
On the Small Cycle Transversal of Planar Graphs

Ge Xia∗ Yong Zhang†

Abstract

We consider the problem of finding a k-edge transversal set that intersects all (simple) cycles
of length at most s in a planar graph, where s ≥ 3 is a constant. This problem, referred to
as Small Cycle Transversal, is known to be NP-complete. We present a polynomial-time
algorithm that computes a kernel of size 36s3k for Small Cycle Transversal. In order to
achieve this kernel, we extend the region decomposition technique of Alber et al. [J. ACM, 2004]
by considering a unique region decomposition that is defined by shortest paths. Our kernel size is
a significant improvement in terms of s over the kernel size obtained under the meta-kernelization
framework by Bodlaender et al. [FOCS, 2009].

Keywords: Parameterized Complexity, Kernelization, Planar Graphs, Cycle Transversal

1 Introduction

Graphs without small cycles (or with large girth) are well studied objects in areas such as extremal
graph theory [19, 2] and graph coloring [28]. Finding a maximal subgraph without small cycles also
has applications in computational biology. Several heuristic algorithms were presented by Pevzner
et al. for removing small cycles in generalized de Bruijn graphs in their approach to represent all
repeats in a genomic sequence [22]. Bayati et al. [3] presented the first polynomial-time algorithm to
generate random graphs without small cycles, which can be used to design high performance Low-
Density Parity-Check (LDPC) codes. Raman and Saurabh [23] showed that several problems that
are hard for various parameterized complexity classes on general graphs become fixed parameter
tractable (FPT) when restricted to graphs without small cycles. For example, they showed that
Dominating Set and t-Vertex Cover become FPT on graphs with girth at least five, and
Independent Set becomes FPT on graphs with girth at least four. On planar graphs, Timmons
[25] showed that every planar graph with girth at least nine can be star colored using 5 colors and
every planar graph with girth at least 14 can be star colored using 4 colors. The decomposition of
planar graphs with certain girths into forests and matchings was also investigated in the literature
[9].

Problem kernelization is a useful preprocessing technique in practically dealing with NP-hard
problems. A parameterized problem is a set of instances of the form (x, k), where x is the input
instance and k is a nonnegative integer called the parameter. A parameterized problem is said to
be fixed parameter tractable if there is an algorithm that solves the problem in time f(k)|x|O(1),
where f is a computable function solely dependent on k, and |x| is the size of the input instance.
The kernelization of a parameterized problem is a reduction to a problem kernel, that is, to apply a
polynomial-time algorithm to transform any input instance (x, k) to an equivalent reduced instance

∗Dept. of Computer Science, Lafayette College, Easton, Pennsylvania 18042, USA. xiag@lafayette.edu.
†Dept. of Computer Science, Kutztown University, Kutztown, Pennsylvania 19530, USA. zhang@kutztown.edu.

1

(x′, k′) such that k′ ≤ k and |x′| ≤ g(k) for some function g solely dependent on k. It is known that
a parameterized problem is fixed parameter tractable if and only if the problem is kernelizable. We
refer interested readers to [13, 17] for more details on parameterized complexity and kernelization.
Polynomial size kernels can be obtained for many FPT problems. However, techniques for proving
the lower bounds of kernelization have recently been developed by Bodlaender et al. [6], Fortnow
and Santhanam [15], and Dell and van Melkebeek [12].

In this paper we study the problem of finding a maximum subgraph without small cycles in a
graph through edge deletions. Fix a constant s ≥ 3. We call a cycle small if its length is at most
s. A set S of edges in a graph G is called a small cycle transversal set if S intersects every small
cycle in G. For simplicity, we refer to a small cycle transversal set of size k as a k-transversal set.
We consider the following problem:

Small Cycle Transversal: Given an undirected graph G and an integer k, is there
a k-transversal set in G?

Note that in our problem we seek a minimum edge set to intersect only small cycles in a graph since
finding a minimum edge set to intersect all cycles in a graph is equivalent to finding a spanning
tree.

A closely related and well-studied problem is Feedback Vertex Set, in which one asks for a
set of at most k vertices to intersect all cycles in a graph. A polynomial size kernel of Feedback

Vertex Set was first presented by Burrage et al. [11]. Their kernel of size O(k11) was improved
to O(k3) by Bodlaender [5], and recently to O(k2) by Thomassé [24]. Bodlaender and Penninkx [8]
also gave an 112k kernel for Feedback Vertex Set on planar graphs.

Small Cycle Transversal is known to be NP-complete on general graphs [27]. Kortsarz et
al. [20] showed that the approximation ratio of 2 is likely the best possible for case s = 3, and they
also presented (s−1)-approximation algorithms for case when s > 3 is any odd number. Brügmann
et al. [10] showed that Small Cycle Transversal remains NP-complete on planar graphs when
s = 3. For s = 3 they gave data reduction rules to yield a kernel with 6k vertices for Small Cycle

Transversal on general graphs and an 11k/3 kernel on planar graphs. The proof by Brügmann
et al. [10] for the NP-completeness of Small Cycle Transversal on planar graphs when s = 3
can be generalized to prove the NP-completeness of Small Cycle Transversal on planar graphs
for any fixed s ≥ 3 [26].

A multitude of problems have been shown to admit linear kernels on planar graphs using the so
called region decomposition technique, which was first developed by Alber et al. [1] and was later
generalized by Guo and Niedermeier [18]. All these previous results have recently been subsumed
into a unifying meta-kernelization framework by Bodlaender et al. [7], which can be informally
stated as follows: If a parameterized problem is quasi-compact and has finite integer index then it
admits a linear kernel on graphs of bounded genus. Bodlaender et al. [7] proved that the problems
known to have linear kernels from the previous results all satisfy strong monotonicity [7], which is
a sufficient condition of finite integer index. This result has recently been extended by Fomin et
al. [14] to show that every minor bidimensional problem that satisfies a separation property and
has finite integer index admits a linear kernel for graphs that exclude a fixed graph as a minor.
Even though Small Cycle Transversal is not strongly monotone, it is not difficult to prove
that it has finite integer index.

Proposition 1.1 (by an anonymous reviewer). Small Cycle Transversal has finite integer
index

2

Proof. For a t-boundaried graph G with boundary X let the signature of G be a function f , that
given a metric on X (i.e a set of at most t2 integers describing the distances between each pair of
nodes in X) outputs an integer k, which is the smallest number of edges that need to be removed
from G such that (1) the remaining graph has no small cycles and (2) the distance between any
two nodes in X is at least the number specified in the metric.

