
On the Effective Enumerability of NP Problems

Jianer Chen∗ Iyad A. Kanj† Jie Meng∗ Ge Xia§ Fenghui Zhang∗

Abstract

In the field of computational optimization, it is often the case that we are given an instance of an NP
problem and asked to enumerate the first few ”best” solutions to the instance. Motivated by the recent
research performed in these fields, we propose in this paper a new framework to measure the effective
enumerability of NP optimization problems. More specifically, given an instance of an NP problem, we
consider the problem of enumerating a given number of best solutions for the instance, and study its
average complexity in terms of the number of solutions. Our framework is different from the previously-
proposed ones, which studied the counting complexity of a problem, or the complexity of enumerating
all solutions to a given instance of the problem. For example, even though it was shown by Flum and
Grohe that counting the number of k-paths in a graph is fixed-parameter intractable, we present a fixed-
parameter enumeration algorithm for the problem. The developed enumeration framework consists of
two phases: the structure-generation phase and the solution-enumeration phase. We show that most
algorithm-design techniques for fixed-parameter tractable problems, such as search trees, color coding,
and bounded treewidth, can be transformed into techniques for the structure-generation phase. We
design elegant enumeration techniques, and combine them with the use of effective data structures, to
show how to generate small-size structures and enumerate them efficiently.

1 Introduction

Most computational problems are concerned with finding a single solution for a problem instance. For
example, decision problems ask for the existence of a solution (to a given instance) that satisfies certain
properties, while optimization problems seek a solution (to a given instance) that optimizes a certain
function [27].

On the other hand, many computational problems in practice seek a number of good solutions rather
than a single one. It is a natural practice in many branches in science and technology that experts in the
area like to see and check many “good solutions” in order to choose the solutions that appear to be the
most proper ones, given their additional background knowledge in the subject. Examples of such cases
include seeking significant sub-structures in biological networks [22, 30], studying sequence Motifs and
alignments [28], studying evolutionary trees [18], and constructing a list of codewords in list decoding
[19]. Moreover, because of the proneness of computation to errors, the computed optimal solution may
not be the “real” optimal solution. Therefore, it becomes desirable to generate several “best” solutions
rather than a single one.

Several approaches towards meeting this need have been proposed. The most notable one is the
study of the counting complexity of a problem, which is the computational complexity of counting all
the solutions to a given instance of the problem. Since its initialization by Valiant [32], significant work
has been done on the study of counting complexity. Most of this work has focused on the negative
side, i.e., proving the intractability of certain counting problems. For example, Valiant [32] proved that
counting the number of perfect matchings in a bipartite graph is #P-complete. Hunt et al. [20] proved
the #P-hardness of a number of counting problems on planar graphs. Flum and Grohe [17] studied the

∗Supported in part by NSF Grants CCR-0311590 and CCF-4030683, Department of Computer Science, Texas A&M
University, College Station, TX 77843, USA. Emails: {chen,jmeng,fhzhang}@cs.tamu.edu.

†Supported in part by DePaul University Competitive Research Grant. School of CTI, DePaul University, 243 S. Wabash
Avenue, Chicago, IL 60604, USA. Email: ikanj@cs.depaul.edu.

§Supported in part by NSF Grant CCF-4030683. Department of Computer Science, Lafayette College, Easton, PA 18042,
USA. Emails: gexia@cs.lafayette.edu.

1

parameterized complexity of counting problems and, in particular, proved that the problem of counting
the number of k-paths in a graph is #W[1]-complete. Positive results along this line of research lead to
a number of exact algorithms (e.g., [3, 11, 29]) and approximation algorithms (e.g., [9, 12]) for a number
of counting problems that are intractable.

Another approach along this line of research studied the complexity of enumerating all solutions to
a given problem instance. Tomita, Tanaka, and Takahashi [31] presented an exponential time algorithm
that enumerates all maximal cliques in a graph. Gramm and Niedermeier [18] gave an algorithm that
enumerates all minimum solutions for the quartet inconsistency problem. Fernau [16] considered a
number of enumeration paradigms and studied their respective complexities.

None of the above approaches, however, has perfectly met the practical needs of the corresponding
applications associated with the problems under consideration. The study of counting complexity does not
provide hints on how the solutions to a given instance of the problem can be generated. Even worse, the
counting complexity of a problem can be significantly different from that of generating a single solution
(e.g., perfect matchings in bipartite graphs from the standard complexity viewpoint [32], k-paths in a
graph from the parameterized complexity viewpoint [17]). The enumeration approach (i.e., enumerating
all solutions to a given instance) may easily become computationally infeasible, not because of the difficulty
of generating each single solution, but simply because the number of solutions is too large. For example,
the problem of constructing a vertex cover of k vertices in a graph is practically feasible for small values
of k [6], but the problem of enumerating all vertex covers of k vertices in a graph is computationally
infeasible simply because there can be too many such vertex covers in the graph [16].

On the other hand, many computational applications do not ask for the entire set of solutions, instead,
they only seek a certain number of ”best” solutions [18, 22, 28, 30].

Motivated by the above, we propose in this paper a new framework to study the effective enumerability
of NP optimization problems. Needless to say, in order to be able to effectively enumerate a set of
solutions, we must be able to generate a single solution first. Therefore, we will be mainly interested
in the NP optimization problems that have efficient algorithms for generating a single solution. We will
also be seeking solutions of small size k, and study the enumerability of problems whose first solution
can be generated in time f(k)nO(1), where f is a recursive function. The readers who are familiar with
fixed-parameter tractability theory should realize that this refers to the class of fixed-parameter tractable
problems [13]. We associate each problem solution with a “weight” that indicates the quality/ranking
of the solution. We say that an NP optimization problem is fixed-parameter enumerable if there is an
algorithm that, for a given problem instance (x, k) and an integer K, generates the K best (in terms of
the solution weight) solutions of size k to x in time f(k)nO(1)KO(1).

Our enumeration model is meaningful from both the theoretical and practical perspectives. Indeed,
generating K solutions takes time at least O(K), therefore, it should be acceptable to require that
generating the K best solutions takes time polynomial in K. Besides the polynomial factor in K, we
require that generating a solution takes time f(k)nO(1), which is feasible for small values of k [13]. The
model is specially suitable for applications that require a moderate number of best solutions, i.e, in which
K = nO(1).

By setting K = 1, we can easily see that a fixed-parameter enumerable problem is also fixed-parameter
tractable. It will be interesting to know whether these two notions are equivalent. Along this line, we
examine the most popular techniques used in developing fixed-parameter tractable algorithms, including
the bounded search-tree method, color coding schemes, and bounded tree-width algorithms. The devel-
oped enumeration framework consists of two phases: the structure-generation phase and the solution-
enumeration phase. We show that most algorithm-design techniques for fixed-parameter tractable prob-
lems, such as search trees, color coding, and bounded treewidth, can be non-trivially transformed into
techniques for the structure-generation phase. We design elegant enumeration techniques, and combine
them with the use of effective data structures, to show how to generate small-size structures and enumerate
them efficiently. For instance, we present a fixed-parameter enumerable algorithm for the k-path problem,
even though counting the number of k-paths in a graph is known to be fixed-parameter intractable [17].

