph with stretch factor (1++/5)7/2 ~ 5.08. This
ratio was improved by Keil et al. [20] to Cye = 27/(3 cos (7/6)) < 2.42, which currently stands
as the best upper bound on the stretch factor of the Delaunay graph. While Delaunay graphs
are good plane geometric spanners of Euclidean graphs, they may have unbounded degree. Other
geometric (sparse) spanners were also proposed in the literature including the Yao graphs [30],
the ©-graphs [20], and many others (see [26]); however, most of these proposed spanners either
do not guarantee planarity, or do not guarantee bounded degree.

Bose et al. [3, 4] were the first to show how to extract a subgraph of the Delaunay graph that is
a bounded-degree, plane geometric spanner of the complete Euclidean graph (with stretch factor
bounded by 10.02 and degree bounded by 27). In the context of UDGs, Li et al. [23, 24] gave a
distributed algorithm, which is not local, that constructs a plane geometric spanner of a unit disk

graph with stretch factor Cge; however, the spanner constructed can have unbounded degree.
Wang and Li [28] then showed how to construct a bounded-degree plane spanner of a unit disk
graph with stretch factor max{nr /2, 1+ sin (a/2)}-Cye; and degree bounded by 19427 /a, where
0 < a < 27/3 is a parameter. Very recently, Bose et. al [7] improved the earlier result in [3, 4]
and showed how to construct a subgraph of the Delaunay graph that is a geometric spanner of
the complete Euclidean graph with stretch factor: max{x/2,1+msin (a/2)}- Cge when o < 7/2,
and (1 + 2v/3 + 37/2 + 7sin (1/12)) - Cge; when 7/2 < a < 27/3, and whose degree is bounded
by 14 + 2w /a. Bose et al. then applied their construction to obtain a plane geometric spanner
of a unit disk graph with stretch factor max{7/2,1 + mwsin (a/2)} - C4e; and degree bounded by
14 + 27/, for any 0 < a < /3. This was the best bound on the stretch factor and the degree.

We present two new results on counstructing geometric spanners. We prove structural re-
sults about Delaunay graphs that allow us to develop a very simple linear-time algorithm that,
given a Delaunay graph, constructs a subgraph of the Delaunay graph with stretch factor 1 +
2m(k cos (m/k)) "t (with respect to the Delaunay graph) and degree at most k, for any integer
parameter k& > 14. This result immediately implies an O(nlgn) algorithm for constructing a
plane geometric spanner of a Euclidean graph with stretch factor of (14 27 (k cos (7/k)) 1) - Cyer
and degree at most k, for any integer parameter k > 14 (n is the number of points in the graph).
We then translate our work to unit disk graphs and present our second result: a very simple,
3-local distributed algorithm that, given a unit-disk graph embedded in the plane, constructs a
plane geometric spanner of the unit disk graph with stretch factor (1 + 27 (kcos (7/k))™!) - Cyey
and degree bounded by k, for any integer parameter k > 14. This efficient distributed algorithm
exchanges no more than O(n) messages in total, and in which the local processing time (at any
point in the graph) is O(nlgn).

Both algorithms significantly improve the previous results in terms of stretch factor and degree
bound. To show this, we compare our results with previous results in more detail. For a degree
bound k = 14, our result on Euclidean graphs imply a bound of at most 3.54 on the stretch factor.
As the degree bound k approaches oo, our bound on the stretch factor approaches Cye;. The very
recent results of Bose et al. [7] achieve a lowest degree bound of 17 which corresponds to a bound
on the stretch factor of at least 23. If Bose et al. [7] allow the degree bound to be arbitrarily
large (i.e., approach co), their bound on the stretch factor approaches (7/2) - Cgep > 3.75. Our
stretch factor and degree bounds for unit disk graphs are the same as our results for complete
Euclidean graphs. The smallest degree bound derived by Bose et al. [7] is 20 which corresponds
to a stretch factor of at least 6.19. If Bose et al. [7] allow the degree bound to be arbitrarily
large, then their bound on the stretch factor approaches (7/2) - Cye; > 3.75. On the other hand,
the smallest degree bound derived in Wang et al. [28] is 25, and that corresponds to a bound of
6.19 on the stretch factor. If Wang et al. [28] allow the degree bound to be arbitrarily large, then
their bound on the stretch factor approaches (7/2)-Cge > 3.75. Therefore, even the worst bound
of at most 3.54 on the stretch factor corresponding to our lowest bound on the degree k = 14,
is better than the best bound on the stretch factor of at least 3.75 corresponding to arbitrarily
large degree in both Bose et al. [7] and Wang et al. [28].

1.2 Lightweight spanners

Levcopoulos and Lingas [22] developed the first centralized algorithm for the problem of con-
structing lightweight spanners of complete Euclidean graphs. Their O(nlogn) time algorithm,
given a rational A > 2, produces a plane spanner with stretch factor (A—1)-Cye and total weight
(1+ 5%5) - wt(EMST), where wt(EMST) is the weight of a Euclidean Minimum Spanning Tree

on the point-set of the graph. Althofer et al. [1] gave a polynomial time greedy algorithm that
constructs a lightweight plane spanner of a Euclidean graph having the same upper bound on
the stretch factor and weight as the algorithm by Levcopoulos and Lingas [22]. The degree of
the lightweight spanner in both [22] and [1], however, may be unbounded: it is not possible to
bound the degree without worsening the stretch factor. A more recent O(nlogn) time algorithm
by Bose, Gudmundsson, and Smid [4] for complete Euclidean graphs, succeeded in bounding the
degree of the plane spanner by 27 but at a large cost: the stretch factor of the obtained plane
spanner is approximately 10.02, and its weight is O(wt(EMST)), where the hidden constant in
the asymptotic notation is undetermined.

Our contribution with regard to this problem is a centralized algorithm for complete Euclidean
graphs that improves the above algorithms. We design a centralized algorithm that, for any
integer constant k > 14 and constant A > 2, constructs a plane spanner of a complete Euclidean
graph having degree at most k, stretch factor (A — 1) - (1 4 27 (k cos %)_1) - Cer, and weight
at most (1 + 125) - wt(EMST). We can compare our algorithm with the algorithm by Bose,
Gudmundsson, and Smid [4] if we let £ = 14 and A ~ 2.475 in the above result: we obtain an
O(nlogn) time algorithm that, given a complete Euclidean graph on n points, computes a plane
spanner of the given graph having degree at most 14, stretch factor at most 5.22, and weight at
most 5.22 - wt(EMST).

We then consider the problem of computing bounded-degree plane lightweight spanners of
unit disk graphs using a local distributed algorithm. To the best of our knowledge, the only
distributed algorithm for this problem is the algorithm in [10]. While the distributed algorithm
in [10] solves the problem for a generalization of unit disk graphs, called quasi-unit ball graphs,
in higher dimensional Euclidean spaces, the algorithm is not local (it runs in a poly-logarithmic
number of rounds), and the weight and the degree of the spanner are only bounded asymptotically.
We note that distributed algorithms for computing lightweight spanners of general graphs have
been extensively considered in the literature; see for example [27] for a survey on some of these
results. In this paper we show that: for any integer constant k > 14 and constant A > 2, there
exists an i-local distributed algorithm, where i = |(8/7)-(A+1)?], that computes a plane spanner
of a given unit disk graph containing a EMST on its point-set, of degree at most k, weight at
most (1 + 125) - wt(EMST), and stretch factor (A — 1)+ (1 4 2m(kcos £) 1) - Cger. This is the
first local algorithm for this problem.

Table 1: A comparison of lightweight spanner algorithms given the constant A > 2 and the
maximum degree bound k; the following notations are used: p* = (A —1) - Cye, ¢* = (1 + %),
and a* =1+ 2w (kcos T) 1.

Algorithm LLO2 [22] | ADDJS93 [1] | BGS05 [4] | KDPX08 KPXLoc08
Stretch factor P o 10.02 a*-p* a*-(A—1)%-p*
Weight factor ¢ ¢ 0(1) ¢ ¢

Max. degree o0 o0 27 k k
Running time | O(nlogn) | O(n?logn) | O(nlogn) | O(nlogn) N/A

In Table 1, we compare the centralized complete Euclidean graph lightweight spanner algo-
rithms by Levcopoulos and Lingas [22] (denoted LL92), by Althofer et al. [1] (denoted ADDJS93),
and by Bose, Gudmundsson, and Smid [4] (denoted BGS05) with our centralized algorithm (de-
noted KPX08) and our local distributed algorithm (denoted KPXLoc08) developed to compute
lightweight spanners of the more general unit disk graphs. The table gives the bounds on the

stretch factor, the weight factor (the constant ¢* such that the weight of the spanner is at most
¢ - wt(EMST)), the maximum degree and the running time. Note that the first two algorithms
(LL92 and ADDJS93) do not guarantee an upper bound on the degree of the spanner. Our
algorithms match their bounds on the weight factor to provide a maximum degree bound at a
small multiplicative cost in the stretch factor (a* for our centralized algorithm and (A — 1)3 - a*
for our local distributed algorithm). For example, for a degree bound of 14, our upper bound
on the stretch factor increases (with respect to [22] and [1]) by a multiplicative constant of 1.47
for the centralized algorithm, and of 2.92 (corresponding to A = 2.256) for the local distributed
algorithm. For larger values of k, the multiplicative factors are even smaller.

In Table 2 we use some concrete values for k and A in order to compare our algorithms with
the algorithm BGS05 by Bose, Gudmundsson, and Smid [4]. Their algorithm only guarantees a
maximum degree bound of 27. The listed bounds for stretch factor p* and weight factor ¢* for
k = 27 are obtained by setting A = 2.551 in KPX08 and A = 2.282 in KPXLoc08. The bounds for
stretch factor p* and weight factor ¢* when k = 14 are obtained by setting A = 2.475 in KPX08
and A = 2.256 in KPXLoc08.

