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Abstract

We describe a new distributed and strictly-localized approach for constructing bounded
degree planar spanners of unit disk graphs. Our results improve the best results in the literature
in terms of the stretch factor and the degree bound, for both geometric and power spanners.

1 Introduction

Given a set of points embedded on the Euclidean plane, a unit disk graph U is defined as the graph
consisting of all edges AB connecting points A and B whose Euclidean distance |AB| is at most 1.
The edge AB connecting points A and B is assumed to be embedded in the plane as the straight
line segment AB. We define, for some fixed positive constant p, a cost function mapping each edge
AB of U to the scalar |AB|p, The cost of a simple path A = M0,M1, ...,Mr = B in U is then:

r−1∑

j=0

|MjMj+1|p.

Among all paths between A and B, a path in U with the smallest cost is defined to be a smallest
cost path and we denote its cost as cp

U (A,B). We define a subgraph H of U to be a spanner with
respect to cost function cp if there is a constant ρ such that for every two points A,B ∈ U we
have: cp

H(A,B) ≤ ρcp
U (A,B). The constant ρ is called the stretch factor of H. The two edge-cost

functions most often used in the topology control literature are the geometric cost function with
p = 1, in which case the spanner is called a geometric spanner, and the power cost function with
p ∈ [2, 5], in which case the spanner is called a power spanner. We focus here only on geometric
and power spanners.

We consider the following fundamental network topology problem. Given a unit disk graph U
modeling a network, construct a bounded-degree, planar spanner of U with small stretch factor.
We require that the spanner construction be distributed and strictly localized in the following sense:
the computation at each point depends solely on the computation of its 1-hop or 2-hop neighbors,
and is independent of the computation at other points. This strict requirement makes the algorithm
very applicable in ad-hoc sensor networks, as well as very robust: if a point is deleted, for example,
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only the points within the vicinity of the deleted point will need to recompute their spanner links.
We will show that even with the strict requirement, we are able to obtain near-optimal spanners.

The problem we are considering is motivated by the issue of topology control of ad-hoc and sensor
networks [8, 9, 10]. Topology control is used, for example, to construct a topology of the original
network that is amenable to routing or other networking applications. Some desirable properties
of the resulting topology include (1) planarity: the underlying graph should be planar to allow,
for example, guaranteed and efficient routing such as geometric routing ([1, 5]); (2) small stretch
factor: for any two devices in the network there should be a path connecting them in the topology
whose length is close to the length of the shortest path connecting the pair in the original network;
(3) bounded degree: each device maintains links to only a constant number of devices in its com-
munication range, thus minimizing interference and saving energy; and (4) constructible locally:
the construction of the network topology should be distributed, simple, and strictly-localized as
explained above (see [2] for a formal definition).

Our approach to this problem improves all previous approaches in several ways (see Section 2).
Our approach gives the best bounds on the stretch factor and the point-degree combination—in
some cases these bounds are near-optimal. Our approach is also strictly localized, and hence very
robust: the computation at a point depends only on the coordinates of the point and its 1-hop (for
power spanners) or 2-hop neighbors (for geometric spanners), and no propagation of information
is needed. We note here that even though the previous approaches were localized in the sense
that each point only communicates with its neighbors, a close examination shows that some of
these algorithms process the points in some implicit order and require information propagation. In
particular, the best previous approaches (in terms of stretch factor and degree bound) for computing
power spanners relied on an acyclic orientation of the planar graph (see [4, 11]), which cannot be
done locally without propagation of information.

To be able to achieve these bounds, we introduce a set of new geometric notions and tools that are
of independent interest.

2 Comparison between our results and the previous best results

In terms of the computation of geometric spanners, Li et al. [6, 7] gave a distributed algorithm that
constructs a planar geometric spanner of a unit disk graph with stretch factor Cdel ≈ 2.42; however,
the spanner constructed can have unbounded degree. Wang and Li [12, 13] then showed how to
construct a bounded-degree planar spanner of a unit disk graph with stretch factor max{π/2, 1 +
π sin (α/2)} · Cdel and degree bounded by 19 + 2π/α, where 0 < α < 2π/3 is a parameter. Very
recently, Bose et. al [1] showed how to construct a planar geometric spanner of a unit disk graph
with stretch factor max{π/2, 1 + π sin (α/2)} · Cdel and degree bounded by 14 + 2π/α, for any
0 < α ≤ π/3. This was the best bound on the stretch factor and the degree.