2

There has been some research in the literature that is related to this research. For example, Chegireddy
and Hamacher [8] developed algorithms for finding the K largest perfect matchings in a weighted graph,
Kapoor and Ramesh [21] studied the complexity of generating the K smallest spanning trees in a weighted
graph, and Eppstein considered the problem of enumerating the K shortest paths in a digraph [14]. For
a more comprehensive summary of this line of research, the readers are referred to [25]. However, to the
authors’ knowledge, all this research dealt with very specific optimization problems that are solvable in
polynomial time. On the other hand, the current paper mainly focuses on NP-hard optimization problems,
and on developing a systematical approach for the effective enumeration of a large class of such problems.

2 Definitions and preliminaries

Recall that a parameterized problem consists of instances of the form (x, k), where x ∈ Σ∗ for a finite
alphabet set Σ, and k is a non-negative integer. A parameterized problem Q is fixed parameter tractable if
there is an algorithm A that on input (x, k) decides if (x, k) is a yes-instance of Q in time f(k)nO(1), where
f is a recursive function independent of n = |x|. We extend the standard definition of NP optimization
problems [4] to encompass their parameterized versions.

Definition A parameterized NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ) where:

1. IQ is the set of input instances of the form (x, k), with x ∈ Σ∗ for a fixed finite alphabet Σ, and k
is a non-negative integer called the parameter. The input instances are recognizable in polynomial
time.

2. For each instance (x, k) in IQ, SQ(x, k) is the set of feasible solutions for (x, k), which is defined
by a polynomial p and a polynomial time computable predicate Φ (p and Φ depend only on Q) as
SQ(x, k) = {y : |y| ≤ p(|x|) and Φ(x, k, y)}.

3. fQ(x, k, y) is the objective function mapping a pair (x, k) ∈ IQ and y ∈ SQ(x, k) to a real number.
The function fQ is computable in polynomial time.

4. optQ ∈ {max, min}.

Note that since the length of a solution y to an instance (x, k) in Q is bounded by a polynomial
of |x|, the number of solutions to the instance (x, k) is bounded by 2q(|x|) for some fixed polynomial
q. Therefore, the values of the solutions in the set SQ(x, k) can be given in a finite sorted list L =
[fQ(x, k, y1), fQ(x, k, y2), . . .], in a non-decreasing order when optQ = min, and in a non-increasing order
when optQ = max. We say that a set {y′1, . . . , y′K} of K solutions in SQ(x, k) are the K best solutions for
the instance (x, k), if the values fQ(x, k, y′1), . . ., fQ(x, k, y′K), when sorted accordingly, are identical to
the first K values in the list L.

Definition A parameterized NP optimization problem Q is fixed-parameter enumerable if there are two
algorithms A1 and A2 such that the following are true.

1. Given an instance (x, k) of Q, the algorithm A1 generates a structure τx,k in time f(k)nO(1), where
f is a recursive function independent of n = |x|.

2. Given the structure τx,k and an integer K ≥ 0, the algorithm A2 generates the K best solutions to
the instance (x, k) in time O(|τx,k|O(1)KO(1)).1

The algorithm A1 will be called the structure algorithm, and the algorithm A2 will be called the
enumeration algorithm. We say that the problem Q is linearly fixed-parameter enumerable if the running

1Note that it is possible that the total number |SQ(x, k)| of solutions is smaller than K. To avoid repeatedly distinguishing
the two possible cases, we will simply use K to refer to the value K0 = min{K, |SQ(x, k)|}.

3

time of the enumeration algorithm A2 is |τx,k|O(1)K.

We comment on the above definition. Since the algorithm A1 runs in time f(k)nO(1), the size |τx,k| of
the structure τx,k is bounded by f(k)nO(1). In consequence, the running time of the enumeration algorithm
A2 is bounded by f1(k)nO(1)KO(1), where f1 is a recursive function independent of n. Moreover, we require
that for each input instance (x, k), the fixed-parameter enumerable problem Q have a small structure τx,k

whose size is independent of the number K of solutions to be generated. The following theorem follows
directly from the above definitions.

Theorem 2.1 If a parameterized NP optimization problem Q is fixed-parameter enumerable then it is
fixed-parameter tractable.

The following simple observation will be useful when designing enumeration algorithms. Suppose that
we have a list of n real numbers. By first finding the K-th largest (or the K-th smallest) number a in the
list in time O(n) [10], then partitioning the list using a as a “pivot”, we can generate the K largest (or
the K smallest) numbers in the list in time O(n).

3 Effective enumerations based on branch-and-search

The branch-and-search method based on bounded search-trees has been a very popular and powerful
technique in the development of efficient exact and parameterized algorithms [13]. The unfamiliar reader
is referred to [13] for more information about the bounded search tree technique and the analysis of its
running time.

We discuss how this technique can be employed in designing algorithms for the structure-generation
phase of enumeration algorithms for parameterized NP optimization problems. As a running example,
we describe the algorithm with vertex cover as the underlying problem. Recall that a vertex set C in
a graph G is a vertex cover for G, if each edge in G has at least one end in C. A vertex cover of k vertices
will be called a k-vertex cover. The vertex cover problem is a well-known fixed-parameter tractable
problem, and parameterized algorithms for it have been extensively studied (e.g., [6]). Moreover, the
counting complexity (i.e., counting the number of solutions to a given instance) and the complexity of
enumerating all solutions to an instance of the problem, have also been examined. Arvind and Raman [3]
(see also [17]) showed that counting the total number of k-vertex covers can be done in time O(2k2+kk +
2kn). The complexity of enumerating all k-vertex covers, however, depends on whether k is the size
of a minimum vertex cover of the graph or not. Fernau [16] showed that if k is equal to the size of a
minimum vertex cover, then enumerating all k-vertex covers can be done in time O(2kk2 + kn), while if
k is not equal to the size of a minimum vertex cover, then no algorithm of running time f(k)nO(1), for
any recursive function, f can enumerate all k-vertex covers. The latter fact simply holds because in such
case the number of k-vertex covers can be too large to be enumerated in such time.

We investigate the fixed parameter enumerability of the problem. We assume that the input graph G
is weighted, and each vertex is associated with a real number (the vertex weight). The weight of a vertex
cover C is the sum of the weights of the vertices in C. Therefore, a vertex cover C1 is smaller than a
vertex cover C2 if the weight of C1 is smaller than the weight of C2.

weighted vertex cover: Given a weighted graph G on n vertices, and non-negative
integers k and K, generate the K smallest k-vertex covers in G.

3.1 The structure algorithm

Let (G, k) be an instance of the weighted vertex cover problem, where G is a graph on n vertices.
Since a vertex of degree larger than k must be in every k-vertex cover of G, we can first remove all vertices
of degree larger than k in the graph and then work on the remaining graph. This pre-processing can be

4

done in time O(kn) even when the number of edges in G is larger than kn. Now the resulting instance
(G′, k′) consists of a graph G′ of O(n) vertices and O(kn) edges, and a parameter k′ ≤ k. Therefore,
without loss of generality, we will assume that the input graph G has n vertices and O(kn) edges.

The structure algorithm for weighted vertex cover is a recursive algorithm based on the branch-
and-search method, which on an input instance (G, k) returns a collection L(G, k) of triples (I,O, R),
where each (I, O,R) is a partition of the vertex set of the graph G, representing the set of all k-vertex
covers that include all vertices in I and exclude all vertices in O. Moreover, we require that in the
subgraph induced by the vertex set R, all the vertices have degree bounded by 2. The structure algorithm
is given in Figure 1.