Observe that to capture the properties of G, we only need to consider metrics with distances
up to s + 1 (since larger distances do not matter for small cycles). Also observe the following: for
any metric M on X, let M ′ be a metric where all distances ≤ ⌊s/2⌋ in M are replaced by ⌊s/2⌋+1
in M ′. Then f(M ′) ≤ f(M) + t2. This is because in a graph without small cycles there is at most
one path of length ≤ ⌊s/2⌋ between any pair of vertices.

Also, notice that if G1 and G2 are t-boundaried, both exclude small cycles and both satisfy
that the distance between any two boundary vertices is more than ⌊s/2⌋, then G1 ⊕ G2 excludes
small cycles, where ⊕ is the gluing operation [7]. Thus, if we let fmin be f(M1) where M1 is the
metric with 1’s everywhere, then for any metric M with f(M) > fmin + 2t2, we can just set f(M)
to infinity instead, because the corresponding partial solution (in G) will never be used to make an
optimal solution (instead one will make the distances between the X-vertices both in G and the
graph glued onto G greater than ⌊s/2⌋).

Now, fixing a metric M , any two graphs G1 and G2 with functions f1 and f2 such that f1(M) =
f2(M) + c, where c is a constant (assuming ∞+ c =∞), belong in the same class of the canonical
equivalence relation. It is easy to see now that the number of different classes under all metrics is
bounded by roughly st2. So the problem has finite integer index.

Since Small Cycle Transversal is also quasi-compact, by the meta-kernelization theo-
rem [7], we know that Small Cycle Transversal has a kernel of size linear in k on graphs of
bounded genus. However, the size of the kernel could be superpolynomial in s.

The main contribution of this paper is a kernelization algorithm that computes a problem kernel
of size 36s3k for Small Cycle Transversal on planar graphs, which is a significant improvement
in terms of s over the kernel size obtained under the meta-kernelization framework by Bodlaender
et al. [7].

In order to obtain this kernel, we extend the region decomposition technique of Alber et al. [1].
We propose an enhanced region decomposition technique, in which the region decomposition is
based on a special set of shortest paths called “witness-paths”. This technique produces a unique
region decomposition of the graph, in which each region can be further decomposed into subregions.
At the subregion level, we are able to prove the “local property” that any small cycle involving a
vertex in the interior of a subregion must pass through the two ends of the subregion. This allows
us to design data reduction algorithms that reduce the size of each region to a constant and hence
yield a linear kernel.

The rest of the paper is organized as follows. In Section 2 we give the necessary definitions
and background. Section 3 contains several structural results that will be used in the design and
analysis of the kernelization algorithm. Section 4 contains the kernelization algorithm and the proof
of its correctness. In Section 5, we show that the size of the kernel produced by our algorithm is
36s3k.

3

2 Preliminaries

Fix an undirected simple plane graph G = (V,E). A walk in G is a sequence W = v0v1 . . . vl

of vertices such that vi−1 and vi are adjacent in G, 1 ≤ i ≤ l.
←−
W = vlvl−1 . . . v0 denotes the

reversal of W . We refer to the vertex set of W as V (W) = {v0, . . . , vl} and the edge set of W as
E(W) = {(v0, v1), . . . , (vl−1, vl)}. If v0 = x and vl = y, we say that W connects x to y, and refer to
W as an xy-walk, denoted by W (xy). The vertices x and y are called the ends (or the end points)
of the walk, x being its initial vertex and y being its terminal vertex, and the vertices v1, . . . , vl−1

are its internal vertices. The length of W , denoted by |W |, is the number of edges in W . If u, v
are two vertices in W and u precedes v in W , then we write u ≺W v and call the subsequence of
W starting with u and ending with v the subwalk of W from u to v, denoted by W (uv). If w is an
internal vertex of W (uv), we sometimes refer to W (uv) as W (uwv) to signify that W (uv) contains
w. For notational simplicity, we may also refer to W (uv) as W (uev) if W (uv) contains an edge e.
Let W1 = u0 . . . ul and W2 = v0 . . . vm be two walks. If ul = v0, then we can apply a concatenation
operation ◦ to form a new walk W = W1 ◦W2 = u0 . . . ul(v0) . . . vm.

A simple path is a walk in which all vertices are distinct. All paths referred to in this paper are
assumed to be simple. A closed walk is one whose initial vertex and terminal vertex are identical.
A cycle is a closed walk that has no other repeated vertices than the initial and terminal vertices.
The notations defined above on walks extend naturally to paths and cycles.

Let W = {W1, . . . ,Wl} be a set of walks in G. The subgraph of G defined by W is GW =
(V (W1)∪ . . .∪ V (Wl), E(W1)∪ . . .∪E(Wl)). We say that W contains a cycle C if GW contains C.
Note that |C| ≤ |W1|+ . . . + |Wl|.

Let C be a cycle. Let e be an edge in C and u, v be two different vertices in C, where u precedes
e and v succeeds e. We denote by C(uev) the part of C between u and v that contains e and by
C(veu) the part of C between v and u that does not contain e. C(uev) and C(veu) are paths
between u and v.

The following propositions are easy to verify. For completeness, their proofs are included in the
Appendix.

Proposition 2.1. Let W be a closed walk. If an edge e occurs only once in W , then W contains
a cycle C and e is in C.

Proof. We proceed by an induction on the length l of W . Since G is simple and e occurs only once
in W , the length of W is at least three.

If W has length three, it is a triangle containing e. For the inductive step, let W = v0v1 . . . vl

where l > 3 and v0 = vl. If W contains no other repeated vertices than v0 and vl, then W is a cycle
and we are done. Suppose that vi = vj, i < j and {i, j} 6= {0, l}. Consider the walks W1 = vi . . . vj

and W2 = W (v0vi) ◦W (vjvl). Since |W1|, |W2| < |W | and one of them must contain e, by the
inductive hypothesis, W1 or W2 (and hence W) must contain a cycle that involves e.

Proposition 2.2. If no edge occurs immediately after itself in a walk W , then either W contains
a cycle, or W is a path.

Proof. Since no edge occurs immediately after itself in W , if W is not simple, then W contains a
closed subwalk W ′. By [16, Proposition 7.5.3] every closed walk where no edge occurs immediately
after itself contains a cycle.