Table 2: Comparison between algorithm BGSO05 [4] and our algorithms KPX08 and KPXLoc08
for different values of k.

k= 14 27

BGS05 N/A o =10.02,¢ = 0(1)
KPXO08 pr, ¢t =522 pr,ct =4.63
KPXLoc08 | p*,c* =8.81 p*,c" =8.08

1.3 Overview of the paper

The rest of the paper is organized as follows. In the next section we review the necessary ter-
minology and background. In Section 3, we present a centralized algorithm for computing a
bounded-degree plane spanner of a complete Euclidean graph. We then generalize this in Sec-
tion 4 to a local distributed algorithm for computing a bounded-degree plane spanner of a unit
disk graph. In Section 5 we present a centralized algorithm for computing a bounded-degree
lightweight plane spanner of a complete Euclidean graph. Finally, in Section 6, we present a local
distributed algorithm for computing a bounded-degree lightweight plane spanner of a unit disk
graph.

2 Definitions and Background

2.1 Graphs embedded in the two-dimensional Euclidean plane

Given a set of points P in the 2-dimensional Euclidean plane, the complete Euclidean graph £
on P is defined to be the complete graph whose point-set is P. Each edge ab connecting points
a and b is assumed to be embedded in the plane as the straight line segment ab; we define its
weight to be the Euclidean distance |ab|. We define the unit disk graph U to be the subgraph of
& consisting of all edges ab with |ab| < 1. We assume in this paper that the unit disk graph U
is connected. It is well-known that a connected unit disk graph contains a Euclidean minimum
spanning tree of its point-set.

For a subgraph H C &, we denote by V(H) and E(H) the set of points and the set of
edges of H, respectively, and by wt(H) the sum of the weights of all the edges in H, that is,
wt(H) = 3., epm) |2yl The length of a path P (resp. cycle C) in a subgraph H C &, denoted
|P| (resp. |C]), is the number of edges in P (resp. C). A point b is said to be an i-hop neighbor
of a in a subgraph H C FE, if there exists a path P from a to b in H satistying |P| < i.

Let G be a subgraph of £. The weight of a simple path a = mg, m1,...,my, = b in G is
Z;;é |mjmji1|. A spanning subgraph H of G is said to be a geometric spanner of G if there is a
constant p such that, for every two points a,b € G, the weight of a shortest path from a to b in
H is at most p times the weight of a shortest path from a to b in G. The constant p is called the
stretch factor of H (with respect to G). The following is a well known—and obvious—fact:

Fact 2.1. A subgraph H of graph G has stretch factor p with respect to G if and only if for every
edge xy € G: the weight of a shortest path in H from x to y is at most p - |zy|.

A spanning subgraph of £ is said to have low weight, or to be lightweight, if its weight is at
most ¢- wt(EMST), for some constant c.

For three non-collinear points x, y, z in the plane we denote by (Oxyz the circumscribed circle
of Azyz. A Delaunay triangulation of P is a triangulation of P such that the circumscribed circle
of every triangle in this triangulation (i.e., every triangular face) contains no point of P in its
interior [14]. It is well known that if the points in P are in general position (i.e., no four points in
P are cocircular) then the Delaunay triangulation of P is unique [14]. In this paper—as in most
papers in the literature—we shall assume that the points in P are in general position; otherwise,
the input can be slightly perturbed so that this condition is satisfied. The Delaunay graph of P
is defined as the plane graph whose point-set is P and whose edges are the edges of the Delaunay
triangulation of P. An alternative equivalent definition that we end up using is:

Definition 2.2. ([14]) An edge zy is in the Delaunay graph of P if and only if there exists a
circle through points x and y whose interior contains no point in P.

It is well known that the Delaunay graph of P is a spanning subgraph of £ whose stretch
factor is at most Cyey = 4v/37/9 < 2.42 [20].

Given integer parameter k > 6, the Yao subgraph [30] of a plane graph G is constructed by
performing the following Yao step: For each point m in G partition the space (arbitrarily) into k
cones of equal measure whose apex is at m, thus creating k closed cones of angle 27 /k each, and
choose the shortest edge in G out of m (if any) in each cone. The Yao subgraph consists of edges
in G chosen by either endpoint. Note that the degree of a point in the Yao subgraph of G may
be unbounded.

Two edges ma, my incident to a point m in a subgraph G of £ are said to be consecutive if
one of the angular sectors determined by the two segments ma and my in the plane contains no
neighbors of m.

Let x and y be two points in the plane and let (O) be any circle passing through = and y. The
chord zy subtends two regions in the interior of (O). If z is a point in the plane that does not
belong to the straight line through x and y, then one of the two regions interior to (O) subtended
by the chord zy is on the same side of the straight line passing through x and y as z, whereas the
other region is on the opposite side. For convenience, we will refer to the former as the region
interior to (O) subtended by chord zy and closer to z, and to the latter as the region interior to
(O) subtended by chord zy and farther or away from z. We will be using the following simple
fact (see Figure 1 for illustration):

Fact 2.3. Let x and y be two points in the plane and let (O) be a circle passing through x and
y. Let z be any point exterior to (O), and let (O") = Quyz. Then the region interior to (O’)
subtended by chord xy and away from z is inside the region interior to (O) subtended by xy and
away from z.

Figure 1: Illustration for Fact 2.3.

2.2 Message complexity of local distributed algorithms

Assuming that the distributed system is modeled as a graph, a distributed algorithm is said to be i-
local if, “intuitively”, the computation at each point of the graph depends solely on the information
about its i-hop neighbors. This notion can be formalized as follows [25, 27, 29]: a distributed
algorithm is i-local if it can be simulated to run in at most ¢ synchronous communication rounds
for some integer parameter ¢ > 0. A distributed algorithm is called local if it is i-local for some
integer constant <.

Each point in the local distributed algorithms presented in this paper starts by collecting
the IDs and coordinates of its i-hop neighbors for some fixed i; then it performs only local
computations afterwards. For a fixed 4, it was shown in [19] that the i-hop neighborhoods of
the points in a UDG U can be computed by a local distributed algorithm in which the total
number of messages sent is O(n), where n = |V(U)|, and where the message length is O(lgn)
bits. Therefore, the message complexity of the i-local distributed algorithms in this paper is

O(n).

3 Computing Spanners of Delaunay and Euclidean Graphs

Let P be a set of points in the plane and let £ be the complete Euclidean graph defined on
point-set P. Let G be the Delaunay graph of P. This section is devoted to proving the following
theorem:

Theorem 3.1. For every integer k > 14, there exists a subgraph G' of G such that G' has
mazimum degree k and stretch factor 14 2m(kcos F) 1.

A linear time algorithm that computes G’ from G is the key component of our proof. This
very simple algorithm essentially performs a modified Yao step (see Section 2) and selects up to
k edges out of every point of G. G is simply the spanning subgraph of G consisting of edges
chosen by both endpoints.

In order to describe the modified Yao step, we must first develop a better understanding of
the structure of the Delaunay graph G. Let ca and cb be edges incident on point ¢ in G such that
Zbca < 27 /k and ca is the shortest edge within the angular sector Zbca. We will show how the
above theorem easily follows if, for every such pair of edges ca and cb:

1. we show that there exists a path P from a to b in G such that:
|ca| + wt(P) < (1 + 2m(kcos T)1)|cb|, and

2. we modify the standard Yao step to include the edges of this path in G’, in addition to
including the edges picked by the standard Yao step, and without choosing more than k
edges at any point.

This will ensure that: for any edge c¢b € G that is not included in G’ by the modified Yao step,
there exists a path from ¢ to b in G, whose edges are all included in G’ by the modified Yao step,
and whose weight is at most (14 27 (k cos T)1)|cb|. In the lemma below, we prove the existence
of this path and show some properties satisfied by edges of this path. We will then modify the
standard Yao step to include edges satisfying these properties.

Lemma 3.2. Let k > 14 be an integer, and let ca and cb be edges in G such that Zbca < 27 /k and
ca 1s the shortest edge in the angular sector Zbca. There exists a path P : (a = mg,my,...,m, =

b) in G such that:
(i) |ca| + \mlml+1| < (1 +2m(k cos £)~1)|chl.

(it) There is no edge in G between any pair m; and mj lying in the closed region enclosed by
ca, cb and the edges of P, for any i and j satisfying 0 <i<j—1<r.

(111) Zmi_ymimipq > (D, fori=1,. — 1.

(iv) Zcamy > § — 7.

We break down the proof of the above lemma into two separate cases: when Aabc contains no
point of G in its interior, and when it does. We define some additional notation and terminology
first. We will denote by o the _center of Oabc, and by © the measure of Zbca. Note that
Zaob =20 < 47 /k. We will use ab to denote the arc of (Oabe determined by points a and b and
facing Zaob. We will make use of the following proposition (see Figure 2 for illustration):

Proposition 3.3. If there are two circles through ¢ and a and through c and b, respectively, that
do not contain any points of G in their interior, then the region interior to Oabc subtended by
chord ca and away from b and the region interior to Qabc subtended by chord cb and away from
a contain no points of G.

Proof. Let C, be a circle passing through ¢ and a whose interior is devoid of points of G. Then
b is not interior to C,. By Fact 2.3, the region interior to ()abc subtended by chord ca and away
from b is inside the region interior to C, subtended by chord ca and away from b, and hence is
devoid of points of G. The proof that the region interior to (Oabc subtended by chord ¢b and
away from a is devoid of points of G is analogous. O

S

AN

Figure 2: Hlustration for Proposition 3.3. The interior of the shaded regions are devoid of points
of G.

3.1 The outward path

We consider first the case when no points of G are inside Aabc. Since ca and cb are edges in
G, by Definition 2.2 and Proposition 3.3, it follows that the region interior to (Qabc subtended
by chord ab and closer to ¢ is devoid of points of G. Keil and Gutwin [20] showed that, in this
case, there exists a path between a and b in G in the region interior to (Oabc subtended by chord
ab away from ¢ whose weight is bounded by the length of the arc ab (see Lemma 1 in [20]). To
prove some properties that this path satisfies, we find it convenient to use an alternative recursive
definition of this path, one based on hypotheses H and H' and on Proposition 3.5 described next.
Moreover, this definition serves another purpose: generalizing the results of this section to unit
disk graphs in Section 4.

Let ¢ be a point of G. For a point « in G distinct from ¢, we define the following hypothesis:
‘H: there exists a circle passing through ¢ and z containing no point of G in its interior.