Algorithm structure-vc

Input: G: a weighted graph; k: an integer;

1. if (k < 0) or (k = 0 but the edge set of G is not empty) then return L(G, k) = ∅;
2. if there is no vertex of degree larger than 2 in G then return L(G, k) = {(∅, ∅, V)};
3. pick any vertex v of degree d ≥ 3;

4. let G1 = G− v and G2 = G− (v ∪N(v)), where N(v) is the set of neighbors of v;

5. recursively call structure-vc(G1, k − 1) and structure-vc(G2, k − d);
let the returned collections be L(G1, k − 1) and L(G2, k − d), respectively;

6. L(G, k) = ∅;
7. for each triple (I1, O1, R1) in L(G1, k − 1) do add (I1 ∪ {v}, O1, R1) to L(G, k);

8. for each triple (I2, O2, R2) in L(G2, k − d) do add (I2 ∪N(v), O2 ∪ {v}, R2) to L(G, k);

Figure 1: The structure algorithm for weighted vertex cover.

Theorem 3.1 (Theorem 7.1, Appendix) On an input (G, k), the algorithm structure-vc runs in
time O(1.47kn), and returns a collection L(G, k) of at most 1.466k triples.

We say that a vertex cover C of the graph G is consistent with a partition (I, O,R) of the vertex set
of G if C contains all vertices in I and excludes all vertices in O. The following lemma can be proved by
a simple inductive proof.

Lemma 3.2 Let L(G, k) be the collection returned by the algorithm structure-vc on input (G, k). Then
every k-vertex cover of G is consistent with exactly one triple in L(G, k).

The collection L(G, k) forms the structure τG,k for the instance (G, k) of the weighted vertex
cover problem. By Theorem 3.1, the structure τG,k can be constructed in time O(1.47kn).

3.2 The enumeration algorithm

Let L(G, k) be the structure returned by the algorithm structure-vc on the input (G, k). By Lemma 3.2,
every k-vertex cover C of G is consistent with exactly one triple (I, O, R) in L(G, k), in the sense that
C contains all the vertices in I and excludes all the vertices in O. Therefore, the k-vertex cover C must
consist of the vertex set I, plus a vertex cover for the subgraph G(R) induced by the vertex set R of k−|I|
vertices. Therefore, the K smallest k-vertex covers for the graph G that are consistent with the triple
(I, O, R) can be generated by generating the K smallest (k − |I|)-vertex covers for the induced subgraph
G(R). Finally, the K smallest k-vertex covers for the original graph G can be obtained by performing
the above process on all the triples in the structure L(G, k), and then picking the K smallest k−vertex
covers among all the generated k-vertex covers.

By looking at the algorithm structure-vc, we observe that all the vertices in the induced subgraph
G(R) have degree bounded by 2. Therefore, we first discuss how we deal with such graphs.

5

Lemma 3.3 Let G be a graph of n vertices in which all vertices have degree bounded by 2. Then the K
smallest k-vertex covers of G can be generated in time O(Kkn).

Proof. Since all the vertices in G have degree bounded by 2, every connected component of G
is either an isolated vertex, a simple path, or a simple cycle. Order the vertices of G to form a list
W = [v1, v2, . . . , vn] such that the vertices of each connected component of G appear consecutively in W .
In particular, the vertices of a simple path appear in W in the order by which we traverse the path from
an arbitrary end to the other end, and the vertices of a simple cycle appear in W in the order by which
we traverse the entire cycle starting from an arbitrary vertex in the cycle. A vertex vi ∈ G is a type-1
vertex if it has degree 0, a type-2 vertex if it is in a simple path of length at least 1, and a type-3 vertex if
it is in a simple cycle.

For each i, 1 ≤ i ≤ n, let Gi be the subgraph of G induced by the vertex set {v1, v2, . . . , vi}. For each
induced subgraph Gi, we build a list Li = [Si,0, Si,1, . . . , Si,k], where Si,j is a set of j-vertex covers for Gi,
defined as follows:

(1) If vi is of type-1, then Si,j is the set of the K smallest j-vertex covers for Gi (recall that by this
we really mean “the K smallest j-vertex covers or all the j-vertex covers if the total number of j-vertex
covers is smaller than K”— this remark also applies to the following discussion);

(2) If vi is of type-2, then Si,j consists of two sets S′i,j and S′′i,j , where S′i,j contains the K smallest
j-vertex covers of Gi that contain vi, and S′′i,j contains the K smallest j-vertex covers of Gi that do not
contain vi;

(3) If vi is of type-3 and appears in a simple cycle [vh, . . . , vi, . . . , vt] in G, then Si,j consists of four
sets S′i,j , S′′i,j , S′′′i,j and S′′′′i,j , where S′i,j is the set of the K smallest j-vertex covers of Gi that contain both
vh and vi, S′′i,j is the set of the K smallest j-vertex covers of Gi that contain vh but not vi, S′′′i,j is the set
of the K smallest j-vertex covers of Gi that contain vi but not vh, and S′′′′i,j is the set of the K smallest
j-vertex covers of Gi that contain neither vh nor vi.

Note that since each set Si,j contains at most 4K j-vertex covers, the set S0
i,j consisting of the K

smallest j-vertex covers of the graph Gi can be constructed from Si,j in time O(K).
The list L1 can be trivially constructed: (1) if v1 is of type-1, then all the sets S1,j are empty except

S1,0 = {∅} and S1,1 = {(v1)}; (2) if vi is of type-2, then all the sets S′1,j and S′′1,j are empty except
S′′1,0 = {∅} and S′1,1 = {(v1)}; and (3) if vi is of type-3, then all the sets S′1,j , S′′1,j , S′′′1,j , and S′′′′1,j are empty
except S′′′′1,0 = {∅} and S′1,1 = {(v1)}.

Inductively, suppose that we have built the list Li−1. To build the list Li, we distinguish the following
cases based on the type of the vertex vi.
Case 1. The vertex vi is of type-1. Then the graph Gi is the graph Gi−1 plus an isolated vertex vi. For
each j, 0 ≤ j ≤ k, let S0

i−1,j be the set of the K smallest j-vertex covers of the graph Gi−1, which can
be constructed in time O(K). Since each vertex cover of Gi is either a vertex cover of Gi−1, or a vertex
cover of Gi−1 plus the vertex vi, the set Si,j in Li can be constructed as follows: take each (j − 1)-vertex
cover of Gi−1 from S0

i−1,j−1 and add the vertex vi to it to make a j-vertex cover of Gi. This gives a set
F of K j-vertex covers for Gi. It is clear that the K smallest j-vertex covers of Gi must be contained in
the set F ∪ S0

i−1,j , which is a set of 2K j-vertex covers for Gi. Thus, the K smallest j-vertex covers in
the set F ∪ S0

i−1,j make the set Si,j . Each set Si,j can be constructed in time O(K), and the list Li can
be constructed from the list Li−1 in time O(Kk).
Case 2. The vertex vi is of type-2. Then vi is on a simple path [vh, . . . , vi, . . . , vt] in G of length at least
1. As in Case 1, for each j, let S0

i−1,j be the set of the K smallest j-vertex covers for Gi−1.
If vi = vh is the first vertex on the path in the listing W , then the graph Gi is the graph Gi−1 plus

an isolated vertex vi. Thus, the set S′i,j can be obtained from S0
i−1,j−1 by adding the vertex vi to each

(j − 1)-vertex cover of Gi−1 in S0
i−1,j−1. The set S′′i,j is equal to the set S0

i−1,j .
If h < i and vi is not the first vertex on the path in the listing W , then the graph Gi is the graph

Gi−1 plus the vertex vi and the edge [vi−1, vi]. Therefore, each vertex cover of Gi is either a vertex cover
of Gi−1 plus vi, or a vertex cover of Gi−1 that contains vi−1. Thus, the set S′i,j is again obtained from

6

S0
i−1,j−1 by adding the vertex vi to each (j − 1)-vertex cover of Gi−1 in S0

i−1,j−1. On the other hand, now
the set S′′i,j is equal to the set S′i−1,j .