Proposition 2.3. Let P1(uv) and P2(uv) be two different paths between u and v. Then the walk

W = P1(uv) ◦
←−
P2(uv) contains a cycle.

4

Proof. Since P1(uv) and P2(uv) are different, there must be an edge e that occurs only once in W .
By Proposition 2.1, W contains a cycle.

Let P = u0u1 . . . ul and Q = v0v1 . . . vm be two paths in G. We say that P and Q cross at a
vertex w if w = ui = vj , 0 < i < l, 0 < j < m and the subpaths P (u0w), P (wul), Q(v0w) and
Q(wvm) are all distinct. Note that our definition of two paths crossing not only includes crossing
in the topological sense, i.e., the first path crosses from one side of the second path to the other
side of the second path, but also includes the case where the paths merge at a vertex and diverge
at a later vertex without changing sides.

Lemma 2.4. Let P (uv) and Q(uv) be two paths between u and v. Suppose that |P |, |Q| ≤ s − 1.
Then the following statements are true:

1. If P and Q cross at a vertex w, then P ∪Q contains a small cycle.

2. If there are two vertices r, t such that r ≺P t and t ≺Q r, then P ∪Q contains a small cycle.

3. If there exists an edge e = (r, t) such that r is in P and t is in Q, but e is neither in P nor
in Q, then P ∪Q ∪ e contains a small cycle.

Proof. For Statement 1, suppose that P and Q cross at a vertex w. Without loss of generality,
suppose that P (uw) is the shortest among P (uw), P (wv), Q(uw), and Q(wv). Since P (uw) and
Q(uw) are distinct, by Proposition 2.3, they contain a cycle. Since |P (uw)|+ |Q(uw)| ≤ |Q(uw)|+
|Q(wv)| ≤ s− 1, the cycle is small.

For Statement 2, observe that P (ur) 6= Q(utr) because Q(utr) contains t and P (ur) doesn’t.
Similarly P (rtv) 6= Q(rv). Since u and v are different, P (ur), P (rtv), Q(utr), and Q(rv) are all
distinct which implies that P and Q cross at r. By Condition 1, P ∪Q contains a small cycle.

For Statement 3, without loss of generality, suppose that P (ur) is the shortest among P (ur)

P (rv), Q(ut) and Q(tv). W = P (ur) ◦ e ◦
←−
Q(ut) is a closed walk in which e occurs only once.

By Proposition 2.1, W contains a cycle that is small because |W | = |P (ur)| + |e| + |Q(ut)| ≤
|Q(ut)|+ 1 + |Q(tv)| ≤ s.

For simplicity, we impose the condition that between any two vertices there is a unique shortest
path. This condition can be easily achieved by a standard perturbation technique (see for exam-
ple [4]): First assign a unit weight to each edge in G and then slightly perturb the edge weights such
that no two paths have the same weight and that shorter paths have lower weights than longer
paths. Note that the notion of path weight should not be confused with the previously defined
notion of path length (the number of edges in a path). For this reason, we call a path of lower
weight “lighter” instead of “shorter”.

3 The Structural Results

In this section we present some structural results on witness-paths that will be used in both Section 4
and Section 5 that follow.

Definition 3.1. Let X be a set of vertices in G. A vertex w /∈ X is said to be restricted by X
if w is contained in at least one small cycle and every small cycle containing w contains at least
two vertices in X. Let Y be a set of vertices restricted by X. For every vertex w ∈ Y , define
the witness-path of w with respect to X, denoted by PX

w , to be the lightest path among all paths
containing w with both ends in X. Since w is restricted by X, the witness-path PX

w exists, is

5

unique, and |PX
w | ≤ s− 1. Let PX

Y =
S

w∈Y PX
w . We say that the set PX

Y is “nice” if no two paths
in PX

Y induce a small cycle.

Lemma 3.2. If PX
Y is “nice”, then no two paths P,Q in PX

Y cross.

Proof. Let P = P (uwv) and Q = Q(xzy) be the witness-paths of w and z, respectively. Suppose
that P and Q cross at a vertex t. By definition of crossing, t /∈ {u, v, x, y}. P (ut), P (tv), Q(xt)
and Q(ty) are distinct paths. Without loss of generality, assume that P (ut) is the lightest among

the four. If u = x, then W = P (ut) ◦
←−
Q(xt) is a closed walk, and by Proposition 2.3, W contains

a cycle that is small because |P (ut)|+ |Q(xt)| ≤ |Q(xt)|+ |Q(ty)| ≤ s− 1. Similarly, if u = y then
P (ut) ◦Q(ty) contains a small cycle. Now assume that u /∈ {x, y}.

Let u′ be the vertex closest to u in P that is shared with Q. u′ is contained in P (ut). If P (uu′)

is lighter than both Q(xu′) and Q(u′y) then either P (uu′) ◦
←−
Q(xu′) or P (uu′) ◦Q(u′y) is a simple

path containing z and is lighter than Q, a contradiction to the fact that Q is a witness-path of
z. Otherwise, suppose that Q(xu′) is lighter than P (uu′), then |Q(xu′)| ≤ |P (uu′)| ≤ |P (ut)| ≤
|Q(xt)|. This means that Q(xt) contains u′. Since Q(xu′) is lighter than P (uu′), if P (u′t) = Q(u′t)
then Q(xt) = Q(xu′) ◦ Q(u′t) would be lighter than P (ut) = P (uu′) ◦ P (u′t), a contradiction
to the fact that P (ut) is lighter than Q(xt). This implies that P (u′t) and Q(u′t) are different.

By Proposition 2.3, P (u′t) ◦
←−
Q(u′t) contains a cycle that is small because |P (u′t)| + |Q(u′t)| ≤

|P (ut)|+ |Q(xt)| ≤ |Q(xt)|+ |Q(ty)| ≤ s− 1, a contradiction to the fact that PX
Y is “nice”. Similar

arguments apply when Q(u′y) is lighter than P (uu′).

Definition 3.3. If PX
Y is “nice”, then define PX

Y (u, v) to be the subset of PX
Y that consists of

witness-paths whose ends are {u, v}, and define an auxiliary directed graph DX
Y (u, v) to be the

subgraph of G defined by PX
Y (u, v), in which each edge is directed in the same direction as it

appears in a path P in PX
Y (u, v) with start vertex u.