In our work we present a very simple and strictly-localized distributed algorithm that constructs a
planar geometric spanner of the unit disk graph with stretch factor (1 + 2π(k cos (π/k))−1) · Cdel

and degree bounded by k, for any integer parameter k ≥ 14. These results, in turn, significantly
improve all the previous results of [1, 12, 13] on this problem in terms of: the upper bound on the
stretch factor, the upper bound on the degree, and the simplicity and locality of the algorithm. In
terms of efficiency, the presented algorithm exchanges no more than O(n) messages in total, and
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Table 1: Degree bounds (∆) and stretch factors (ρ) of the algorithms with power exponent p = 2.

k = 10 11 12 13 14

∆ ρ ∆ ρ ∆ ρ ∆ ρ ∆ ρ

Lower Bounds 10 1.32 11 1.27 12 1.23 13 1.20 14 1.18

OurALGO 10 1.39 11 1.32 12 1.27 13 1.23 14 1.20

SWLF-I 15 1.62 16 1.47 17 1.37 18 1.30 19 1.38

SWLF-II 10 8.48 11 5.48 12 4.31 13 3.70 14 3.32

runs in O(∆ lg ∆) local time at a point of degree ∆.

To compare our bounds to the previous best bounds in the literature, for a degree bound k = 14,
our results imply a bound of at most 3.54 on the stretch factor, and as k approaches ∞, our bound
on the stretch factor approaches Cdel. The smallest degree bound derived by Bose et al. [1] is 20,
and that corresponds to a stretch factor of at least 6.19. If Bose et al. [1] allow the degree bound to
be arbitrarily large, then their bound on the stretch factor approaches (π/2) · Cdel > 3.75. On the
other hand, the smallest degree bound derived in Wang et al. [12, 13] is 25, and that corresponds
to a bound of 6.19 on the stretch factor. If Wang et al. [12, 13] allow the degree bound to be
arbitrarily large, then their bound on the stretch factor approaches (π/2) · Cdel > 3.75. Therefore,
even the worst bound of at most 3.54 on the stretch factor corresponding to our lowest bound on
the degree k = 14, beats the best bound on the stretch factor of at least 3.75 corresponding to
arbitrarily large degree in both Bose et al. [1] and Wang et al. [12, 13]!

For the problem of constructing power spanners of unit disk graphs, Wattenhofer et al. [14] derived
algorithms with arbitrarily small stretch factor but unbounded degree. To bound the degree, their
stretch factor needs to be at least 2. The best previous bounds (with respect to minimizing both the
stretch factor and degree) are by Song, Wang, Li, and Frieder who proposed distributed localized
algorithms [11] with guarantees on the maximum degree and stretch factors. Given a parameter
k > 6, their first algorithm (referred to as SWLF-I) computes a power spanner of maximum degree
k + 5 and maximum stretch factor ρ = 1/(1 − (2 sin π

k )p). In their second algorithm (referred to
as SWLF-II), given a parameter k > 8, they obtain a bound of k for the maximum degree and
ρ = (

√
2)p/(1− (2

√
2 sin π

k )p) for the stretch factor. In our work we show how to construct a planar
power spanner of maximum degree k and with stretch factor ρ = 1 + (2 sin π

k )p. For the same
degree bound, this bound on the stretch factor improves the previous best bounds by Song et al. [11]
significantly; see Table 1 for a comparison between these bounds. Furthermore, we show that the
upper bound on the stretch factor proved is tight by proving that constructing a power spanner of
a unit disk graph with degree bound of k and a stretch factor smaller than ρ = 1 + (2 sin π

k+1)p is
not possible.

3 Our techniques and contributions

The basic idea is to start by constructing a sparse subgraph G of the unit disk graph U , not
necessarily of bounded degree, and then to bound the degree of each point in this subgraph, without
hurting the stretch factor by much. We give below an intuitive summary of the main techniques
and contributions of our results. We omit the technical details and intermediate results for lack of
space.
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3.1 The underlying sparse subgraph of U

For the case of geometric spanners, the underlying subgraph is a version of the unit Delaunay
graph introduced by [12, 13], called the 2-localized Delaunay subgraph or shortly LDel (2). We let
G = LDel(2)(U) in this case, and note that G has stretch factor Cdel ≈ 2.42 [12, 13].

For the case of power spanners, it turns out that the Gabriel graphs [3] used in the literature to
obtain power spanners [11] do not lead to tight results. We introduce the notion of generalized
Gabriel graphs, prove some elegant non-trivial structural results about them, and then use them as
the underlying sparse subgraphs. Let A and B be two points in U . Define the region Dp(A,B) to
be the set of all points M in the plane satisfying |MA|p + |MB|p ≤ |AB|p. Note that D2(A,B) is
the closed disk of diameter AB.

We prove that Dp(A,B) is a closed convex set and that every point M ∈ Dp(A,B)\{A,B} satisfies
∠AMB ≥ arccos(1 − 2−3/5).