Again in this case, the list Li can be constructed from the list Li−1 in time O(Kk).
Case 3. The vertex vi is of type-3. Then vi is on a simple cycle [vh, . . . , vi, . . . , vt] of G. Again for each
j, let S0

i−1,j be the set of the K smallest j-vertex covers of Gi−1.
If vi = vh is the first vertex on the cycle in the listing W , then the graph Gi is the graph Gi−1 plus

an isolated vertex vi. Thus, the set S′i,j can be obtained from S0
i−1,j−1 by adding the vertex vi to each

(j − 1)-vertex cover of Gi−1 in S0
i−1,j−1, and the set S′′′′i,j is equal to the set S0

i−1,j . By the definition, the
sets S′′i,j and S′′′i,j are empty.

If h < i < t, then the graph Gi is the graph Gi−1 plus the vertex vi and the edge [vi−1, vi]. Therefore,
the set S′i,j can be obtained by adding the vertex vi to each (j − 1)-vertex cover in the union S′i−1,j−1 ∪
S′′i−1,j−1 then selecting the K smallest ones; the set S′′i,j is equal to the set S′i−1,j ; the set S′′′i,j is obtained
by adding the vertex vi to each (j − 1)-vertex cover in the union S′′′i−1,j−1 ∪ S′′′′i−1,j−1 then selecting the K
smallest ones; and the set S′′′′i,j is equal to the set S′′′i−1,j .

If vi = vt is the last vertex on the cycle in the listing W , then the graph Gi is the graph Gi−1 plus
the vertex vi and two edges [vh, vi] and [vi−1, vi]. In this case, the set S′i,j can be obtained by adding the
vertex vi to each (j − 1)-vertex cover in the union S′i−1,j−1 ∪ S′′i−1,j−1 then selecting the K smallest ones;
the set S′′i,j is equal to the set S′i−1,j ; the set S′′′i,j is obtained by adding the vertex vi to each (j− 1)-vertex
cover in the union S′′′i−1,j−1∪S′′′′i−1,j−1 then selecting the K smallest ones; and the set S′′′′i,j is empty because
[vh, vi] is an edge in Gi.

The correctness of the above constructions can be easily verified using the definitions of the sets S′i,j ,
S′′i,j , S′′′i,j , and S′′′′i,j . Moreover, it is also easy to see that the list Li can be constructed from the list Li−1

in time O(Kk).
Summarizing all the above, we conclude that the list Ln can be constructed in time O(Kkn). Now

the K smallest k-vertex covers of the graph G = Gn can be easily obtained in time O(K) from the set
Sn,k in the list Ln. This completes the proof of the lemma.

Now it should be obvious in principle how we can generate the K smallest k-vertex covers for the graph
G: they can be obtained by first generating the K smallest consistent k-vertex covers, for each triple in
L(G, k). However, by applying some enumeration tricks, we can significantly speedup this enumeration
process, as shown in the following theorem.

Theorem 3.4 Let (G, k) be an instance of the weighted vertex cover problem, and let L(G, k) be
the structure returned by the algorithm structure-vc on (G, k). Then the K smallest k-vertex covers of
the graph G can be generated in time O(1.47kn + 1.22kKn).

Proof. Let (I, O,R) be a triple in L(G, k) and let k1 = k − |I|. By Lemma 3.3, the K smallest
k1-vertex covers of the induced subgraph G(R) can be constructed in time O(Kk1n). The vertex set I,
plus each of these k1-vertex covers for G(R), form one of the K smallest k-vertex covers consistent with
(I, O, R) for the graph G. Thus, the K smallest k-vertex covers of G consistent with (I, O,R) can be
constructed in time O(Kkn). Moreover, by Lemma 3.2, every k-vertex cover of G is consistent with a
triple in L(G, k). Therefore, if we generate the K smallest consistent k-vertex covers for each triple in
L(G, k), and pick the K smallest among all these generated k-vertex covers, then we will obtain the K
smallest k-vertex covers for the graph G.

Let L be the total number of triples in L(G, k).
If K >

√
L, then let K ′ = K/

√
L. For each triple (I, O, R) in L(G, k), construct the K ′ smallest

k-vertex covers consistent with (I,O, R), and form the set S1 of the K smallest k-vertex covers among
all these LK ′ k-vertex covers. This takes time O(LK ′kn) = O(

√
LKkn). For each triple (I, O,R) whose

K ′ smallest consistent k-vertex covers are not all in the set S1, only those k-vertex covers consistent with
(I, O, R) that are already in the set S1 can be possibly among the K smallest k-vertex covers of the graph

7

G. Therefore, we will discard each triple whose K ′ smallest consistent k-vertex covers are not all in the
set S1 from any further consideration. Since no k-vertex cover is consistent with more than one triple
in L(G, k), there are at most

√
L triples in L(G, k) for which the K ′ smallest consistent k-vertex covers

are all in the set S1. Therefore, the number L2 of the remaining triples to be considered is bounded by√
L. Now in time O(L2Kkn) = O(

√
LKkn), we can apply Lemma 3.3 to each of these L2 triples to

generate the K smallest consistent k-vertex covers with this triple. Let S2 be the set of all k-vertex covers
constructed in this step. Then |S2| ≤ L2K. Let S = S1 ∪ S2 and note that |S| = (L2 + 1)K = O(L2K).
The K smallest k-vertex covers in S are the K smallest k-vertex covers of the graph G, which can be
found in time O(L2K). In summary, in this case, the K smallest k-vertex covers of the graph G can be
generated in time O(

√
LKkn).

If K ≤ √
L, then by letting K ′ = 1, and using a similar procedure to the above, we can show that in

this case the K smallest k-vertex covers of G can be generated in time O(Lkn +
√

LKkn).
In conclusion, given the structure L(G, k), the K smallest k-vertex covers of the graph G can be

generated in time O(Lkn +
√

LKkn). The theorem now follows from Theorem 3.1 because L ≤ 1.466k

and hence Lk = O(1.47k), and
√

Lk = O(1.22k).

Corollary 3.5 The weighted vertex cover problem is linearly fixed-parameter enumerable. More
specifically, given an instance (G, k) and a nonnegative integer K, the K smallest k-vertex covers of the
graph G can be generated in time O(1.47kn + 1.22kKn), where n is the number of vertices in the graph.