Each edge in DX
Y (u, v) will receive a unique direction because by Statement 2 of Lemma 2.4,

each edge appears in the same direction in all paths in PX
Y (u, v). The following lemma indicates

that every directed path in DX
Y (u, v) is contained in a witness-path.

Lemma 3.4. Let Q = v0 . . . vl be a directed path in DX
Y (u, v). Then there exists a path P ∈ PX

Y (u, v)
containing Q.

Proof. Proceed by an induction on the length of Q. If |Q| = 1, the statement is obviously true.
Consider the case when |Q| > 1. Let Q′ = v0 . . . vl−1. By the inductive hypothesis, there are paths
P1, P2 ∈ P

X
Y (u, v), such that P1 contains Q′, and P2 contains (vl−1, vl). If P1 contains (vl−1, vl)

or P2 contains Q′, then we are done. Otherwise note that vl−1 6= {u, v} because vl−1 has both
incoming and outgoing edges in DX

Y (u, v). Therefore P1 and P2 cannot have vl−1 as an end vertex.
This implies that P1 and P2 cross at vl−1, a contradiction to Lemma 3.2.

Corollary 3.5. DX
Y (u, v) is a directed acyclic graph.

Proof. Suppose DX
Y (u, v) contains a directed cycle Q = v0 . . . vl, where vl = v0. Let Q′ = v0 . . . vl−1.

By Lemma 3.4 there are paths P1, P2 ∈ P
X
Y (u, v), such that P1 contains Q′, and P2 contains

(vl−1, vl). Since P1 and P2 do not contain cycles, P1 cannot contain (vl−1, vl) and P2 cannot
contain Q′. Note that vl−1 6= {u, v} because vl−1 has both incoming and outgoing edges in DX

Y (u, v).
Therefore P1 and P2 cannot have vl−1 as an end vertex. This implies that P1 and P2 cross at vl−1,
a contradiction to Lemma 3.2.

6

4 A Kernelization Algorithm

In this section, we will present a kernelization algorithm for Small Cycle Transversal that
runs in polynomial time. We will show in the next section that the algorithm produces a linear size
kernel.

Let u, v be two vertices in G. We say that a vertex w /∈ {u, v} is locked by {u, v} if w is
restricted by {u, v}, and the witness-path of w with respect to {u, v} has length greater than s/2,

i.e., |P
{u,v}
w | > s/2. We say that an edge e is locked by {u, v} if at least one of its ends is locked

by {u, v}. A path P (xy) between x and y is called a locked path of {u, v} if |P (xy)| ≥ 2 and every
internal vertex w in P (xy) is locked by {u, v}. A locked path is said to be maximal if x, y are not
locked by {u, v}.

Let X = {u, v} and Y be the set of vertices locked by {u, v}. Recall that by Definition 3.1,

P
{u,v}
Y =

S
w∈Y P

{u,v}
w , where P

{u,v}
w is the witness-path of w with respect to {u, v}. Since w is

locked by {u, v}, we have |P
{u,v}
w | > s/2. Also recall that the length of any witness-path is at most

s− 1, and thus |P
{u,v}
w | ≤ s− 1. Also define the auxiliary directed graph D

{u,v}
Y based on P

{u,v}
Y as

in Definition 3.3.

Lemma 4.1. P
{u,v}
Y is “nice”.

Proof. Suppose that two paths P (uv), Q(uv) ∈ P
{u,v}
Y contain a small cycle C.

If C contains a vertex w ∈ Y , then C must contain u, v since w is locked by {u, v}. This means

that C = P (uv) ◦
←−
Q(uv). But since |P (uv)|, |Q(uv)| > s/2, C cannot be small. Thus any small

cycle contained in P,Q does not contain a vertex in Y .
C can be partitioned into alternating subpaths of P and Q1: P1, . . . , Pj and Q1, . . . , Qj where

Pi−1 precedes Pi in P and Qi−1 precedes Qi in Q, 2 ≤ i ≤ j. Let PC = {P1, . . . , Pj} and
QC = {Q1, . . . , Qj}. Without loss of generality, assume that the total weight of the paths in PC is
more than the total weight of the paths in QC . For 1 ≤ i ≤ j, let ri and ti be the starting vertex
and the terminal vertex of Pi, respectively. Therefore Pi connects ri to ti. The subgraph defined
by P −PC consists of disconnected subpaths P (ur1), P (t1r2), . . . , P (tjv).

Construct an auxiliary graph G′ as follows: V (G′) = {r1, t1, . . . , rj , tj}; add a red edge between
ri and ti, 1 ≤ i ≤ j, to represent Pi; add a blue edge between ti and ri+1, 1 ≤ i ≤ j − 1, to present
P (tiri+1); add an additional blue edge between tj and r1 to represent P (tjv) ∪ P (ur1); finally for
every two vertices in V (G′) that are connected by a path Qi ∈ QC , add a black edge between them
to represent Qi. The set of red edges in G′ is a perfect matching. The same is true for the set of
blue edges and the set of black edges. The union of blue and black edges is a set of cycles in G′,
each consisting of alternating blue and black edges2. One of the cycles, denoted by C ′, contains the
edge (tj , r1). C ′ represents a walk W from u to v in the subgraph defined by P −PC + QC . The
weight of W is less than that of P because the total weight of paths in PC is more than the total
weight of paths in QC . Suppose that P is a witness-path of w ∈ Y . Note that w is not contained
in C and hence is not contained in PC or in QC . Then w is contained in W . If a subwalk W (r, r)
of W is a cycle then the cycle must be small and as such, cannot contain w. This means that after
removing the cycle W (r, r), W still contains w. If a vertex z occurs immediately after itself in W

1Note that Pi or Qi, 1 ≤ i ≤ j may not appear in the same order or in the same direction in C as in P or in Q.
If there are more than one way to partition C, fix one.

2The union of two perfect matchings in a graph forms a set of cycles. In G′, the union of the red and blue edges
corresponds to P , and the union of red and black edges corresponds to C.

7

(i.e., W = W (uzzv)), then z is contained in QC and thus z 6= w. Similarly, after removing the
two consecutive occurrences of z, W still contains w. Repeat the above two operations until W is
reduced to a simple path P ′ between u and v. P ′ contains w. P ′ is at least as light as W and hence
is lighter than P . This is a contradiction to the fact that P is a witness-path of w.

This proves that P
{u,v}
Y is “nice”.