For a pair of points (z,y) in G, where x # ¢ and y # ¢, we define the following hypothesis:
H': the interior of Aczy is devoid of points of G.

Since both ca and cb are edges in G, there are circles C, and Cp passing through ¢, a and
¢, b, respectively, that contain no point of G in their interior. Therefore, both a and b satisfy
hypothesis H with respect to ¢, and since—by our assumption—no point of G is interior to Aabc,
the pair (a, b) satisfies hypothesis H' with respect to c.

Then, given points a and b satisfying hypothesis H such that the pair (a, b) satisfies hypothesis
H' with respect to ¢, the path in [20] can be defined recursively as follows:

1. Base case: If ab € G, the path cousists of edge ab.

2. Recursive step: Otherwise, a point must reside in the interior of Oabc. Since a and b
satisfy hypothesis H and the pair (a,b) satisfies hypothesis H’ with respect to ¢, it follows
from Proposition 3.3 that no point of G is in the region R interior to ()cab subtended by ab
and closer ¢. Since ab ¢ G, the region interior to (Ocab subtended by ab and away from c,
plus the open segment ab, is not empty; let m be a point in that region with the property
that the region R’ interior to Oamb subtended by chord ab and closer to m is empty.! We
call m an intermediate point with respect to the pair of points (a,b). As we show in part
(b) of Proposition 3.5 below, point m will satisfy hypothesis H with respect to ¢. Moreover,
by part (a) of Proposition 3.5, the pair (a,m) satisfies hypothesis H'. Therefore, we can
recurse on points m and a. Since G is finite, the recursion must terminate and a path P,
between a and m in G is obtained. Similarly, both points m and b satisfy hypothesis H,
and the pair (b, m) satisfies hypothesis H'. Therefore, recursing on the points m and b will
eventually result in a path P,,; between m and b. We concatenate P, and P,,; to obtain
a path between a and b in G.

See Figure 3 for an illustration of the recursive step above.

Definition 3.4. We call the path constructed above the outward path between a and b.

n the case when m belongs to the interior of segment ab, the circle Qamb becomes an infinite circle (i.e.,
degenerates to a straight line), and all the arguments still hold.

10

Figure 3: Illustration for the recursive step in the definition of the outward path between a and
b. The interior of the shaded regions are devoid of points of G.

Figure 4 illustrates an outward path between a and b.

a = 1my

C/' '\b:m3

Figure 4: Illustration of an outward path.

Proposition 3.5. In the recursive construction:
(a) The pairs (a,m) and (b,m) satisfy hypothesis H'.
(b) Point m satisfies hypothesis H.

Proof. The triangle Acam can be partitioned into two regions: the first region is contained in
Acab, and hence its interior is empty (since (a,b) satisfies H'), and the second region is contained
in the region interior to (Qamb subtended by chord ab and closer to m, which is devoid of points
of G by the choice of m. It follows that the pair (a,m) satisfies hypothesis H'. Similarly, it can
be shown that the pair (m, b) satisfies hypothesis H’. This proves part (a).

Since a satisfies H, there exists a circle C, passing through ¢ and a and containing no points
of G in its interior. Similarly, there exists a circle C} passing through b and ¢ whose interior is
devoid of points of G. Since m is interior to ()cab, ¢ is interior to Oamb. Therefore, the circle Cp,
passing through ¢ and m and internally tangent to circle Qamb at m is well defined. Note that

11

since m is exterior to C,, C), intersects the interior of chord ca, and hence, the region R, inside
C,, determined by segment ca and away from m is contained within C,, and hence is devoid of
points of G. The same holds true for the region Rj inside C,, determined by segment Cj and
away from m. Circle Cy, is contained in C, U C, U RU R’, and therefore its interior is devoid of
points of G. This proves part (b). O

We are now ready to prove Lemma 3.2 for the case when no point of G lies inside Aabc. In
this case we define the path in Lemma 3.2 to be the outward path between a and b.

Proof. (Proof of Lemma 3.2 for the case of the outward path.)

(i) It was proved in [20] that the weight of the outward path P between a and b, i.e. S |m1m,+1\
is bounded by |ab|. Therefore, it suffices to show that |ca| + |ab| < (1 +2m(kcos T)~1)|cb].
With © = Zbca, we have |ab| = 20 - |oa| and sin© = |ab|/(2|oa|). We note that, since

|ca| < |cb|, |ca| + |ab] is largest when |ca| = |cb|, i.e., when ca and ¢b are symmetrical with
respect to the diameter of circle Qcab. Therefore, we can assume that |ca| = |cb|. Since
|ca| = |cb|, sin & 5 Q‘?b“ It follows from the above facts that:

lca| + |ab] = |cb| + 20 - |oq|
0
— b b
[eb] + (5—5) - lab|

)
= b+ (—g) - lcb| (1)
cos 5
< (1 +2n(kcos E)’1)|cb\. (2)
Equality (1) follows from the fact that sin 2 2 = 2‘%“ and the trigonometric identity sin © =

(S]

2sin = 5

cos 9. Inequality (2) follows from © < 27 /k and k > 2.

(#) If mym; is an edge in G in the region enclosed by ca, cb, and the edges of P, then there
exists a circle passing through m; and m; and devoid of points of G in particular, every
point m,,, where i < p < j, is exterior to this circle. This, however, contradicts part (b) of
Proposition 3.5 applied to point m,, stating that there exists a circle passing through m,
and ¢ and devoid of points in G (since such a circle would necessarily have to contain m;
or my).

(7i7) By part (b) of Proposition 3.5, there exists a circle passing through ¢ and m; whose in-
terior is devoid of points of G, in particular, of points m; 1 and m;y,. It follows that
lmi_lmimﬂ_l Z m — lmi_lcmﬂ_l Z T — Zbca Z mw— 27T/l€.

(iv) This follows from the fact that Zcam; > Zcab > 7/2 — w/k. The last inequality is true
because |ca| < |eb| and Zbca < 27 /k in Acab.

O

3.2 The inward path

We consider now the case when the interior of Aabc contains points of G. Recall that ca and
cb are edges of G such that ca is the shortest edge in the angular sector Zbca, and such that
Zbca < 27 k.

12

Let S be the set of points consisting of points @ and b plus all the points interior to Aabc
(note that ¢ ¢ S). Let CH(S) be the set of points on the convex hull of S. Then CH(S) consists
of points ng = a and ng = b, and points nq,...,ns_1 of G interior to Aabc.

Proposition 3.6. The following are true:
(a) For everyi=0,...,s—1: |eng| < |cniq1], and
(b) For everyi=0,...,s—2: Znjnjt1niyo > m, where Znin;y1n;y2 is the angle facing point c.

Proof. Part (a) follows from the facts that ca is the shortest edge in the sector Zbca (and hence

|cal < |engl, for i = 0,...,s), and points ng, ..., ns are on CH(S) in the listed order.
Part (b) follows from the convexity of CH(S) because all these angles are exterior angles to
CH(S), and each interior angle to C H(S) measures at most . O

Proposition 3.7. The following are true (please refer to Figures 5 and 6 for illustration):
(a) For everyi=0,...,s— 1, the interior of Acnin;y1 is devoid of points of G.

(b) For everyi=0,...,s, there exists a circle passing through cn; whose interior is devoid of
points of G.

Proof. Part (a) follows from the fact that the points ng,...,ns are on CH(S), and hence the
interior of the region enclosed by ca, ¢b, and the polygonal curve of CH(S) determined by these
points, is empty.

To prove part (b), let Cy, Cp, be two circles passing through points ¢ and a, and points ¢ and
b, respectively, whose interior is devoid of points of G. Note that the only points in the interior
of region R = C, UCp U Acab are the points inside the region defined by the convex hull CH(S).
Since n; € CH(S), there exists a line (L;) passing through n; such that all the points on CH(S)
reside in the closed half plane determined by (L;) that does not contain point c. Let C; be the
circle passing through points ¢ and n; and tangent to (L;) (at n;).

If C; intersects ca at a point ¢/, then using Fact 2.3, it is not difficult to see that the region
interior to C; subtended by chord ¢’ and away from n; is inside C, and is thus devoid of points
of GG. Similarly, if C; intersects cb. The remaining region inside Cj is contained in the region of
Aabe delimited by the boundary of CH(S), and hence is also devoid of points of G.

It follows that the interior of C; is devoid of point of G, and this proves part (b). O

- <
N TS
N\ S~
o N

<

{///////ZZ// ZZ/; ;:\ﬁ;::::f -

~
~

-
==
= g

Figure 5: Illustration for part (a) of Proposition 3.7. ny = a, ng = b, and points ny,...,ns_1
form CH(S). The interior of the shaded region is devoid of points of G.

13

Q

Figure 6: Illustration for part (b) of Proposition 3.7. The interior of the shaded circle C; (passing
through ¢ and n;) is devoid of points of G.

From part (b) of Proposition 3.7, every point n;, i = 0,...,s satisfies hypothesis H in the
previous subsection, and from part (a) of Proposition 3.7, every pair of points (n;, ni+1), ¢ =
0,...,s — 1, satisfies hypothesis H’. Therefore, from the previous subsection, for every pair of
points (nj,ni+1), 9= 0,...,s— 1, the outward path P, between points n; and n;;; is well defined.
Let a = mg, my,...,m, = b be the concatenation of the paths F;, fort =0,...,s — 1.

Definition 3.8. We call the path a = mg,my,...,m, = b constructed above the tnward path
between a and b.

Figure 7 illustrates an inward path between a and b.

Figure 7: Illustration of an inward path.

We now prove Lemma 3.2 in the case when there are points of GG interior to Aabc. In this
case we define the path in Lemma 3.2 to be the inward path between a and b.

14

Figure 8: Illustration for the proof of part (i) of Lemma 3.2.

Proof. (Proof of Lemma 3.2 for the case of the inward path.)

(1) For two points x and y we denote by [zy the half line (of the straight line xy) that starts
at z and contains y.