4 Effective enumeration based on color coding

The color coding technique [2] is very powerful and useful in the development of efficient parameterized
algorithms. In particular, the technique has been used in developing improved parameterized algorithms
for the k-path problem [2, 7], for matching and set packing problems [15, 24], and for problems in com-
putational biology [30]. In this section, we show that the color coding technique is also very helpful in
developing effective algorithms for the structure-generation phase of enumeration algorithms for param-
eterized NP optimization problems. We will illustrate this fact by presenting an enumeration algorithm
for the k-path problem. A simple path in a graph G is a k-path if it contains exactly k vertices. The
weight of a path in a weighted graph is the sum of the weights of the vertices in the path. The problem
can be formally defined as follows.

weighted k-path: given a weighted graph G and integers k and K, generate the K largest
k-paths in G.

4.1 The structure algorithm

A k-coloring of a set S is a function from S to {1, 2, . . . , k}. A collection F of k-colorings of S is a k-color
coding scheme for S if for any subset W of k elements in S, there is a k-coloring fW in F such that no two
elements in W are assigned the same color by fW . The size of the k-color coding scheme F is equal to
the number of k-colorings in F . Alon, Yuster, and Zwick [2] showed that there is a k-color coding scheme
of size 2O(k)n for a set of n elements. This bound has been improved recently to O(6.4kn) [7]. In the
following discussion, we will assume a k-color coding scheme F of size O(6.4kn) for a set of n elements.

On a given instance (G, k) of the weighted k-path problem, where G is a graph of n vertices, the
structure algorithm for weighted k-path produces h = O(6.4kn) copies {G1, G2, . . . , Gh} of the graph
G, where each copy Gi is colored by a k-coloring in the k-color coding scheme F . Note that by the
definition of k-color coding schemes, every k-path in the graph G has all its vertices colored with different
colors in at least one of these copies of the graph G. The list τG,k = {G1, G2, . . . , Gh} is the structure
returned by the structure algorithm for the weighted k-path problem, whose running time is O(6.4kn2).

8

4.2 The enumeration algorithm

The enumeration algorithm for weighted k-path is a careful and non-trivial generalization of the dy-
namic programming algorithm described in [2] that finds a k-path in a k-colored graph. We first discuss
how we deal with each copy Gi of the colored graphs in the list τG,k. We say that a k-path in a k-colored
graph is properly colored if no two vertices on the path are colored with the same color. Consider the
algorithm given in Figure 2, where c(w) denotes the color assigned to the vertex w in the k-colored graph
G. Inductively, before the j-th execution of the loop in steps 2.1-2.5 of the algorithm, we assume that
each vertex w is associated with a collection Cj(w) of pairs (C, P), where C is a subset of j colors in the
k-color set, and P is the set of up to K largest properly colored j-paths ending at w that use exactly
the colors in C. Then the j-th execution of steps 2.1-2.5 will produce a similar collection Cj+1(w) for
(j + 1)-paths in G based on the collection Cj(w) of j-paths.

Algorithm enumerate-path(G, k, K)

Input: a k-colored graph G, and integers k and K

1. for each vertex w in G do C1(w) = [({c(w)}; {w})];
2. for j = 1 to k − 1 do 2.1. for each edge [v, w] in G do

2.2. for each pair (C, P) in Cj(v) do
2.3. if (c(w) 6∈ C) then
2.4. construct |P | (j + 1)-paths ending at w by extending each path in P to the vertex w;
2.5. add these (j + 1)-paths to P ′ in the pair (C ∪ {c(w)}, P ′) in Cj+1(w) and only

keep the K largest (j + 1)-paths in P ′;

Figure 2: The enumeration algorithm for weighted k-path.
Note that at the end of the algorithm enumerate-path(G, k, K), for each vertex w in the k-colored

graph G, the collection Ck(w) is either empty, or contains a single pair (C, P), where C is the set of all k
colors and P is a set of properly colored k-paths ending at w in G.

Lemma 4.1 (Lemma 7.2, Appendix) For each vertex w in the k-colored graph G, the pair (C,P)
in the collection Ck(w) returned by the algorithm enumerate-path(G, k,K) contains the K largest
properly colored k-paths ending at w. The running time of the algorithm enumerate-path(G, k, K)
is O(2kk2n2K).

Theorem 4.2 [Theorem 7.3, Appendix] Given the structure τG,k and an integer K, the K largest k-paths
in the graph G can be generated in time O(12.8kk2n3K).

Using more sophisticated enumeration techniques, we can show that the above running time can be
improved. We have the following theorem whose proof is omitted for lack of space.

Theorem 4.3 Given the structure τG,k and an integer K, the K largest k-paths in the graph G can be
generated in time O(12.8k + 6.4kk2n3K).

Corollary 4.4 The weighted k-path problem is linearly fixed-parameter enumerable.

Remark. Corollary 4.4 may look a bit surprising. Although the k-path problem is fixed-parameter
tractable [2], Flum and Grohe [17] proved that counting the number of k-paths in a graph G is #W [1]-
hard. This means that it is unlikely that there is an algorithm of running time f(k)nO(1), for some
function f , that can count the number of k-paths in a graph of n vertices precisely. On the other hand,
Corollary 4.4 shows that enumerating the K largest k-paths in the graph G takes time f(k)nO(1)K, where
f is a function independent of n. This means that in a feasible amount of average time f(k)nO(1) per
path, we can generate the paths in decreasing order of the path weights, which shows that the hardness
of the problem of counting the number of k-paths is mainly due to the (possible) large number of such
paths in the graph.

9

5 Effective enumeration based on tree decomposition

The concept of the tree decomposition of a graph has played an important role in the study of algorithmic
graph theory [5] and in developing efficient exact and parameterized algorithms for graph problems on
planar graphs (see [1]). In this section, we discuss how this approach can be used to develop algorithms
for the structure-generation phase of enumeration algorithms for NP optimization problems.

A set D of vertices in a graph G is a dominating set of G if every vertex in G is either in D or adjacent
to a vertex in D. A dominating set of k vertices will be called a k-dominating set. Given a weighted
graph, the weight of a dominating set D is the sum of the weights of the vertices in D. Our running
example will be the following problem.

weighted planar dominating set. Given (G, k), where G is a weighted planar graph and
k is a nonnegative integer, and a nonnegative integer K, generate the K smallest k-dominating
sets in the graph G.

5.1 The structure algorithm

The reader is referred to Subsection 7.1 in the appendix for the terminology in this section and the proofs
of the theorems.

Theorem 5.1 (Section 7.1, Theorem 7.6, Appendix) There is an O(
√

kn) time algorithm that
given a planar graph G on n vertices and a positive integer k, either constructs a nice tree decompo-
sition (V, T) for G of width O(

√
k) and O(n) nodes, or reports that no dominating set for G of size

bounded by k exists.

The structure τG,k is simply the nice tree decomposition (V, T) obtained by the above theorem.

5.2 The enumeration algorithm

Given the nice tree decomposition τG,k = (V, T), we can generate the K smallest k-dominating sets in
the graph G using dynamic programming. We have the following theorem.

Theorem 5.2 (Theorem 7.7, Appendix) Given a planar graph G on n vertices and two nonnegative
integers k and K, the K smallest k-dominating sets in G can be generated in time 2O(

√
k)nK log K.