Lemma 4.2. Let u, v be two vertices in G. If G has a k-transversal set, then G has a k-transversal
set that does not contain any edge locked by {u, v}.

Proof. Let S be a k-transversal set of G. We will show that if S contains an edge e locked by
{u, v}, then there is an edge e′ not locked by {u, v} such that after replacing e by e′, S − e + e′ is
still a transversal set of G. Recursively applying this replacement, we will arrive at a transversal
set that does not contain any edge locked by {u, v}.

Suppose that C is a small cycle not intersected by S − e. Since C contains e and e is locked

by {u, v}, C contains u and v. Because |P
{u,v}
w | > s/2, where w is an end vertex of e, we have

|C(uev)| > s/2 and |C(veu)| ≤ s− |C(uev)| < s/2. Let e′ be an edge in C(veu). Since |C(veu)| <
s/2, e′ is not locked by {u, v}. We claim that S − e + e′ is a transversal set.

Suppose that this is not true. Let C ′ be a small cycle not intersected by S − e + e′. C ′

contains e but not e′. By the above argument, |C ′(veu)| < s/2. Now consider the closed walk

W = C(veu)◦
←−
C ′(veu). Since both C(veu) and C ′(veu) do not contain e and both are not intersected

by S − e, W is not intersected by S. The edge e′ appears only once in W because C(veu) contains
e′ and C ′(veu) does not. By Proposition 2.1, W contains a cycle and the cycle is small because
|W | = |C(veu)| + |C ′(veu)| < s/2 + s/2 = s. Since W is not intersected by S, this small cycle is
not intersected by S, a contradiction to the fact that S is a transversal set.

The above lemma shows that there is a k-transversal set that does not contain the locked edges
and hence the locked edges can be pruned by the following kernelization algorithm, which consists
of repeatedly applying the procedure Reduce(G) until the number of vertices in G cannot be
further reduced.

Theorem 4.3. The kernelization algorithm runs in O(s2n4) time.

Proof. Step 1 of Reduce(G) takes O(n2) time. Step 2 takes O(n3) time. Observe that for any
vertex w in G, w ∈ Bv for no more than s different v’s because all v’s satisfying w ∈ Bv are
contained in every small cycle containing w. This means that B =

S
v Bv has size at most sn.

With this observation in mind, we will analyze the total running time of each sub-step in step 3 by
summing the running time over all pairs {u, v}.

The total running time of step 3.1 is O(n2 + |B|) = O(n2). By the above observation, for every
vertex w in G w ∈ Zu,v for no more than s2 different pairs {u, v}, and hence the set Z =

S
u,v Zu,v

has size at most s2n. Each witness-path can be computed in O(n2) time, and the number of
witness-paths computed is no more than |Z| ≤ s2n. Therefore the total running time of step 3.2

is O(s2n3). Let P =
S

u,v P
{u,v}
Y . The cardinality of P is at most s2n, and the number of vertices

in P is at most s3n because each witness-path has length at most s − 1. This implies that the
number of vertices in P is at most s3n. Thus selecting the lightest paths and removing vertices not
in “selected” paths takes time linear to the number of vertices in P, which is O(s3n). Summing
over all pairs {u, v}, the total running time of step 3.3 and step 3.4 is O(n2 + s3n).

8

Algorithm: Reduce(G)

1. Find a set B of vertices in G that are not contained in any small cycles; we call such vertices baseless.
Remove B from G. Running a breadth-first search starting from a vertex v can determine whether v is
baseless.

2. For every vertex v in G, find a set Bv of vertices that are baseless in G − v.

3. For every pair of vertices {u, v}, do the following:

3.1. Let Zu,v = Bu ∩ Bv. Note that Zu,v is the set of vertices that are restricted by {u, v}.

3.2. For every w ∈ Zu,v, compute the witness-path P
{u,v}
w . If |P

{u,v}
w | > s/2, then w is locked by {u, v}; in

this case, add w to the set Y of vertices locked by {u, v} and add P
{u,v}
w to the set P

{u,v}
Y

. For every

w, the witness-path P
{u,v}
w can be computed in O(n2) time using a min-cost max-flow algorithm [21,

Lemma 3].

3.3. For every path P ∈ P
{u,v}
Y , if Q is a subpath of P and Q is a maximal locked path of {u, v}, then

add Q to P, where P is the set of maximal locked paths that are subpaths of paths in P
{u,v}
Y

. Group
the paths in P according to their end points. Mark the lightest one in each group as “selected”.

3.4. Remove all locked vertices in P
{u,v}
Y that are not contained in a “selected” path.

This proves that each application of Reduce(G) takes O(s2n3) time. By the end of an appli-
cation of Reduce(G) either the graph size is reduced or the kernelization algorithm terminates.
Therefore the total running time of the kernelization algorithm is O(s2n4).

Lemma 4.4. After Reduce(G) is applied, every remaining locked path P (st) in D
{u,v}
Y is contained

in a “selected” path.

Proof. Proceed by induction on the length of P . If |P | = 1, the statement is obviously true. Let
P = v1 . . . vl−1vl, and P ′ = v1 . . . vl−1. By the inductive hypothesis, let P1 be a “selected” path
containing P ′, and let P2 be a “selected” path containing (vl−1, vl). If P1 contains (vl−1, vl) or
P2 contains P ′ then we are done. Otherwise since vl−1 has both incoming and outgoing edges in

D
{u,v}
Y , vl−1 /∈ {u, v}. Therefore P1 and P2 cannot have vl−1 as an end vertex. This means that

P1 and P2 cross at vl−1. By Lemma 3.4, there are two paths in P
{u,v}
Y that contain P1 and P2,

respectively. They will also cross, a contradiction to Lemma 3.2.

Lemma 4.5. After Reduce(G) is applied, there is at most one locked path between any two vertices

in D
{u,v}
Y .

Proof. Let s, t be two vertices in D
{u,v}
Y . Suppose that there are two locked paths P and Q between

s and t. By Corollary 3.5, D
{u,v}
Y is a directed acyclic graph, P and Q must have the same direction.

Without loss of generality, assume that P (st) is lighter than Q(st). By Lemma 4.4, Q is contained
in a “selected” path Q′. Replacing Q(st) by P (st) in Q′ yield a path Q′′ lighter than Q′ and hence
Q′ should not be marked as “selected”, a contradiction.

Theorem 4.6. The procedure Reduce(G) is correct.