Define a” to be a point on the half-line [ca such that |ca”| = |cb|, and let (O”) = Oca”b.
Denote by o’ the length of the arc of (Oca”’b subtended by chord a”b and facing Za”cb.
For every i = 0,1,...,s — 1, we define arc «; to be the arc of (Ocn;n;;1 subtended by
chord n;n;41 and facing Zn;cn;q;. For every ¢ = 0,1,...,s — 1, we define n to be the point
on the half-line [cn; such that |cnf| = [cniqq| (recall that |en;| < |eniy1| by part (a) of
Proposition 3.6), (O;) to be the circle Ocnn;t1, and o to be the arc of (O;) subtended by
chord nin;y; and facing Znjcn;y,. Finally, for every i = 0,...,s — 1, we define n} to be
the point of intersection of the half-line [cn; and circle (0”), and ¢ to be the arc of (O”)
subtended by chord njnj,; and facing Znjcny, ;. Please refer to Figure 8 for illustration.

As shown in Subsection 3.1, the length of the outward path P; between n; and n;y; is
bounded by the length of «;. Since the convex body Cj delimited by cn;, cni+1 and a; is
contained inside the convex body Cy delimited by cn}, cn;jyq and o}, by [2], the perimeter
of ' is not larger than that of Cy. We get:

wt(P;) < |ngnf| +af, i=1,...,5— 1. (3)

The arc o faces the inscribed angle Zn/cn;; 1 in (O;), and the arc o faces the inscribed angle
Znjeny, | in (O"). Since the two angles Znjcn;q1 and Znjeny, | have the same measure, and

since the radius of (O;) is not larger than that of (O”), we have o < af, fori=0,...,s—1.

15

(iid)

(iv)

3.3

(The radius of (O;) can be easily computed to be |en;y1|/(2cos (v/2)), where v = Zn)cnit1,
and the radius of (O”) can be computed to be |cb|/(2cos (©/2)), where © = Zbca. Since
v < O and |eniq1| < |eb], the radius of (O;) is not larger than that of (0”).)

It follows from Inequality (3) that:

wt(P) < |ninf| +af, i=1,...,s—1. (4)

Using Inequalities (3) and (4) we get:
s—1 s—1 s—1
lcal +) wt(By) < [eal + Y fnang| + Y of. (5)
i=0 i=0 i=0

Noting that Y25 [nn/| = |eb| — |ca| and that 3250 o = o, it follows from Inequality (5)
that:

s—1
jcal + Y wt(P) < |eb| +a” (6)
i=0

IA

(1 + 27 (k cos %)_1)\cb|.

The last inequality is true by the same argument used in the proof of part (i) in Lemma 3.2
for the case of outward path.

Since G is plane and the points no, ..., ns belong to CH(S), if an edge between two points
m; and my; exists, then m; and m; must belong to an outward path between two points 7,
and n,11 of CH(S). However, this contradicts part (i) of Lemma 3.2 for the case of the
outward path applied to n, and n,41.

For each i = 0,...,r, either m; = n; € CH(S), or m; is an intermediate point on the
outward path between two points n, and n, in CH(S). In the former case Zm;_1mim;41 >
Inj_iminji1 > m > (k— 2)n/k for k > 14 (nj—1 and n; are points before and after
m; = n; on CH(S)), by part (b) of Proposition 3.6. In the latter case, since |cn,| < |cng|
and Znpeng < Zbea < 2m/k, it follows that Zm;_imymiy1 > (kK — 2)m/k by the proof of
part (7ii) of Lemma 3.2 applied to the outward path between n, and n,.

This follows from |ca| = |emg| < |emy| and Zacmy < Zbea < 27/k, in triangle Acam;.

The modified Yao step

We now augment the Yao step so edges forming the paths described in Lemma 3.2 are included in
G’'. Lemma 3.2 (parts (7ii) and (iv)) says that consecutive edges on such paths form moderately
large angles. The modified Yao step will ensure that consecutive edges forming large angles are
included in G’. The algorithm is described in Figure 9.

Since the algorithm selects at most k edges incident on any point m and since only edges
chosen by both endpoints are included in G, each point has degree at most k in G’.

16

Algorithm Modified Yao step

INPUT: A Delaunay graph G; integer k > 14
Output: A subgraph G’ of G of mazimum degree k

1. For every point m € G we do the following:
1.1. define k disjoint cones of angle 27 /k with apex at m;
1.2. in every non-empty cone, select the shortest edge incident on m in this cone;
1.3. for every maximal sequence of ¢ > 1 consecutive empty cones with apex at m:

1.3.1. if £ > 1 then select the first | £/2| unselected (during previous steps of the algorithm) incident
edges on m clockwise from the sequence of empty cones and the first [¢/2] unselected edges
incident on m counterclockwise from the sequence of empty cones;

1.3.2. else (i.e., £ = 1) let mz and my be the incident edges on m clockwise and counterclockwise,
respectively, from the empty cone; if either mx or my is selected then select the other edge
(in case it has not been selected); otherwise select the shorter edge between ma and my
breaking ties arbitrarily;

2. G’ is the spanning subgraph of G consisting of edges selected by both endpoints.

Figure 9: The modified Yao step.

Before we complete the proof of Theorem 3.1, we show that the running time of the algorithm
is linear. Note first that all edges incident on point m of degree A can be mapped to the k
cones around m in linear time in A. Then, the shortest edge in every cone can be found in time
O(A) (step 1.2 in the algorithm). Since k is a constant, selecting the ¢/2 edges clockwise (or
counterclockwise) from a sequence of ¢ < k empty cones around m (step 1.3.1) can be done in
O(A) time. Noting that the total number of edges in G is linear in the number of points (G is
planar) completes the analysis.

To complete the proof of Theorem 3.1, all we need to do is show:

Lemma 3.9. If edge cb € G is not selected by the algorithm, let ca € G be the shortest edge in
the cone out of ¢ to which cb belongs. Then the edges of the path P described in Lemma 3.2 are
included in G' by the algorithm.

Proof. For brevity, instead of saying that the algorithm Modified Yao Step selects an edge mx
out of a point m, we will say that m selects edge mx. To get started, it is obvious that ¢ will
select edge ca = cmy (a = my).

By part (iv) of Lemma 3.2, the angle Zcam; > 7/2 — w/k > 67 /k for k > 14. Therefore,
at least two empty cones must fall within the sector Zcam, determined by the two consecutive
edges ca and am1, and edges ac and am; will both be selected by a. Since edge ca is also selected
by point ¢, edge ac € G'.

By part (7i7) of Lemma 3.2, for every i = 1,2,...,r—1, the angle Zm; _ym;m;11 > (k—2)w/k >
107 /k for k > 12, and hence at least four cones fall within the angular sector Zm;_1m;m;41. Since
by part (ii) of Lemma 3.2 m;c is the only possible edge inside the angular sector Zm;_1m;m 41, it
is easy to see that regardless of the position of these four cones with respect to edge m;c, m; ends
up selecting all edges m;m;_1, mym;+1 and m;c in steps 1.2 and/or 1.3 of the algorithm. Since
we showed above that a selects edge amy, this shows that all edges mym;yq, for i =0,...,r — 2,
are selected by both their endpoints, and hence must be in G'. Moreover, edge m,_1m, = m,_1b
is selected by point m,_;. .

We now argue that edge b, will be selected by b. First, observe that |bm, 1| < |ab| < |cb|.
Let cd be the other consecutive edge to ¢b in G (other than cm,_1). Because ¢ does not select b,
it follows that Zm,_q1ed < 67/k. Otherwise, since em,_1 and c¢b are in the same cone, two empty
cones would fall within the sector Zbed and ¢ would select b. Since c¢b is an edge in GG, by the

17

characterization of Delaunay edges [14], Zem,—1b + Zcdb < 7. By considering the quadrilateral
cdbmy,—1, we have Zm,_ycd + Zdbm,_1 > 7. This, together with the fact that Zm,_jcd < 67/k,
imply that Zdbm,_; > (k — 6)n/k > 8n/k, for k > 14. Therefore, Zdbm,_; contains at least
three cones of angle 27/k out of b. If one of these cones falls within the angular sector Zcbm,._;
then, since |m,_1b| < |cb|, brn,_; must have been selected out of b.

Suppose now that Zcbm,_; contains no cone inside and hence Zcbm,_; < 4rn/k. If one of
these three cones within sector Zdbm, _1 contains edge cb, then the remaining two cones must fall
within Zdbc and bm,_; will get selected out of b when considering the sequence of at least two
empty cones contained within Zcbd. Suppose now that all three empty cones fall within Zcbd.
Then we have Zcbd > 67 /k.

If Zm,_jcd > 4w /k, then since m,_1c and cb belong to the same cone, the sector Zbed must
contain an empty cone. Because d is exterior to Ocbm,_1, Zcbm,_1 < 4w /k, and Zm,_1cb <
27 /k, it follows that Zedb < Zmy_1¢b + Zebm,— < 6w /k < Zdbe. Therefore, by considering the
triangle Acdb, we note that |cb| < |ed|. But then edge c¢b would have been selected by ¢ in step
1.3 since the sector Zbed contains an empty cone, a contradiction.

It follows that Zm,_jcd < 47 /k, and therefore Zm,_1bd > (k — 4)7/k > 107 /k for k > 14.
This means that at least four cones are contained inside sector Zdbm,_1. It is easy to check now
that regardless of the placement of the edge bc with respect to these cones, edge bmn,._; is always
selected out of b by the algorithm. This completes the proof. U

Corollary 3.10. A Euclidean minimum spanning tree (EMST) on P is a subgraph of G'.

Proof. 1t is well known that a Delaunay graph (G) contains a EMST on its point-set [14]. If an
edge cb is not in G’, then, by Lemma 3.9, a path from ¢ to b is included in G’. All edges on
this path are no longer than cb; this is because |ca| < |cb|, and the weight of the canonical path
between a and b is bounded by the length of ab, which is, in turn, bounded by |cb|. This latter
fact follows from the facts that |ac| < |bc|, Zbca < 27 /k, and k > 14.

Since G contains a EMST, and since whenever an edge cb is not included in G’, a path between
¢ and b consisting of edges each of length at most |cb| is included in G, it follows that G’ contains
a EMS'T on P. O

The fact that G’ contains a EMST on P is crucial to the results in Section 5.
Since a Delaunay graph of a complete Fuclidean graph of n points can be computed in time
O(nlgn) [14] and has stretch factor at most Cge;, we have the following theorem:

Theorem 3.11. There exists an algorithm that, given a set P of n points in the plane, computes
a plane geometric spanner of the complete Fuclidean graph on P that contains a EMST, has
mazimum degree k, and has stretch factor (1 + 2m(k cos %)_1) - Cgel, where k > 14 is an integer.
Moreover, the algorithm runs in time O(nlgn).