Corollary 5.3 weighted planar dominating set is fixed-parameter enumerable.

6 Final remarks

We have introduced the concept of effective enumerability, or more precisely, fixed-parameter enumerabil-
ity of NP optimization problems. Our objective is solving enumeration problems that have an increasing
demand in computational science. We outline below some of the main differences between our approach
and some of the previously-proposed approaches.

• Whereas previous models studied the complexity of counting or enumerating all (optimal) solutions,
we study the complexity of generating the first K best solutions of size k, parameterized by both the
solution size k, and the number of solutions K. In consequence, some of the results obtained using the
current approach are orthogonal to some of the results obtained previously.

• The current approach meets the practical needs for a large number of computational prob-
lems [18, 22, 28, 30]. The current approach stipulates that solutions of small size be reported efficiently

10

by requiring the exponential factor in the running time of the algorithm to be a function of the solution
size only. It also stipulates that the overhead due to the required additional computation of the first K
solutions should not exceed a polynomial (in K) multiplicative factor.

• The developed framework has a positive goal, in the sense that it intends to design and develop effective
techniques that allow us to enumerate a certain number of best solutions to a problem, even though
enumerating or simply counting all the solutions might be an intractable problem. In particular, the
developed framework measures the intrinsic complexity of generating each single solution, and avoids
running into the realm of infeasibility resulting from the large number of solutions.

• The developed framework targets mainly NP-hard optimization problems, and is a systematic approach
rather than being a problem-specific one.

We finally indicate that even though we illustrated our results by picking specific problems for each
technique, each of the considered problems is a representative for a huge set of problems to which the
technique is applicable as well.

References

[1] J. Alber, H. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, Fixed parameter
algorithms for dominating set and related problems on planar graphs, Algorithmica 33, pp. 461-493,
(2002).

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, Journal of the ACM 42, pp. 844-856, (1995).

[3] V. Arvind and V. Raman, Approximation algorithms for some parameterized counting problems,
ISAAC’02, pp. 453-464, (2002).

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Pro-
tasi, Complexity and Approximation, Combinatorial optimization problems and their approximability
properties, Springer-Verlag, 1999.

[5] H. Bodlaender, Treewidth: algorithmic techniques and results, Lecture Notes in Computer Science
1295, pp. 19-36, (1997).

[6] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further observations and further improvements,
Journal of Algorithms 41, pp. 280-301, (2001).

[7] J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved algorithms for the k-path problem,
Manuscript, (2005).

[8] C. Chegireddy and H. Hamacher, Algorithms for finding K-best perfect matchings, Discrete
Applied Mathematics 18, pp. 155-165, (1987).

[9] S. Chien, A determinant-based algorithm for counting perfect matching in a general graph,
SODA’04, pp. 728-735, (2004).

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 2nd Edition,
McGraw-Hill Book Company, Boston, MA, 2001.

[11] V. Dahllof and P. Jonsson, An algorithm for counting maximum weighted independent sets
and its applications, SODA’02, pp. 292-298, (2002).

[12] M. Dyer, Approximate counting by dynamic programming, STOC’03, pp. 693-699, (2003).

11

[13] R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer-Verlag, 1999.

[14] D. Eppstein, Finding the k shortest paths, SIAM J. Computing 28-2, pp. 652-673, (1998).

[15] M. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U. Stege, D. Thilikos,
and S. Whitesides, Faster fixed-parameter tractable algorithms for matching and packing prob-
lems, Lecture Notes in Computer Science 3221, (2004), pp. 311-322.

[16] H. Fernau, On parameterized enumeration, COCOON’02, pp. 564-573, (2002).

[17] J. Flum and M. Grohe, The parameterized complexity of counting problems, SIAM Journal on
Computing 33, pp. 892-922, (2004).

[18] J. Gramm and R. Niedermeier, Quartet inconsistency is fixed parameter tractable, CPM’01, pp.
241-256, (2001).

[19] V. Guruswami, List decoding of error-correcting codes, Lecture Notes in Computer Science 3282,
2005.

[20] H. Hunt III, M. Marathe, V. Radhakrishnan, and R. Stearns, The complexity of planar
counting problems, SIAM Journal on Computing 27, pp. 1142-1167, (1998).

[21] S. Kapoor and H. Ramesh, Algorithms for enumerating all spanning trees of undirected and
weighted graphs, SIAM Journal on Computing 25, pp. 247-265, (1995).

[22] B. Kelley, R. Sharan, R. Karp, T. Sittler, D. Root, B. Stockwell, and T. Ideker,
Conserved pathways within bacteria and yeast as revealed by global protein network alignment,
Proc. Natl. Acad. Sci. USA 100, pp. 11394-11399, (2003).

[23] T. Kloks, Treewidth, computations and approximations, Lecture Notes in Computer Science 842,
(1994).

[24] I. Koutis, A faster parameterized algorithm for set packing, Information Processing Letters 94,
(2005), pp. 7-9.

[25] Y. Matsui and T. Matsui, http://dmawww.epfl.ch/roso.mosaic/kf/enum/comb/combenum.html.

[26] S. Nakano, Efficient generation of triconnected plane triangulations, COCOON’01, pp. 131-141,
(2001).

[27] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[28] P. Pevzner and S.-H. Sze, Combinatorial approaches to finding subtle signals in DNA sequences,
ISMB’2000, pp. 269-278, (2000).

[29] S. Ravi and H. Hunt III, An application of the planar separator theorem to counting problems,
Information Processing Letters 25, pp. 317-321, (1987).

[30] J. Scott, T. Ideker, R. Karp, and R. Sharan, Efficient algorithms for detecting signaling
pathways in protein interaction networks, RECOMB 2005, to appear.

[31] E. Tomita, A. Tanaka, and H. Takahashi, The worst-case time complexity for generating all
maximal cliques, COCOON’04, pp. 161-170, (2004).

[32] L. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8, pp.
189-201, (1979).

12

7 Appendix

Theorem 7.1 On an input (G, k), the algorithm structure-vc runs in time O(1.47kn), and returns a
collection L(G, k) of at most 1.466k triples.

Proof. We first prove the second claim. Let L(k) be the number of triples in the collection L(G, k)
returned by the algorithm structure-vc on the input (G, k). If the input (G, k) satisfies the conditions in
step 1 or step 2, then L(k) ≤ 1. In particular, L(k) ≤ 1 for k ≤ 0. Otherwise, the value L(k) satisfies the
recurrence relation L(k) ≤ L(k − 1) + L(k − d), where d ≥ 3. Using the standard techniques for solving
such recurrence relations, we get L(k) ≤ αk, where α = 1.4655 · · · < 1.466k, is the unique positive root of
the polynomial xk − xk−1 − xk−3. This proves the second claim of the theorem.

Let T (k,G) be the running time of the algorithm structure-vc on the input (G, k). If (G, k) satisfies
the conditions in step 1 or step 2, then T (k, G) = O(kn) (recall that we can assume that the size of the
graph G is O(kn)). In particular, T (k, G) = O(kn) for k ≤ 0. Otherwise, the value T (k, G) satisfies the
following recurrence relation

T (k,G) ≤ T (k − 1, G− v) + T (k − d,G− (v ∪N(v))) + O(1.466kn),

where v is a vertex of degree d ≥ 3 in G picked by the algorithm in step 3, N(v) is the set of neighbors of
v in G, and the term O(1.466kn) is an upper bound on the time for constructing the graphs G1 = G− v
and G2 = G− (v∪N(v)), and for constructing the collection L(G, k) from the collections L(G1, k−1) and
L(G2, k − d) (here we have used the fact that L(G, k) contains at most 1.466k triples). Using induction
on k and n, it can be easily verified that T (k,G) = O(1.466kkn) = O(1.47kn).