Proof. Let G′ be the subgraph of G obtained after Reduce(G) is applied. We will show that G has
a k-transversal set if and only if G′ has one. The only-if part is obvious because G′ is a subgraph
of G.

9

Now suppose that G′ has a k-transversal set S′. By Lemma 4.2, we can assume that S′ does
not contain any edge locked by {u, v}. Suppose that G has a small cycle C that is not intersected
by S′. C contains at least one edge e that was removed by Reduce(G). This means that e is
locked by {u, v} because only locked vertices are removed by Reduce(G) and the edges removed
along with the locked vertices are locked edges. Thus C contains u and v. Let x be the last vertex
preceding e in C(uev) that is not locked. Let y be the first vertex succeeding e in C(uev) that is
not locked. Then C(xey) is a maximal locked path. Since |C(xey)| ≤ s − 1, by Statement 2 of

Lemma 2.4, the edges in C(xey) appear in the same direction as in D
{u,v}
Y . This means that C(xey)

is a directed path in D
{u,v}
Y . By Lemma 3.4, C(xey) is a subpath of a path P ∈ P

{u,v}
Y . This means

that C(xey) ∈ P. There is a lightest path P ′ between x and y that is selected by Reduce(G).
Thus P ′ 6= C(xey) because e is removed by Reduce(G). P ′ ≤ |C(xey)| and P ′ is in G′.

Since P ′ and C(xey) are directed paths in D
{u,v}
Y , by Lemma 3.4, there are two paths in P

{u,v}
Y

that contain P ′ and C(xey), respectively. This means that P ′ and C(xey) do not contain a small

cycle because P
{u,v}
Y is “nice”. But C(yex) and C(xey) form a small cycle. Hence C(yex) 6= P ′

and |C(yex)| < |P ′| ≤ |C(xey)|. This means that |C(yex)| < s/2 because |C(yex)|+ |C(xey)| = s.
As a consequence, no vertex in C(yex) is locked and hence C(yex) is in G′. P ′ ∪C(yex) contains a
cycle and this cycle is small because |P ′|+ |C(yex)| ≤ |C(xey)|+ |C(yex)| ≤ s. This small cycle is
not intersected by S′ because C(yex) is not intersected by S′ and P ′, being a locked path, is also
not intersected by S′. Since both P ′ and C(yex) are in G′, we have a small cycle in G′ that is not
intersected by S′, a contradiction to the fact that S′ is a k-transversal set of G′.

5 A Linear Size Kernel

Let G be a plane graph in which the application of Reduce(G) does not further reduce its size.
In this case, we call G a reduced graph. Suppose that G has a transversal set S, where |S| ≤ k.
For simplicity, we assume that S is minimal, i.e, for any edge e ∈ S, S − e is not a transversal set.
Let X be the set of the end points of the edges in S and let Y = V (G) −X. Note that Y is the
set of vertices restricted by X. Recall that by Definition 3.1, PX

Y =
S

w∈Y PX
w , where PX

w is the
witness-path of w with respect to X, |PX

w | ≤ s− 1. If PX
w is a path between two vertices u, v ∈ X,

we say that w is (uniquely) witnessed by {u, v}. Since PX
Y does not contain any edge in S, no two

paths in it contain small cycles. This means that PX
Y is “nice”.

Definition 5.1. A region R(u, v) between two vertices u, v ∈ X is a closed subset of the plane
whose boundary is formed by two paths P,Q ∈ PX

Y (u, v) and whose interior is devoid of any vertex
in X. A region is maximal if there is no region R′(u, v)) R(u, v). A region decomposition of G is
a maximal set R of maximal regions between vertices in X, whose interiors are pairwise disjoint.

Lemma 5.2. Let w be a vertex in the interior of a region R(u, v). Then any witness-path containing
w is between u and v. Furthermore, w is witnessed by {u, v}.

Proof. Let Q(xwy) be a witness-path containing w, where x, y ∈ X and {x, y} 6= {u, v}. Since
Q connects w to a vertex outside of R(u, v), Q must cross the boundary of R(u, v) at a vertex
t /∈ {x, y}. Since Q has no vertices in X in its interior, t /∈ {u, v}. This implies that Q crosses a
witness-path on the boundary of R(u, v), a contradiction to the fact that witness-paths in PX

Y do
not cross.

In particular, w’s witness-path is between u and v, i.e. w is witnessed by {u, v}.

10

We say that two regions cross if their boundary paths cross.

Lemma 5.3. Two regions do not cross.

Proof. Since the boundaries of regions are witness-paths in PX
Y , they do not cross.

Corollary 5.4. The number of maximal regions in a region decomposition is at most 6k.

Proof. Create an auxiliary graph GR whose vertex set is X and each edge (u, v) in GR corresponds
to a maximal region between u and v. By [1, Lemma 5], GR has at most 6k edges, which implies
that the number of maximal regions is at most 6k.

Let PR be the set of witness-paths in the region R(u, v). PR ⊆ P
X
Y (u, v). Let DR be the

subgraph of the auxiliary directed graph DX
Y (u, v) defined in Definition 3.3, whose edges correspond

to elements of PR. By Corollary 3.5, DX
Y (u, v) is a directed acyclic graph and so isDR. By Statement

3 of Lemma 2.4, all edges in R(u, v) are in DR because otherwise, there is a small cycle that is not
intersected.

Corollary 5.5. Let P be an directed path in D(u, v), then there is a witness-path that contains P .

Proof. Implied by Lemma 3.4.

Lemma 5.6. Let P be a path from u to v in R(u, v). If |P | ≤ s− 1, then P is a witness-path.

Proof. By Statement 2 of Lemma 2.4, each edge in P receives a direction in D(u, v) that is consistent
with the sequence of P . This means that P is a directed path in D(u, v). By Corollary 5.5, P is a
witness-path because the end points of P are in X.

Definition 5.7. Let x, y be two vertices on the boundary of R(u, v). Define a subregion Rsub(x, y)
to be a closed subset of R(u, v) whose boundary is formed by two paths P (xy), Q(xy), which are
subpaths of P,Q ∈ PR between u and v. A subregion is maximal if there is no subregion Rsub

1 (x, y))

Rsub(x, y).

Note that a subregion Rsub(x, y) lies entirely in the interior of R(u, v) except for x and y. Since
paths in PR do not cross, similar to Lemma 5.3 two subregions do not cross, although they can
share vertices or edges on the boundaries.

Corollary 5.8. Two subregions do not cross.