4 Computing Spanners of UDGs Locally

In this section we generalize the centralized algorithm for complete Euclidean graphs from the
previous section to a local distributed algorithm on UDGs. The results in the previous section
do not carry over to unit disk graphs because not all the Delaunay graph edges of a point-set
P are unit disk edges. However, if U is the unit disk graph on the points in P and UDel(U) is
the subgraph of the Delaunay graph on P obtained by deleting edges of length greater than one
unit, then UDel(U) is a connected, plane, spanning subgraph of U with stretch factor bounded

18

by Cge (see [5, 23]). Therefore, if we apply the results from the previous section to UDel(U)
and observe that all edges on the path defined in Lemma 3.2 must be unit disk edges (given that
edges ca and cb are), it is easy to see that Theorem 3.1 and Theorem 3.11 carry over to unit disk
graphs. The only problem, however, is that the construction of U Del(U) cannot be done locally.

To solve this problem, Wang et al. [23, 24] introduced a subgraph of U called LDel? (U),
defined in a style similar to Definition 2.2 as follows:

Definition 4.1. ([8, 28]) An edge zy of U is in LDel® (U) if and only if there exists a circle
through points « and y whose interior contains no point of U that is a 2-hop neighbor (in U) of
x or y.

It was shown in [23, 24] that LDel® (U) is a plane supergraph of UDel(U), and hence also has
stretch factor bounded by Cye;. Moreover, LDel(Z)(U) can be computed by a 3-local distributed
algorithm as follows:

First, every point learns its 3-hop neighborhood using the local distributed algorithm given
in [19]. Then every point z will decide, for every incident edge zy, whether it is in LDel? (U) as
follows: 2y is in LDel® (U) if and only if there exists a point z in the 3-hop neighborhood of x
such that the interior of Ozyz is devoid of 2-hop neighbors of x or y.

We will use G = LDel(z)(U) as the underlying subgraph of U to replace the Delaunay graph
G used in the previous section. We note that G is plane and a supergraph of UDel(U), and hence
has stretch factor Cg. To translate our results to unit disk graphs, we need to show that the
inward and outward paths are still well defined in G. We first need some structural results.

Lemma 4.2. Let ca and cb be two edges in U such that Zbca < 27/k, where k > 14 is an
integer. Let m be any point in the region inside Obca enclosed by the angular sector Zbca (the
sector which measures at most 2w /k). Then |em| < 1/ cos (7w /k).

Proof. Let o be the center of Obca. If o is in the region interior to (Obca subtended by ca and
away from b, then ca is the longest chord in the region interior to (Qbca subtended by ca and closer
to b. In particular, |em| < |ca| <1 < 1/cos(m/k). The case is analogous if o belongs to the region
interior to Obca subtended by c¢b and away from a. Therefore, we can assume that o belongs to
the region inside (Obca facing the angular sector Zbca. Clearly, cm is longest in this case when it
is a diameter of Obca. One of the two angles Zmca and Zmcb is at most 7 /k; assume, without
loss of generality, that Zmca < 7/k. By considering the right angle triangle Amac, we have
cos (Zmca) = |ca|/|em| > cos (w/k). Since |ca| < 1, it follows that |em| < 1/ cos (7/k). O

Lemma 4.3. Let x and y be two points in U such that |vy| < 1/cos (n/k), where k > 14 is an
integer. Let (Ogy) be any circle passing through x and y whose interior is devoid of any 2-hop
neighbors of « and of y, and let z be any point on circle (Oyy). Then the region R interior to
(Ogy) subtended by xy and away from z is devoid of any 2-hop neighbors of z. (Please refer to
Figure 10 for illustration.)

Proof. Let o4y be the center of (Oyy).

If 04y does not belong to R, then it is easy to see that any point m in region R is of distance
at most (v/2/2)|zy| from either x or y (this upper bound corresponds to the case when zy is a
diameter of (Ogy) and m is the point on the boundary of R equidistant from z and y). Since
by the hypothesis we have |zy| < 1/ cos (7/k), it follows that the distance from m to either = or
y is at most v/2/(2cos (7/k)) < 1 for k > 14. Consequently, m is a neighbor of either x or v,
contradicting the hypothesis that the interior of (Oy,) is devoid of any 2-hop neighbors of x or y.

19

Therefore, if 0,y is not in R, then R does not contain any point of U, and in particular, R does
not contain any 2-hop neighbors of z.

Suppose now that oz, belongs to R. Let R’ be the region interior to (Ogy) subtended by zy
and closer to z. By the same argument made above, z must be a neighbor of = or y (or both).
Consequently, region R cannot contain any 1-hop neighbor of z since such a neighbor would be
a 2-hop neighbor of x or y, contradicting the hypothesis. Therefore, it suffices to show that R
does not contain any point ¢ whose hop-distance from z is exactly 2. Proceed by contradiction.
Assume that ¢ € R is a 2-hop neighbor of z, and let m be a common neighbor in U of both z and
q. Note that m and ¢ cannot be neighbors of z nor of y. Therefore, xzq, xm, yq, and ym are not
edges of U.

Since z is a neighbor of x or y, m is a 2-hop neighbor of x or y, and consequently, m is not
inside (Ogy). Moreover, since mz is an edge, m is closer to z than to and y. Therefore, m
belongs to the angular sector determined by the two perpendicular bisectors of zy and zx starting
at 0gy. Since m is not interior to (Ogy), m and oy, must be on opposite side of line zy, and since
q and oy are on the same side of line zy (they both belong to R), segment mg must intersect
the line zy. We distinguish two cases based on whether mg intersects line zy internally (inside
segment xy) or externally.

Suppose first that mgq intersects the interior of xy. Consider the convex quadrilateral xzqym.
Note that zy cannot be an edge of U in this case because otherwise, since mgq is an edge of U, the
two diagonals mq and xy of the quadrilateral are shorter than all the sides of this quadrilateral
(since none of the the sides is an edge of U). Since mgq is the shortest edge in the two triangles
Agmy and Amgqz, it is easy to see that Lyqr + Zymz > Zgrm + Zgym. Consequently, Zyqzr +
Zymzx > m. It follows that one of the two angles Zygx and Zymz is at least 7/2; assume ZLymaz >
m/2 and the proof is similar in the other case. Consider Azmy and note that zy is a longest
side in this triangle. Consequently, either zm or my has length bounded by (v2/2)|zy| < 1, a
contradiction.

Suppose now that mgq intersects line xy exterior to segment xy. Assume, without loss of
generality, that the intersection point is closer to point y. Then point y must be interior to
Azgm. Since mgq is an edge of U and yq and ym are not, mgq is the shortest side in Aqym.
Consequently, Zgym < w/3. It follows that Zmyz > 2x/3 (since Zqyz < m). However, this
contradicts the fact that |mz| < |my| (since mz is an edge in U and my is not).

This completes the proof.]

Figure 10: Illustration for Lemma 4.3. If the interior of circle (Ogy) is devoid of 2-hop neighbors
of x and y, then the interior of the shaded region is devoid of 2-hop neighbors of z.

The following proposition is parallel to Proposition 3.3:

20

Proposition 4.4. Let ¢,a,b be points of G such that:
e |ca| and |cb| are at most 1/ cos (7/k), for k > 14,

e there is a circle C, through ¢ and a whose interior contains no two-hop neighbor of ¢ or a,
and

e there is a circle Cy through ¢ and b whose interior contains no two-hop neighbor of ¢ or b.

Then the region interior to Qabc subtended by chord ca and away from b and the region interior
to Qabe subtended by chord ¢b and away from a contain no 2-hop neighbors (in U) of a, b or c.

Proof. By symmetry, it is enough to prove the proposition for the region interior to (Qabc sub-
tended by chord ca and away from b. By Fact 2.3, the region interior to (Qabc subtended by
chord ca and away from b is inside Cy, and hence contains no 2-hop neighbors of a or ¢. Since
|ca| < 1/cos(m/k), it follows from Lemma 4.3 that the region interior to (Qabc subtended by
chord ca and away from b contains no 2-hop neighbors of b as well. U

Let ca and ¢b be two edges in G such that Zbca < 27 /k, where k > 14 is an integer, and such
that ca is the shortest edge in the angular sector Zbca. Note that by Lemma 4.2, for any point
m residing in the angular sector Zbca, we have |em| < 1/ cos (7 /k).

We start by showing that the results in Subsection 3.1 about the existence of an outward path
between a and b translate to the UDG case.

4.1 The outward path

We assume in this subsection that no point of G is interior to Aabc. As we did in the previous
section, we will define two hypotheses with respect to a point ¢ of G. For a point z in G, we
define the following hypothesis, which is analogous to hypothesis H in Subsection 3.1:

‘Hys: there exists a circle passing through ¢ and x containing no 2-hop neighbors of ¢ or z in its
interior.

For a pair of points (z,y) in the sector Zbca, we define the following hypothesis which is
analogous to hypothesis H' :

H;,: the interior of Aczy is devoid of points of G.

Since both ca and cb are edges in G, there are circles C, and C} passing through ¢, a and c,
b, respectively, whose interiors contain no two-hop neighbor (in U) of ¢, a and ¢, b, respectively.
Therefore, both a and b satisfy hypothesis Hy; with respect to ¢, and since—by our assumption—
no point of G is interior to Aabe, the pair (a,b) satisfies hypothesis H}, with respect to c.

Then, given points a and b that satisfy hypothesis H;; and that the pair (a,b) satisfies hy-
pothesis ‘Hj, with respect to ¢, the canonical path between a and b is constructed exactly as in
the previous section (with the two instances of “point” changed to “two-hop neighbor of a and
b”). So, to make the construction work, we need to prove an analogous proposition to Propo-
sition 3.5. The existence of the outward path satisfying the properties of Lemma 3.2 will then
follow immediately.