Lemma 7.2 For each vertex w in the k-colored graph G, the pair (C, P) in the collection Ck(w) returned
by the algorithm enumerate-path(G, k, K) contains the K largest properly colored k-paths ending at w.
The running time of the algorithm enumerate-path(G, k, K) is O(2kk2n2K).

Proof. It is not difficult to prove by induction on j that after the j-th execution of the loop 2.1-2.5,
for each vertex w, the collection Cj+1(w) contains the K largest properly colored (j + 1)-paths ending at
w. We note that it can never be the case that a pair (C ∪ {c(w)}, P ′) in the collection Cj+1(w) already
contains a path p and step 2.5 of the algorithm adds again the path p to (C ∪{c(w)}, P ′). This is because
each edge [v, w] is considered exactly once in each execution of the loop 2.1-2.5, and only when the edge
[v, w] is considered in step 2.1, (j + 1)-paths whose second ending vertex is w can be added to the pair
(C ∪ {c(w)}, P ′) in Cj+1(w).

Now we consider the time complexity of the algorithm. Since each of the sets (C,P) and (C ∪
{c(w)}, P ′) contains at most K paths, step 2.5 can be executed in time O(Kk) by first merging the |P |
paths constructed in step 2.4 with the set (C ∪ {c(w)}, P ′), then identifying the K-th largest path in the
merged set so that the paths smaller than this path can all be removed from the set (note that by the
above discussion, all the paths in the set are distinct). This will keep the size of (C ∪{c(w)}, P ′) bounded
by K. Since each collection Cj(v) may have up to 2k j-subsets of colors, we conclude that the running
time of the algorithm is bounded by O(2kk2n2K).

Theorem 7.3 Given the structure τG,k and an integer K, the K largest k-paths in the graph G can be
generated in time O(12.8kk2n3K).

Proof. From the output of the algorithm enumerate-path(G, k,K), for each vertex w in G, we get
the O(K) largest properly colored k-paths ending at w. Collecting these paths over all vertices in G, we
get a set P of O(Kn) properly colored k-paths that obviously contains the K largest properly colored
k-paths in G. From the O(Kn) k-paths in P , we can find the K largest properly colored k-paths in time
O(Kn) by first identifying the K-th largest path in the set P in time O(Kn), and then removing all the
smaller paths in the set (again, note that all these paths are distinct).

13

Since there are O(6.4kn) k-colored graphs in the list τG,k = {G1, G2, . . . , Gh}, we apply Lemma 7.2 to
each of these k-colored graphs. This takes O(12.8kk2n3K) time. We get a set P ′ of O(6.4knK) k-paths,
each of them is properly colored in some of the k-colored graphs in the list τG,k. Since the k-colorings
we used to color the graph vertices come from the k-color coding scheme F , every k-path among the K
largest k-paths in G is among the K largest properly colored k-paths in some k-colored graph Gi in the
list τG,k, and hence is contained in the set P ′. Therefore, selecting the K largest k-paths in P ′ gives the
K largest k-paths in the graph G. To do this, we first use BucketSort to sort all the k-paths in P ′ (using
the vertex labels along a path as the key for the path). This sorting takes time O(6.4kknK) and removes
duplicate copies of each path in P ′. Then we find the K-th largest k-path in the remaining set in P ′ in
time O(6.4knK), and identify the K largest distinct k-paths in the set P ′ in time O(6.4knK). Combining
all the above, the theorem follows.

7.1 Preliminaries and proofs for Section 5 in the paper

We start by reviewing some related terminologies. For a more detailed discussion on the tree decomposition
of a graph, the reader is referred to [5].

Definition Let G = (V, E) be a graph. A tree decomposition of G is a pair (V, T), where V is a collection
of subsets of V satisfying

⋃
Xi∈V = V , and T is a tree whose node set is V, such that:

1. for every edge [u, v] ∈ E, there is an Xi ∈ V, such that {u, v} ⊆ Xi;
2. for all Xi, Xj , Xk ∈ V, if the node Xj lies on the path between the nodes Xi and Xk in the tree T ,

then Xi ∩Xk ⊆ Xj .
The width of the tree decomposition (V, T) is defined to be max{|Xi| | Xi ∈ V} − 1. The treewidth of

the graph G is the minimum width over all tree decompositions of G.2

A tree decomposition (V, T) is nice if it satisfies the following conditions:
1. Each node in the tree T has at most two children;
2. If a node Xi has two children Xj and Xk in the tree T , then Xi = Xj = Xk;
3. If a node Xi has only one child Xj in the tree T , then either |Xi| = |Xj | + 1 and Xj ⊂ Xi, or

|Xi| = |Xj | − 1 and Xi ⊂ Xj .
For a given graph of treewidth k, a tree decomposition of width k for G can be constructed in time

f(k)n; however, the function value f(k) is very large even for very small values of k [5]. Alternatively, for
planar graphs that have k-dominating sets, tree decompositions of small width can be constructed using
more practical algorithms, as stated in the following theorem that can be found in [1].

Theorem 7.4 ([1]) If a planar graph G of n vertices has a k-dominating set, then a tree decomposition
for G of treewidth O(

√
k) and O(n) nodes can be constructed in time O(

√
kn).

The proof of the following theorem can be found in [23].

Theorem 7.5 There is an algorithm that, for a given tree decomposition of a graph G of treewidth h and
O(n) nodes, constructs a nice tree decomposition of treewidth h and O(n) nodes in linear time.

Theorem 7.6 There is an O(
√

kn) time algorithm that given an instance (G, k) of weighted planar
dominating set where G has n vertices, either constructs a nice tree decomposition (V, T) for G of width
O(
√

k) and O(n) nodes, or reports that no dominating set for G of size bounded by k exists.

Proof. On an instance (G, k) of weighted planar dominating set, we first call the algorithm of
running time O(

√
kn) in Theorem 7.4. If the algorithm does not return a desired tree decomposition,

2To avoid confusion, we will use “nodes” for the tree in the tree decomposition, and use “vertices” for the underlying
graph.

14

then G has no k-dominating set. Otherwise, the returned tree decomposition (V, T) has width O(
√

k)
and O(n) nodes. Now we can apply Theorem 7.5 to the tree decomposition (V, T) to obtain a nice tree
decomposition of width O(

√
k) and O(n) nodes. The total running time is O(

√
kn).

Theorem 7.7 Given a planar graph G on n vertices and two nonnegative integers k and K, the K

smallest k-dominating sets in G can be generated in time 2O(
√

k)nK log K.