The following proposition is needed for the proofs that follow.

Proposition 5.9. Let H be a plane simple graph. Let C be a closed subset of the plane whose
boundary is a cycle in H and whose interior is devoid of any vertex of H. Let E1 be the set of edges
of H in the interior of C. Let E2 be the set of edges on the boundary of C. Then |E1| ≤ |E2| − 3.

Proof. Let F be the set of faces inside C. Since each edge in E2 appears in one face in F while each
edge in E1 appears in two faces in F , we have 3|F | ≤ 2|E1| + |E2|. Also observe that if |E1| = 0
then |F | = 1 and each additional edge in E1 increases |F | by 1. Hence |F | = |E1|+ 1. Combining
this with the above inequality, we have |E1| ≤ |E2| − 3.

Lemma 5.10. There are at most 2s− 3 subregions in a region R(u, v).

11

Proof. First note that if x, y are two adjacent vertices on the boundary of R(u, v), then there is
no subregion between x and y because otherwise the edge (x, y) with a path of length at most
s− 1 in the subregion between x and y form a small cycle that is not intersected. There is at most
one maximal subregion between a pair of non-adjacent vertices on the boundary of R(u, v). If we
replace every such pair of vertices on the boundary of R(u, v) by an edge, then by Proposition 5.9,
there are at most 2s − 3 such edges. This implies that there are at most 2s − 3 subregions in
R(u, v).

The following lemma shows that the subregions satisfy the local property mentioned in the
introduction.

Lemma 5.11. Let Rsub(x, y) be a subregion between x, y in a region R(u, v). Then every vertex in
the interior of Rsub(x, y) is restricted by {x, y}.

Proof. Let w be a vertex in the interior of Rsub(x, y). Let C be a small cycle containing w. We
will show that C contains both x and y.

Let r be the last vertex preceding w in C that is in X. Let t be the first vertex succeeding w in
C that is in X. If {r, t} = {u, v}, then C(uwv) is a path of length at most s−1, and by Lemma 5.6,
C(uwv) is a witness-path. Since C(uwv) connects u to v passing through w which is in the interior
of Rsub(x, y), and C(uwv) cannot cross the boundary of Rsub(x, y), C(uev) must contain both x
and y.

Next consider the case where r, t, u, v are all distinct. Let C(awb) be the maximal subpath
of C(rwt) that contains w and lies entirely in the interior of R(u, v). Let c be the vertex that
immediately precedes a in C(rwt). Let d be the vertex that immediately succeeds b in C(rwt).
Note that c and d are shared by C and the boundary of R(u, v) (see Figure 1(a) for an illustration).
Since a, b are in the interior of R(u, v), by Lemma 5.2 they are witnessed by {u, v}. Let P1(uav)
be the witness-path of a and P2(ubv) be the witness-path of b. Let P3(ucv) and P4(udv) be the
witness-paths on the boundary of R(u, v) that contain c and d, respectively. Note that P3 and P4

may be identical.

u v

c
a

b

d

w

b

b

b

b

r

t

Rsub(x, y)

R(u, v)

C

(a)

u v

x

y
Rsub(x, y)

R(u, v)

R∗

1

R∗

2
P

(b)

Figure 1: (a) An illustration of a cycle C passing through a vertex w in the interior of a subregion
Rsub(x, y). (b) An illustration of a subregion Rsub(x, y) in a region R(u, v).

By Statement 3 of Lemma 2.4, one of P1(ua) and P1(av) (not both) must contain (c, a). Without
loss of generality, assume that P1(ua) contains (c, a). Then P1(av) does not contain (a, c).

We claim that in this case |P1(ua)| ≤ |C(rca)|. If |P1(ua)| > |C(rca)|, consider the walk
W1 = C(rca)◦P1(av). Since no edge occurs immediately after itself in W1, by Proposition 2.2, either

12

W1 contains a cycle or W1 is a path. Since |W1| = |C(rca)|+ |P1(av)| < |P1(ua)|+ |P1(av)| ≤ s−1,
if W1 contains a cycle then it is a small cycle that is not intersected; if W1 is a simple path then a
should be witnessed by {r, v} instead of {u, v} because |W1(rav)| < |P1(uav)|.

Therefore, P1(ua) contains (c, a) and |P1(ua)| ≤ |C(rca)|. Symmetrically, at least one of P2(ub)
and P2(bv) must contain (d, b) and has length less than or equal to C(bdt).

If P2(ub) contains (d, b) and |P2(ub)| ≤ |C(bdt)|, then consider the walk W2 = P1(ua) ◦ C(ab) ◦
←−
P2(ub). W2 is a closed walk and no edge occurs immediately after itself in W2 because P1(ua)
contains (c, a), P2(ub) contains (d, b), and C(ab) contains neither. By Proposition 2.2, W2 contains
a cycle. Since |W2| = |P1(ua)|+ |C(ab)|+ |P2(ub)| ≤ |C(rca)|+ |C(ab)|+ |C(bdt)| ≤ s−1, the cycle
contained in W2 is a small cycle that is not intersected. Thus this case is impossible.

If P3(bv) contains (d, b) and |P3(bv)| ≤ |C(bdt)|, consider the walk W3 = P2(ua)◦C(ab)◦P3(bv).
No edge occurs immediately after itself in W3 because P1(ua) contains (c, a), P2(bv) contains (d, b),
and C(ab) contains neither. By Proposition 2.2, either W3 contains a cycle or W3 is a path. Since
|W3| = |P2(ua)|+ |C(ab)|+ |P3(bv)| ≤ |C(rca)|+ |C(ab)|+ |C(bdt)| ≤ s− 1, W3 does not contain a
cycle because any cycle contained in W3 is a small cycle that is not intersected. So W3 is a simple
path. Since |W3| ≤ s − 1, by Lemma 5.6, W3 is a witness-path in R(u, v). Now W3 connects u to
v passing through w which is in the interior of Rsub(x, y). Also recall that Rsub(x, y) lies entirely
in the interior of R(u, v) except for x and y. We conclude that {x, y} = {c, d} because otherwise
W3(awb) must cross the boundary of Rsub(x, y) but witness-paths in PX

Y do not cross. Thus C
contains both x and y.

A similar but simpler argument applies to the case where {u, v} and {r, t} share only one
member.

Lemma 5.12. A subregion Rsub(x, y) contains no more than 3s2 − 5s vertices in its interior.