Proposition 4.5. In the recursive construction:

21

(a) The pairs (a,m) and (b, m) satisfy the hypothesis Hy,.
(b) Point m satisfies the hypothesis Hy.

Proof. The proof of part (a) is exactly the same as that of part (a) of Proposition 3.5, and is
omitted.

Since a satisfies Hyy, there exists a circle C, passing through ¢ and @ and containing no 2-hop
neighbors of ¢ or «a in its interior. Similarly, there exists a circle C} passing through b and ¢ whose
interior is devoid of any 2-hop neighbors of b or ¢. Since m is interior to (cab, c is interior to
Oamb. Therefore, the circle C,, passing through ¢ and m and internally tangent to circle Oamb
at m is well defined. Note that since m is exterior to Cy, C,, intersects the interior of chords ca,
and hence, the region R, of C,, subtended by segment ca and away from m is contained in the
region R), interior to Ocma subtended by chord ca and away from m, which in turn is contained
in the region interior to C, subtended by chord ca and away from m by Fact 2.3. Therefore, the
region R/, and consequently Ry, is devoid of 2-hop neighbors of ¢ and a, and by Lemma 4.3 (since
|ca| < 1/cos(m/k)) of 2-hop neighbors of m. The same holds true for the region Ry interior to
C,, determined by segment Cj, and away from m. Now circle Cy, is contained in R, U R, URUR’
(refer to the previous section for the definition of R and R'), and therefore its interior is devoid
of 2-hop neighbors of ¢ and of m. This proves part (b). O

With the above proposition, the definition of the outward path between a and b translates
transparently to the UDG case, of course under the assumption that Zbca < 27/k. We prove
that the properties of this path listed in Lemma 3.2 translate as well to the case of UDG.

Proof. (Proof of Lemma 3.2 for the case of outward path.)
(7) The proof of this part is exactly the same as that of part (i) of Lemma 3.2 in Subsection 3.1.

(74) The proof of this part is exactly the same as that of part (i7) of Lemma 3.2 in Subsection 3.1,
after noting that the points on the canonical path form a clique, and hence any two points
are 2-hop neighbors in U. The latter statement is true because all these points reside in the
region of Obca subtended by chord ab and away from ¢, and |ab| < 1.

(7i7) The proof of this part is exactly the same as that of part (iii) of Lemma 3.2 in Subsection 3.1,
after noting that any two points on the canonical path are 2-hop neighbors in U.

(tv) The proof of this part is exactly the same as that of part (iv) of Lemma 3.2 in Subsection 3.1.
O

4.2 The inward path

The definition of the inward path translates directly from that in Subsection 3.2. The properties of
the inward path proved in Lemma 3.2 in Subsection 3.2 would also follow directly if we can prove
Proposition 3.6 and Proposition 3.7 for the UDG case. The proof of Proposition 3.6 is exactly
the same as that in Subsection 3.2. The proof of part (a) of Proposition 3.7 is also exactly the
same as that in Subsection 3.2. The proof of part (b) is the same as that in Subsection 3.2 after
noting that any two points in ng,...,ng are 2-hop neighbors of each other since they reside in
Abca, and that the distance between ¢ and any point in Zbca is at most 1/ cos (7/k) (and hence
Lemma 4.3 can be applied).

Finally, the same Modified Yao Step algorithm in Section 3.3, after setting G = LDel® (U),
gives a 3-local distributed algorithm. Therefore, we have the following theorem:

22

Theorem 4.6. There exists a 3-local distributed algorithm that, given a set P of n points in the
plane, computes a plane geometric spanner of the unit disk graph on P that contains a EMST
on P, has mazimum degree k, and has stretch factor (1 + 2w(kcos §)~ ') - Cger, for any integer
k > 14. Moreover, the algorithm exchanges no more than O(n) messages in total, and has a local
processing time of O(nlgn).

5 Computing Lightweight Spanners of Euclidean Graphs

In this section we present a centralized algorithm that constructs a bounded-degree plane lightweight
spanner of the complete Euclidean graph £€. We first need the following structural results.

Let G be a plane graph. Fix a spanning tree 1" of G. Call an edge e € E(T") a tree edge and
an edge e € E(G) — T a non-tree edge. Every non-tree edge induces a unique cycle in the graph
T + e called the fundamental cycle of e. Since T is embedded in the plane, we can talk about
the fundamental region of e, which is the closed region in the plane enclosed by the fundamental
cycle of e (other than the outer face of 7'+ €). See Figure 11 for an illustration of fundamental
regions and fundamental cycles.

0N

Figure 11: Illustration for fundamental regions and fundamental cycles. The light edges are tree
edges and the thick/bold edges are non-tree edges. The shaded region is the fundamental region
of a non-tree edge e and its boundary is the fundamental cycle of e. Note that a fundamental
region is not necessarily a face.

Definition 5.1. Define a relationship < on the set E(G) as follows. For every edge e, e < e. If
e is a tree edge and ¢’ is a non-tree edge then e < ¢/. For two non-tree edges ¢ and €', e < €' if
and only if e is contained in the fundamental region of ¢'.

It is not difficult to verify that =< is a partial order relation on E(G), and hence (E(G), %) is
a partially ordered set (POSET). Note that any two distinct tree edges are not comparable by
=, and that every tree edge is a minimal element in (E(G), <). Therefore, we can topologically
sort the edges in E(G) to form a list £ = (ej,...,e,), in which no non-tree edge appears before
a tree edge, and such that if e; < e; then e; does not appear after e; in L.

Lemma 5.2. Let e; be a non-tree edge. Then there exists a unique face F; in G containing e;
such that every edge e; of F; satisfies e; = e;.

23

Proof. Let F; be the face of G containing e; and residing in the fundamental region of e;, and let
e; be an edge on F;. Since e; is on Fj, e; is contained in the fundamental region of e;. By the
definition of =, we have e; = e;. This shows the existence of such a face F;.

To prove the uniqueness of Fj, suppose that there is another distinct face F; with the above
properties. Since every edge e; on F satisfies e; = ¢;, every edge on F] is contained in the
fundamental region of e;, and hence the whole face F] is contained in the fundamental region
of e;. This means that there are two distinct faces containing e; that are enclosed within the
fundamental cycle of e;. This contradicts the planarity of G. O

We will call the unique face associated with a non-tree edge ¢;, described in Lemma 5.2, the
fundamental face of e;. See Figure 12 for an illustration of fundamental faces and the partial
ordering among the corresponding non-tree edges.

Figure 12: Tllustration for the fundamental faces of e, €/, and €”. The fundamental region of e is
contained in the fundamental region of €/, which is in turn, contained in the fundamental region
of €. Hence, e < ¢ < €.

The following result is a consequence of the proof of Theorem 2 in [1]. A similar, but less
general result, was also proved earlier by Levcopoulos and Lingas [22].

Theorem 5.3. (Theorem 2 in [1]) Let G be a connected weighted planar graph with nonnegative
weights satisfying the following property: for every cycle C' in G and every edge e € C, wt(C) >
A - wt(e) for some constant X > 2. Then wt(G) < (1 + 525) - wt(T), where T is a minimum
spanning tree of G.

The following corollary can be proved using the same techniques used in the proof of Theorem 2
in [1]. In order not to repeat the complete proof of Theorem 2 in [1], we describe the result and
refer the reader to Corollary 3.8 in [18] for a complete proof.

Corollary 5.4. Let G be a connected weighted plane graph with nonnegative weights, and let T’
be a spanning tree in G. Let A > 2 be a constant. Suppose that for every edge e € E(G) — T we
have wt(F,) > X - wt(e), where F, is the boundary cycle of the fundamental face of e in G. Then
wi(G) < (1+ 25) - wt(T).

24

Now we are ready to show how to construct a bounded-degree lightweight spanner of £. By
Theorem 3.11, given an integer parameter k > 14, we can construct in O(nlogn) time a plane
spanner G’ of £ containing a EMST on P = V(&), of degree at most k, and of stretch factor
p = (14 2n(kcos %)_1) - Cger- The spanner G, however, may not be of light weight. Therefore,
we need to discard edges from G’ so that the resulting subgraph is of light weight, while at the
same time not affecting the stretch factor of G’ by much. To do so, since G’ is a plane graph
containing a EMST on P, we would like to employ Corollary 5.4. We will show next how to prune
the set of edges in G’ so that the weight of every fundamental face F, of a non-EMST edge e in
G’ satisfies wt(F,) > A - wt(e) (A > 2 is a constant).

Let 17" be a EMST on P that is contained in G’. As described above, we can order the non-tree
edges in G', with respect to the fixed tree T', by the partial order < described in Definition 5.1.
Let £ = (e1,ea,...,e5) be the sequence of non-tree edges in G’ sorted in non-decreasing order
with respect to the partial order <. Note that, by the definition of the partial order =, if we
add the edges in £’ to T in the respective order they appear in £, once an edge e; is added to
form a fundamental face in the partially-grown graph, this fundamental face will remain a face
in the resulting graph after all the edges in £’ have been added to 7'. That is, the face will not
be affected (i.e., changed/split) by the addition of any later edge in this sequence.

Given a constant A > 2, to coustruct the desired lightweight spanner G, we first initialize
G to the EMST T. We consider the non-tree edges of G’ in the order that they appear in L.
Inductively, suppose that we have processed the edges e1,...,¢e; 1 in L. To process edge e;, let
F; be the fundamental face of ¢; in G + ¢;. If wt(F;) > X - wit(e;), we add e; to G; otherwise,
e; is not added to GG. This completes the description of the construction process. Let G be the
resulting graph at the end of the construction process.

Lemma 5.5. Given the set of n points P in the plane, the graph G can be constructed in O(nlogn)
time.

Proof. We first describe how to compute the sequence £’.

The bounded-degree plane spanner G’ of £ can be constructed in O(nlogn) time by Theo-
rem 3.11. Since every point in G’ has bounded degree, and since G’ is a geometric plane graph,
in O(1) time per point, and hence in O(n) time, for every point in G’, we can list its incident
edges in clockwise order. Moreover, since G’ has O(n) edges, the EMST T contained in G’ can
be computed in O(nlogn) time by a standard MST algorithm.