Definition 3.1 The generalized Gabriel graph of U with parameter p ∈ [2, 5], denoted Gp, is
defined to be the subgraph of U having the same point set as U , and such that an edge AB ∈ U is
also an edge in Gp if and only if there does not exist a point M ∈ Dp(A,B) \ {A,B}.

Theorem 3.2 Let U be a unit disk graph, p ∈ [2, 5] a constant, and Gp the generalized Gabriel
graph of U with parameter p. Then Gp is a connected planar subgraph of U with stretch factor of
1.

In the case of power spanners, we let G = Gp, and we note that by the above theorem G has stretch
factor 1.

Furthermore, both LDel(2)(U) and the generalized Gabriel graphs can be easily constructed using
a strictly-localized distributed algorithm.

3.2 Canonical paths

Let G be the sparse subgraph of U constructed above. Let BC and CA be edges of G such that
∠BCA ≤ 2π/k, where k is the parameter used to bound the degree. Suppose further that BC is
the shortest edge in G within the angular sector ∠BCA. In our work we show that either edge
AB ∈ G, or there exists a canonical path P in G from A to B of small cost. This path is constructed
recursively. For the case of geometric spanners, this path is the concatenation of several paths,
called the outward paths, between points on the convex hull of the set of points residing in 4ABC.

For the case of geometric spanners, we bound the length of P by 2π(k cos π
k )−1|CB|. For the case of

power spanners, we bound the length of P by (2 sin π
k )p|CB|. We prove that the region determined

by edges BC, CA and the path P is very simple: It is closed region of the plane in which the only
possible edges join C to vertices on P. More importantly, we prove that the internal angles on the
path P are large, which is an essential property for our results to carry through.
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3.3 The modified Yao construction

To construct a bounded-degree subgraph G′ of G with small stretch factor, we try to select the
edges on the canonical paths and include them in G′. Our results show that it is always possible to
select at most k edges out of every point such that the edges on the canonical paths are selected as
well. The crucial argument to why this works is that the angles on the canonical paths are large.

Almost all the approaches to bound the spanner degree are based on constructing a Yao subgraph
of some planar subgraph of U . Given integer parameter k > 6, the Yao subgraph [15] of a directed
graph G (embedded in the plane) is constructed as follows. At every point M in G, place k equally-
separated rays out of M (arbitrarily defined), thus creating k closed cones of size 2π/k each. Then,
the shortest edge in G out of M (if any) in each cone is added to the Yao subgraph of G.

It is well-known that the Yao construction as is does not yield a bounded degree subgraph. More
importantly, the Yao construction does not always guarantee that edges forming large angles on
the canonical paths are always selected. We give below an intuitive description of how we modify
the Yao construction to achieve these goals.

First, every point selects the edges incident on it that form large angles. Then, the standard Yao
construction is applied to the set of remaining incident edges. Finally, edges selected by both
endpoints are kept in G′.

For geometric spanners, we can show that every point selects at most k edges, and that for every
edge CB that was not selected in G′ there is a selected edge CA ∈ G′ with ∠BCA ≤ 2π/k,
and such that the path CA followed by the canonical path from A to B has length at most
(1 + 2π(k cos π

k )−1)|CB|, giving us a stretch factor of (1 + 2π(k cos π
k )−1) · Cdel for k ≥ 14.

For power spanners, we modify the construction a little bit by first selecting incident edges that
make large angles, then removing every edge with a certain small “buffer angle” from the selected
edges, and finally applying the standard Yao construction to the remaining set of edges. With this
modification, and using the notion of buffer angles, we can show that every point selects at most k
edges, and that for every edge CB that was not selected in G′ there is a selected edge CA ∈ G′ with
∠BCA ≤ 2π/k, and such that the path CA followed by the canonical path from A to B has cost
at most (1 + (2 sin π

k )p)|CB|, giving a stretch factor of 1 + (2 sin π
k )p for k ≥ 10. We show that this

ratio is near optimal by showing that the slightly smaller ratio of 1 + (2 sin π
(k+1) )

p is unattainable.

3.4 Simplicity, locality, and robustness

Besides improving all the previous results in terms of the stretch factor and degree bound, our
algorithms are very simple and strictly localized: each point decides on the set of edges to keep based
on the coordinates of its 1-hop neighbors (power spanner) and 2-hop neighbors (geometric spanner),
and edges kept by both endpoints are selected in the spanner. The best previous algorithms (in
terms of the stretch factor and degree bound) in the literature for power spanners required an
acyclic orientation of the planar graph G before the edges in G′ could be selected [11, 4]. Clearly,
such an orientation cannot be done is such a strictly localized way.

This simplicity and strictly-localized nature of our algorithms make them very suitable for mobile
networks, and very robust against topological changes, which we prove formally.
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