Proof. Consider the nice tree decomposition τG,k = (V, T). Let Xi = {v1, . . . , vq} be a node in
the tree T , where each vj , j = 1, · · · , q, is a vertex in G. Let Yi be the set of all the vertices in G
that are contained in the nodes of the subtree rooted at Xi in the tree T , and note that Xi ⊆ Yi. Let
A = [c(v1), . . . , c(vq)] be any assignment to the vertices in Xi that assigns each vertex vj , j = 1, · · · , q, a
value c(vj) ∈ {−1, 0, 1}, and let D′ be a subset of Yi. We say that the set D′ is consistent with the value
assignment A = [c(v1), . . . , c(vq)] for Xi if and only if the three following conditions are satisfied:

1. c(vj) = 1 if vj is in D′;
2. c(vj) = −1 if vj is not in D′ but is adjacent to a vertex in D′;
3. c(vj) = 0 if vj is not in D′ and is not adjacent to any vertex in D′.
Note that there can be many subsets of Yi which are consistent with the same value assignment A

for Xi. For a value assignment A to Xi and an integer r ≤ k, a subset D′ in Yi is an (A, r)-subset of
Yi if D′ has exactly r vertices, D′ is consistent with the value assignment A, and for each vertex w in
Yi −Xi, either w is in D′ or w is adjacent to a vertex in D′. Intuitively, an (A, r)-subset is a candidate
for a dominating set for the graph G that has r vertices in Yi.

For a node Xi that contains q vertices, there are 3q possible value assignments to Xi. For each value
assignment A to Xi, we associate with A a collection of k lists LA = [L1, . . . , Lk], where Lr is a list
containing the K smallest (A, r)-subsets of Yi. Observe that since no vertex w in Yi − Xi is adjacent
to any vertex not in Yi, the selection of the vertices in a dominating set from the set V − Yi is totally
independent of the status of w, but may (only) depend on the status of the vertices in Xi. Therefore, if
in each list Lr we record the K smallest (A, r)-subsets of Yi that are consistent with the value assignment
A, then for the k-dominating sets of G consistent with the value assignment A, only these (A, r)-subsets
of Yi can be subsets of the K smallest k-dominating sets of G.

For each node Xi in the tree T , and for each valid value assignment A to Xi, we construct the
corresponding collection LA. Using dynamic programming, we proceed from the leaves of the tree T in a
bottom-up fashion. For each leaf Xi of q vertices, we construct each of the 3q value assignments to Xi.
Note that in this case, Yi = Xi, so it is fairly easy to determine if a value assignment is valid, and for
each valid value assignment A, the collection LA = [L1, . . . , Lk] can be directly constructed. As a matter
of fact, for each assignment A that assigns s vertices in Xi the value 1, the collection LA = [L1, . . . , Lk]
consists of empty lists Lj , j = 1, · · · , k, with the exception of the list Ls that could possibly contain one
subset: the subset of the s vertices in Xi assigned the value 1 by A.

Now we discuss how the construction proceeds. Suppose that the value assignments and the related
collections have been constructed for all the children of a node Xi in the tree T . To construct the value
assignments and the corresponding collections for the node Xi, since τG,k is a nice tree decomposition,
there are three cases to be distinguished.

Case 1. Xi has a single child Xj , |Xj | = |Xi| − 1, and Xj ⊂ Xi.
Let v ∈ Xi−Xj , then v 6∈ Yj . Now for each value assignment Aj to Xj , we can get three different value

assignments for Xi by assigning c(v) = −1, 0, and 1, respectively. Since v is not adjacent to any vertex
in Yj − Xj , it is easy to check if these value assignments are valid. For example, if we assign c(v) = 1,
then any vertex w in Xi that is adjacent to v in G cannot have value c(w) = 0. Now to construct the
corresponding collection LAi , for a valid value assignment Ai for Xi, suppose that c(v) = 1 and that Ai

is obtained from a value assignment Aj for Xj . Then each (Aj , r)-subset in the collection LAj plus the
vertex v becomes a (Ai, r + 1)-subset in the collection LAi . The other cases for the other values of c(v)

15

can be handled similarly. Finally, we only keep the smallest K (A, r)-subsets in the list Lr in LAi , if the
list contains more than K subsets.

Case 2. Xi has a single child Xj , |Xj | = |Xi|+ 1, and Xi ⊂ Xj .
Let v ∈ Xj − Xi, then any value assignment A to Xj with the value c(v) dropped makes a value

assignment to Xi. Again, we can check if these value assignments are valid. For example, if c(v) = 0 then
the value assignment to Xj with c(v) dropped is invalid. Each (Aj , r)-subset in the collection LAj , where
Aj is a value assignment to Xj becomes a (Ai, r)-subset in the collection LAi , where Ai is a valid value
assignment to Xi obtained from the value assignment Aj with c(v) dropped. Again we only keep the K
smallest subsets in a list if a list contains more than K subsets.

Case 3. Xi has two children Xj and Xh and Xj = Xi = Xh.
We say that two values assignments Aj and Ah, where Aj is an assignment to Xj and Ah is an

assignment to Xh, are mergeable if for any vertex v in Xj (and Xh), either v has the same value in Aj and
Ah, or one of Aj , Ah assigns v the value −1 and the other assigns v the value 0. A value assignment Ai can
be obtained form two mergeable values assignments Aj and Ah as follows. The value of v in Ai is equal
to its value in both Aj and Ah when the two values are equal, and is equal to −1 when the values are not
equal. It is not difficult to verify that this value assignment Ai is consistent with the definitions of value
assignments to the nodes in T and to the subsets associated with these value assignments. Moreover,
the subsets in the collections LAj and LAh

are also merged into subsets in the collection LAi accordingly.
More specifically, an (Aj , r)-subset in LAj and an (Ah, r′)-subset in LAh

are merged into an (Ai, r
′′)-subset

in LAi , where r′′ is equal to r + r′ minus the number of vertices in Xi that were assigned the value 1.
Again we only keep the K smallest subsets in a list LAi if the list contains more than K subsets.

It is not difficult to prove, by induction, that the above dynamic programming process correctly
constructs the value assignments and the corresponding collections for each node in the tree T . After
this process, every value assignment A to the root node X of T that assigns no value 0 to any vertex
in X is valid, and the list Lk in the collection LA contains the K smallest k-dominating sets consistent
with the value assignment A. Since every k-dominating set for the graph G is consistent with some value
assignment to the root node X, by searching through the collections LA over all valid value assignments
for X, we will be able to generate the K smallest k-dominating sets for the graph G.

Let us discuss the time complexity of this process. Since the treewidth of the tree decomposition
(V, T) is h, each node Xi in the tree T contains at most h vertices in the graph G, and there can be at
most 3h valid value assignments to Xi. For each valid value assignment A to Xi, the collection LA contains
k lists L1, . . ., Lk, and each list Lr contains at most (A, r)-subsets of Yi. The most time-consuming step
occurs in Case 3, in which we need to find mergeable value assignments and merge the lists associated
with the mergeable assignments. To merge a list Lr in LAj and a list Ls in LAj , we have up to K2

possible combinations of the subsets in Lr and Ls. It can be shown that such a merge can be done in
time O(k3K log K) (the details of this process are omitted for lack of space). In conclusion, on each node
Xi in Case 3, the process takes time O(5hk3K log K). It is not difficult to see that the running time
of Cases 1-2 is also bounded by this upper bound. It follows that the running time of the algorithm is
bounded by 2O(

√
k)k3nK log K = 2O(

√
k)nK log K, and the proof is complete.

16