Note that if we can properly contract the edges in 1" to obtain a single point with self-loops
corresponding to all the non-tree edges in G’, then the incidence ordering of these self-loops around
the point reveals a sequence L. (See Figure 13 for an illustration.) We can accomplish this by
traversing the tree edges of G’ starting at a point on the outer face of G’ (e.g., the point with the
smallest z-coordinate). As a point v is visited in this traversal, the non-tree edges incident on v
that appear between the entering edge and the exiting edge are appended to a list L according
to their clockwise order fixed above. At the end of the traversal, the list L will correspond to
an incidence ordering in which the self-loops appear around a point that results from contracting
the edges in 7'. Finally the sequence L' can be derived from the list L by removing the first
occurrences of each edge in L. Clearly, this process can be carried out in O(n) time.

After computing £’, we initialize G to the EMST 7. As we consider the edges in £’, when
we add an edge e in £’ to form a fundamental face F, in G + e, we need to check whether the
fundamental face F, satisfies the condition wt(Fe) > A - wt(e). To do so, we need to traverse the
edges on F,. If e is not subsequently added to GG, we might need to traverse some edges on Fg
multiple times when we later consider edges that are larger than e in the ordering <. To avoid

25

this problem, we can do the following. If we decide to add an edge to G, we add this edge and
mark it as a “real” edge of G. On the other hand, if e¢ is not to be added to G, we still add e
to G but we mark it as a “virtual” edge of GG, and assign it a weight equal to the weight of its
fundamental face. The graph G will counsist of the tree 1" plus the set of edges that were marked
as real edges. This way each edge in G is traversed at most twice (as every edge appears in at
most two faces), and the running time is kept O(n).

It follows that G can be constructed in O(nlogn) time, and the proof is complete. O

7

Figure 13: Ilustration for the contraction of the tree edges in the proof of Lemma 5.5. The
incidence ordering of the self-loops around the point reveals a sequence L.

Theorem 5.6. For any integer parameter k > 14 and any constant A > 2, the subgraph G of €
constructed above is a plane spanner of € containing a EMST on P, whose degree is at most k,
whose stretch factor is (A — 1) - p, where p = (14 2w(kcos §) 1) - Cger, and whose weight is at
most (1+ 525) - wt(EMST). Moreover, G can be constructed in O(nlogn) time.

Proof. The planarity and degree bound of G follow from the fact that G is a subgraph of G'. By
construction, G contains a EMST on P, and every fundamental face F, of a non-tree edge e in G
satisties wt(F.) > A - wt(e). Therefore, by Corollary 5.4, we have wt(G) < (14 25) - wt(EMST).
Since by Lemma 5.5 G can be constructed in O(nlogn) time, it suffices to show that the stretch
factor of G with respect to £ is (A — 1) - p.

Note that G’ has stretch factor p with respect to €. If an edge ¢; is in G’ but not in G, then
by the construction of G, when the edge ¢; is considered, the fundamental face F; of ¢; in G + ¢;
satisfies wt(F;) < A - wt(e;) (otherwise, the edge e; would have been added). Therefore, when
edge e; was considered, G contained a path between the endpoints of ¢; whose weight is at most
(A—1) - wt(e;). This path will remain in G after all edges in £’ have been considered. Therefore,
every edge in E(G') — E(G) is stretched by a factor at most A — 1. Since G’ has stretch factor
p with respect to &, it follows that the stretch factor of G with respect to € is (A — 1) - p. This
completes the proof. O

26

6 Computing Lightweight Spanners of UDGs Locally

In this section we present a local distributed algorithm that constructs a bounded-degree plane
lightweight spanner of a unit disk graph U.

By Theorem 4.6, there exists a 3-local distributed algorithm that, given a unit disk graph U
and an integer parameter k > 14, constructs a plane spanner G’ of U containing a EMST on
V(U), of degree at most k and stretch factor p = (1 + 2m(kcos £) 1) - Cger. Again, G’ might
not be of light weight, and we need to discard edges from G’ so that the obtained subgraph is
of light weight. Ultimately, we would like to be able to apply Theorem 5.3. However, a serious
problem, which was not present previously in the centralized model, poses itself here in the local
model: the removal of the edges from the spanner by different points in the graph needs to be
coordinated. This problem was overcome in the centralized model by using a global ordering
among the edges of the spanner. Clearly, no local distributed algorithm is capable of computing
the global partial order described in Definition 5.1. To coordinate the removal of edges, we use a
clustering technique.

Fix an infinite rectilinear tiling 7 of the plane whose tiles are ¢ x ¢ squares, for some positive
constant £ to be determined later. Assume, without loss of generality, that one of the tiles in
7 has its bottom-left corner coinciding with the origin (0,0), and that this fact is known to the
points in U. Note that this assumption is justifiable in practice because an absolute reference
system usually exists (a coordinate system, for example). Therefore, any point in U can determine
(using simple arithmetic operations) which tile of 7 it resides in. We start with the following
simple fact whose proof is easy to verify.

Fact 6.1. Let C be a cycle of weight at most £. The orthogonal projection ? of C on any straight
line has weight at most £/2.

Let 17 be the translation with vector (0,0) (the identity translation), T the translation of
vector (¢/2,0) (horizontal translation), Ty the translation of vector (0, ¢/2) (vertical translation),
and Tp the translation of vector (¢/2,¢/2) (diagonal translation). We have the following simple
lemma.

Lemma 6.2. Let C be any cycle of weight at most €. There exists a translation T in {17, Ty, Ty, Tp}
such that the translate of C, T'(C), resides in a single tile of T.

Proof. If C resides within a single tile of 7 then clearly translation 17 serves the purpose. If
C resides within exactly two horizontal (resp. vertical) tiles of 7', then these two tiles must be
adjacent, and it is easy to verify using Fact 6.1 that translation 7 (resp. 1}/) serves the purpose.
Finally, if C' resides within more than two tiles of 7, then again, using Fact 6.1, it can be easily
verified that translation 1) serves the purpose.]

Even though a cycle of weight ¢ may not reside within a single tile of 7, Lemma 6.2 shows
that by affecting some translation 7"in {17, Ty, Ty, Tp}, the translate of C under 7" will reside in
a single tile. For each translation 7" in {17,Ty,Tyv,Tp}, the points in G whose translates under
T reside in a single tile will form a cluster. Then, these points will coordinate the detection and
removal of the low-weight cycles residing in the cluster by applying a centralized algorithm to
the cluster. Since the clusters do not overlap, and since each cluster works as a centralized unit,
this maintains the stretch factor under control, while ensuring the removal of every low weight

2By the orthogonal projection of C on a given line we mean the points that are the orthogonal projections of
the points in C on the given line. Note that, by the continuity of the curve C, this set of points is a line segment.

27

cycle. The centralized algorithm that we apply to each cluster is the standard greedy algorithm
that has been extensively used (see for example [1]) to compute lightweight spanners. Given a
graph H and a parameter a > 1, this greedy algorithm sorts the edges in H in a non-decreasing
order of their weight, and starts adding these edges to an empty graph in the sorted order. The
algorithm adds an edge ab to the growing graph if and only if no path between a and b whose
weight is at most « - |ab| exists in the growing graph. We will call this algorithm Centralized
Greedy. The following properties about this greedy algorithm are known:

Fact 6.3. Let H be a subgraph of the complete Euclidean graph E, and let a > 1 be a constant.
Let H' be the subgraph of H constructed by the algorithm Centralized Greedy when applied to
H with parameter a. Then:

(i) H' is a spanner of H with stretch factor a.
(i1) H' contains a MST of H.
(iii) For any cycle C in H' and any edge e on C, wt(C) > (1 + «) - wt(e).

Lemma 6.4. If H is a plane graph, then the algorithm Centralized Greedy can be implemented
to run in O(n?lgn) time on H, where n is the number of points in H.

Proof. Since H is plane, it has O(n) edges and they can be sorted in O(nlgn) time. Moreover,
for the same reason, a shortest-path query between any two points in H can be answered in
O(nlgn) time. It follows that the algorithm Centralized Greedy can be implemented to run
in O(n?1gn) time on H. O

Lemma 6.5. Let ty be a tile in T, and let Uy, be the subgraph of U induced by all the points of
U residing in tile to. If a and b are two points in the same connected component of Uy,, then a
and b are ([(8/m) - (€ +1)?])-hop neighbors in U (i.e., a and b are at most [(8/m) - (¢ +1)?] hops
away from one another in U).

Proof. Let Ppin = (a = po,p1,-..,pz = b) be a path between a and b in Uy, of minimum length.
Let D;, for i = 0,...,z, be the disk centered at p; and of radius 1/2, and observe that all the
disks D; are contained within a bounding square-box b of dimensions (¢ + 1) x (¢ + 1), whose
center coincides with the center of t5. Observe also that the disks D;, for even ¢, are mutually
disjoint; that is, the points p;, for even 4, form an independent set in U (otherwise, P, would
not be a minimal-length path between a and b). Therefore, the area of the region R, denoted a,
determined by the union of the disks D, for even i, is the sum of the areas determined by these
individual disks. The value of a is precisely (7/4) - [z/2]. Since the region R is contained in the
bounding box b of area (£+1) x (£+1), we have a < (£+1)2. Consequently, (7/4)-[z/2] < (£+1)2.
Solving for the integer x in the previous equation we obtain < [(8/7) - (£ + 1)?]. This shows
that the length of the path P, which is z, is bounded by [(8/7) - (¢ + 1)?], and the proof is
complete. O

We now present the local distributed algorithm formally and prove that it constructs the
desired lightweight spanner. The input to the algorithm is the spanner G’ of U constructed by
Theorem 4.6, and a constant A > 2. We set { = X in the above tiling 7. We assume that
each point in U has computed its (|(8/7) - (A + 1)?])-hop neighbors in U by applying the local
distributed algorithm described in Subsection 2.2, where i = [(8/7) - (A + 1)?|. By Lemma 6.5,
this ensures that every point knows all the points in its connected component residing with it in

28

the same tile under any translation.® After that, for every round j € {I, H,V, D}, each point
p € U executes the following algorithm Local-LightSpanner:

(i) p applies translation 7 to compute its virtual coordinates under 7j; Suppose that the
translate of p under 7}, Tj(p), resides in tile ¢ty € 7T;

(ii) p determines the set Sj(p) of all the points in the resulting subgraph of G’ (prior to round
j) whose translates under 7T} reside in the same connected component as Tj(p) in tile to;

(ili) p applies the algorithm Centralized Greedy to the subgraph H;(p) of the resulting graph
of G’ induced by S;(p) with parameter o = A — 1; if p decides to remove an edge (p, ¢) from
Hj(p) then p removes (p,q) from its adjacency list in G’;

Note that since all the points whose translate reside in a single tile apply the same algorithm
to the same subgraph during any round j, if a point p decides to remove an edge (p, ¢), then point
g must reach the same decision of removing edge (p, q).