Proof. In the interior of Rsub(x, y), all vertices are restricted by {x, y}. Any vertex w in the interior
of Rsub(x, y) that is not locked by {x, y} is contained in a path P between x and y of length at
most s/2. All such vertices that are not locked by {x, y} must appear in a single path P because
otherwise there is a small cycle in Rsub(x, y) that is not intersected. The path P , if it exists,
divides Rsub(x, y) into two smaller regions R∗

1 and R∗
2, each with 3s/2 vertices on its boundary (see

Figure 1(b) for an illustration). In the interior of each smaller region R∗
i , i ∈ {1, 2}, all vertices

are locked by {x, y} and they are contained in locked paths between pairs of non-adjacent vertices
on the boundary of R∗

i (if such a path exists between two adjacent vertices on the boundary of
R∗

i , then they form a small cycle that is not intersected). By Proposition 5.9, there are at most
3s/2− 3 pairs of vertices on the boundary of R∗

i that are connected by a locked path inside R∗
i . By

Lemma 4.5, there is at most one locked path of length at most s − 1 between each of these pairs.
Thus R∗

i contains at most (3s/2− 3)(s− 1) vertices in its interior, and Rsub(x, y) contains no more
than 2(3s/2− 3)(s− 1) + s/2 ≤ 3s2− 5s vertices in its interior. By a similar argument, if the path
P does not exist in Rsub(x, y), there are at most (2s − 3)(s − 1) ≤ 3s2 − 5s vertices in its interior,
for s ≥ 3.

Theorem 5.13. Let G be a reduced graph. Then G has at most 36s3k vertices.

Proof. Consider the region R(u, v). By Lemma 5.10, there are at most 2s−3 subregions in R(u, v),
each of which has at most 3s2 − 5s vertices in its interior. The boundaries of the subregions in
R(u, v) have at most (2s − 2)(2s − 3) vertices. The boundary of R(u, v) has at most 2s vertices.
Hence there are at most (2s− 3)(3s2 − 5s) + (2s− 2)(2s− 3) + 2s ≤ 6s3 − 1 vertices in R(u, v) for

13

s ≥ 3. By Corollary 5.4, the number of maximal regions in a region decomposition is at most 6k.
Since every vertex not in X belongs to a maximal region and the set X has size 2k, the problem
kernel has size at most (6s3 − 1) · 6k + 2k ≤ 36s3k, which is linear in k.

References

[1] J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for dominating set. J.
ACM, 51(3):363–384, 2004.

[2] N. Alon, B. Bollobás, M. Krivelevich, and B. Sudakov. Maximum cuts and judicious partitions in graphs
without short cycles. J. Comb. Theory Ser. B, 88(2):329–346, 2003.

[3] M. Bayati, A. Montanari, and A. Saberi. Generating random graphs with large girth. In SODA’09,
pages 566–575, 2009.

[4] A. Bley, M. Grötschel, and R. Wessly. Design of broadband virtual private networks: Model and
heuristics for the B-WiN. In Robust communication networks: Interconnection and survivability, v.53
of DIMACS Series, pages 1–16. AMS, 1998.

[5] H. L. Bodlaender. A cubic kernel for feedback vertex set. In STACS’07 (LNCS 4393), pages 320–331,
2007.

[6] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial
kernels. In ICALP’08 (LNCS 5126), pages 563–574, 2008.

[7] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M. Thilikos. (meta)
kernelization. CoRR, abs/0904.0727, 2009. in FOCS 2009.

[8] H. L. Bodlaender and E. Penninkx. A linear kernel for planar feedback vertex set. In IWPEC’08 (LNCS
5018), pages 160–171, 2008.

[9] O. V. Borodin, A. V. Kostochka, N. N. Sheikh, and G. Yu. Decomposing a planar graph with girth 9
into a forest and a matching. European Journal of Combinatorics, 29(5):1235–1241, 2008.

[10] D. Brügmann, C. Komusiewicz, and H. Moser. On generating triangle-free graphs. Electronic Notes in
Discrete Mathematics, 32:51–58, 2009.

[11] K. Burrage, V. Estivill-Castro, M. R. Fellows, M. A. Langston, S. Mac, and F. A. Rosamond. The
undirected feedback vertex set problem has a poly(k) kernel. In IWPEC’06 (LNCS 4169), pages 192–
202, 2006.

[12] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-
time hierarchy collapses. In STOC’10.

[13] R. Downey and M. Fellows. Parameterized Complexity. Springer, 1999.

[14] F. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2010).

[15] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP. In
STOC’08, pages 133–142, 2008.

[16] J. L. Gross and J. Yellen. Graph Theory and its Applications. 2005.

[17] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. SIGACT News,
38(1):31–45, 2007.

[18] J. Guo and R. Niedermeier. Linear problem kernels for NP-hard problems on planar graphs. In
ICALP’07 (LNCS 4596), pages 375–386, 2007.

14

[19] S. Hoory. The size of bipartite graphs with a given girth. J. Comb. Theory Ser. B, 86(2):215–220, 2002.

[20] G. Kortsarz, M. Langberg, and Z. Nutov. Approximating maximum subgraphs without short cycles. In
APPROX’08 / RANDOM’08 (LNCS 5171), pages 118–131, 2008.

[21] I. Krasikov and S. D. Noble. Finding next-to-shortest paths in a graph. Inf. Process. Lett., 92(3):117–
119, 2004.

[22] P. Pevzner, H. Tang, and G. Tesler. De novo repeat classification and fragment assembly. Genome
Research, 14(9):1786–1796, 2004.

[23] V. Raman and S. Saurabh. Short cycles make W-hard problems hard: FPT algorithms for W-hard
problems in graphs with no short cycles. Algorithmica, 52(2):203–225, 2008.

[24] S. Thomassé. A quadratic kernel for feedback vertex set. In SODA’09, pages 115–119, 2009.

[25] C. Timmons. Star coloring high girth planar graphs. The electronic journal of combinatorics, 15(R124),
2008.

[26] G. Xia and Y. Zhang. Kernelization for cycle transversal problems. In AAIM, pages 293–303, 2010.

[27] M. Yannakakis. Node-and edge-deletion NP-complete problems. In STOC’78, pages 253–264, 1978.

[28] J. Zhu and Y. Bu. Equitable list colorings of planar graphs without short cycles. Theor. Comput. Sci.,
407(1-3):21–28, 2008.

15