Let G be the subgraph of G’ consisting of the set of remaining edges in G’ after each point
p € G’ applies the algorithm Local-LightSpanner.

Theorem 6.6. The subgraph G of G is a spanner of U containing a EMST of V(U), with stretch
factor p- (A—=1)*, and satisfying wt(G') < (1 + 125) - wt(EMST), where p is the stretch factor of
G

Proof. We first show that G is of light weight. To do so, we need to show that G satisfies the
conditions of Theorem 5.3. We show first that G contains a EMST on V(U).

Since G’ contains a EMST on V(U), it suffices to show that after each round of the algorithm
Local-LightSpanner, the resulting graph still contains a EMST on V(U). Fix a round j €
{I,H,V,D}, and let G'" be the graph resulting from G’ just before the execution of round j,
and G'~ that resulting from G’ after the execution of round j. Assume inductively that G'*
contains a EMST on V(U). Note that any edge removed from G'* in round j must have its
translate contained within a single tile in 7. Let tg be a tile in 7. In round j, each point p
whose translate T}(p) is in tp, applies the algorithm Centralized Greedy to the subgraph of
G'", H;(p), induced by the set of points S;(p) defined in the algorithm Local-LightSpanner.
By part (ii) of Fact 6.3, this algorithm computes a spanner for H;(p) containing a“local” EMST
T of H;(p). It is easy to see that an edge e in a EMST of G'" whose translate Tj(e) is in H;(p),
its translate 7j(e) is either an edge of 79, or is contained in a cycle whose edges other than e
have the same weight as e and are in 79. Otherwise, by adding 7}(e) to 79, we create a cycle on
which T}(e) is the edge of maximum weight (if not, 7)(e) could replace an edge of 7y of larger
weight than e, contradicting the minimality of 79), and this means that 7)j(e) would be the edge
of maximum weight on some cycle of G’; since a translation is an isometric transformation—and
hence preserves length, this contradicts the fact that e is an edge in a EMST of G'T. Therefore, if
an edge in a EMST of G'" is removed during round j, then G’ will still contain a path between
the endpoints of e all of whose edges have the same weight as e. Consequently, G'~ will still
contain a EMST on V/(U). It follows that G contains a EMST on V(U).

Now we show that for every cycle C'in G, and for every edge e on C', we have wt(C) > A-wt(C).
Suppose not, and let cycle C' and edge ¢ € C be a counter example. Since every edge in U
has weight at most 1, and wt(C) < A - wt(e), it follows that wt(C) < A, and by Lemma 6.2,

3Note that the subgraph of G’ induced by the set of points in a single tile may not be connected.

29

there exists a round j in which the translate of C resides in a single tile ty of 7. By part
(7i7) of Fact 6.3, after the application of the algorithm Centralized Greedy to the connected
component k containing the translate of C in tile ¢y in round j, no cycle of weight smaller or
equals to (1 4+ a)-wt(e) = (1+A—1)-wt(e) = X-wt(e) in the inverse translation of x remains; in
particular, the cycle C' will no longer be present in the resulting graph. This is a contradiction.
It follows that G satisfies the conditions of Theorem 5.3, and wt(G) < (1 + 1%5) - wt(EMST).
Finally, it remains to show that the stretch factor of G, with respect to U, is at most p-(A—1)%.
Since G’ has stretch factor p, it suffices to show that after each round of the algorithm Local-
LightSpanner, the stretch factor of the resulting graph increases from the previous round by a
multiplicative factor of at most (A — 1). Fix a round j € {I,H,V, D}, and let G'* and G'~ be
as above. Suppose that an edge e is removed by the algorithm in round j. Then the translate
of e in round j must reside in a single tile ¢y of 7. Since by part (i) of Fact 6.3 the algorithm
Centralized Greedy has stretch factor a = A — 1, and since a translation is an isometric
transformation, a path of weight at most (A — 1) - wt(e) remains between the endpoints of e in
G’'~. Therefore, the stretch factor of G’ with respect to G'" increases by a multiplicative factor
of at most (A — 1) during round j. This completes the proof. O

Lemma 6.7. The local processing time of a point p in the algorithm Local-LightSpanner is
O(n?lgn), where n = |V (U)|.

Proof. Clearly steps (i) and (ii) can be carried by point p in O(n) time. Since for each j €
{I,H,V,D} the subgraph H;(p) of G’ is plane, the algorithm Centralized Greedy runs in
O(n?1gn) time on H;(p) by Lemma 6.4. This completes the proof. O

We conclude with the following theorem:

Theorem 6.8. Let U be a connected unit disk graph on n points, k > 14 be an integer constant,
and X > 2 be a constant. Then there exists an i-local distributed algorithm with i = |(8/7) -
(A + 1)2], that computes a plane spanner of U containing a EMST on V (U), of degree at most
k, weight at most (1 + 125) - wt(EMST), and stretch factor (A — 1) - (1 + 2m(kcos T)7) - Cer.
Moreover, the local processing time of a point in the algorithm is O(n?lgn).

References

[1] I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, 9:81-100, 1993.

[2] R. Benson. Euclidean Geometry and Convexity. Mc-Graw Hill, New York, 1966.

[3] P.Bose, J. Gudmundsson, and M. Smid. Constructing plane spanners of bounded degree and
low weight. In proceedings of the 10th Annual European Symposium on Algorithms, volume
2461 of Lecture Notes in Computer Science, pages 234-246. Springer, 2002.

[4] P. Bose, J. Gudmundsson, and M. Smid. Constructing plane spanners of bounded degree
and low weight. Algorithmica, 42(3-4):249-264, 2005.

[5] P. Bose, A. Maheshwari, G. Narasimhan, M. Smid, and N. Zeh. Approximating geometric
bottleneck shortest paths. Computational Geometry: Theory and Applications, 29:233-249,
2004.

30

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad
hoc wireless networks. Wireless Networks, 7(6):609-616, 2001.

P. Bose, M. Smid, and D. Xu. Diamond triangulations contain spanners of bounded degree.
In proceedings of the 17th International Symposium on Algorithms and Computation, volume
4288 of Lecture Notes in Computer Science, pages 173-182. Springer, 2006. To appear in
Algorithmica.

G. Calinescu. Computing 2-hop neighborhoods in Ad Hoc wireless networks. In proceedings
of the 2nd International Conference on Ad-Hoc, Mobile, and Wireless Networks, volume 2865
of Lecture Notes in Computer Science, pages 175-186. Springer, 2003.

P. Chew. There are planar graphs almost as good as the complete graph. Journal of
Computers and System Sciences, 39(2):205-219, 1989.

M. Damian, S. Pandit, and S. Pemmaraju. Local approximation schemes for topology control.
In proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, pages 208-217, 2006.

G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional
Euclidean space. In proceedings of the 19th ACM Symposium on Computational Geometry,
pages 53-62, 1993.

G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners. In
proceedings of the 20th ACM Symposium on Computational Geometry, pages 132—139, 1994.

G. Das, G. Narasimhan, and J. Salowe. A new way to weigh malnourished Euclidean graphs.
In proceedings of the Sizth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
215-222, 1995.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, third edition, 2008.

D. Dobkin, S. Friedman, and K. Supowit. Delaunay graphs are almost as good as complete
graphs. Discrete Computational Geometry, 5(4):399-407, 1990.

J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for construct-
ing sparse geometric spanners. SIAM Journal on Computing, 31(5):1479-1500, 2002.

[. Kanj and L. Perkovi¢. On geometric spanners of Euclidean and unit disk graphs. In
proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science,
pages 409-420, 2008.

L. Kanj, L. Perkovic, and G. Xia. Computing lightweight spanning subgraphs locally. Techni-
cal report # 08-002 at: http://www.cdm.depaul.edu/research/Pages/TechnicalReports.aspx.

[. Kanj, A. Wiese, and F. Zhang. Computing the k-hop neighborhoods locally. Technical
report # 08-007 at: http://www.cdm.depaul.edu/research /Pages/TechnicalReports.aspx.

J. Keil and C. Gutwin. Classes of graphs which approximate the complete Euclidean graph.
Discrete & Computational Geometry, 7:13-28, 1992.

31

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In proceed-
ings of the 11th Canadian Conference on Computational Geomnetry, pages 51-54, 1999.

C. Levcopoulos and A. Lingas. There are planar graphs almost as good as the complete
graphs and almost as cheap as minimum spanning trees. Algorithmica, 8(3):251-256, 1992.

X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed construction of planar spanner and
routing for ad hoc wireless networks. In proceedings of the IEEE Conference on Computer
Commaunications, 2002.

X.-Y. Li, G. Calinescu, P.-J. Wan, and Y. Wang. Localized delaunay triangulation with
application in Ad Hoc wireless networks. IEEE Transactions on Parallel and Distributed
Systems, 14(10):1035-1047, 2003.

N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193—
201, 1992.

G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press,
2007.

D. Peleg. Distributed computing: A Locality-Sensitive Approach. SIAM Monographs on
Discrete Mathematis and Applications, 2000.

Y. Wang and X.-Y. Li. Localized construction of bounded degree and planar spanner for
wireless ad hoc networks. Mobile Networks and Applications, 11(2):161-175, 2006.

R. Wattenhofer. Sensor networks: distributed algorithms reloaded - or revolutions? In pro-
ceedings of the 13th Colloguium on Structural Information and Communication Complexity,
volume 4056 of Lecture Notes in Computer Science, pages 24-28. Springer, 2006.

A. C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related
problems. SIAM Journal on Computing, 11(4):721-736, 1982.

32

