
Labeled Search Trees and Amortized Analysis:

Improved Upper Bounds for NP-hard Problems

Jianer Chen∗ Iyad A. Kanj† Ge Xia∗

Abstract

A sequence of exact algorithms to solve the Vertex Cover and Maximum Independent
Set problems have been proposed recently in the literature. All these algorithms appeal to a
very conservative analysis that considers the size of the search tree, under a worst-case scenario,
to derive an upper bound on the running time of the algorithm. In this paper we propose a
different approach to analyze the size of the search tree. We use amortized analysis to show
how simple algorithms, if analyzed properly, may perform much better than the upper bounds
on their running time derived by considering only a worst-case scenario. This approach allows
us to present a simple algorithm of running time O(1.194k + n) for the parameterized Vertex
Cover problem on degree-3 graphs, and a simple algorithm of running time O(1.1254n) for
the Maximum Independent Set problem on degree-3 graphs. Both algorithms improve the
previous best algorithms for the problems.

Key words. vertex cover, independent set, exact algorithm, parameterized algorithm

1 Introduction

Recently, there has been considerable interest in developing improved exact algorithms for solving
well-known NP-hard problems [7, 14]. This line of efforts was motivated by both practical and
theoretical research in computational sciences. Practically, there are certain applications that
require solving NP-hard problems precisely [10], while theoretically, this line of research may lead
to a deeper understanding of the structure of NP-hard problems [4, 9, 11, 13].

Two of the most extensively studied problems in this line of research are the Maximum In-
dependent Set and the Vertex Cover problems. For Maximum Independent Set (given a
graph G, find a maximum independent set in G), since the initiation by Tarjan and Trojanowski
[22] with an O(1.259n) time algorithm, there have been continuously improved algorithms for the
problem [2, 12, 19, 20]. For general graphs, the best algorithm for Maximum Independent Set
is due to Robson [19], whose algorithm runs in time O(1.211n). Beigel [2] developed an algorithm
of running time O(1.083e) for the problem, where e is the number of edges in the graph. Applying
this algorithm to degree-3 graphs, we get the currently best algorithm of running time O(1.1259n)
for the Maximum Independent Set problem on degree-3 graphs.

The Vertex Cover problem (given a graph G and a parameter k, decide if G has a vertex
cover of k vertices) has drawn much attention recently in the study of parameterized complexity of
NP-hard problems [9]. This is also due to its applications in fields like computational biochemistry
[15]. Since the development of the first parameterized algorithm by Buss (see [3]), which has running
time O(kn + 2kk2k+2), there has been an impressive list of improved algorithms for the problem

∗Supported in part by NSF under the grant CCR-0000206. Department of Computer Science, Texas A&M
University, College Station, TX 77843-3112. Email: {gexia,chen}@cs.tamu.edu.

†The Corresponding author. School of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604-2301
Email: ikanj@cs.depaul.edu. Supported in part by DePaul University Competitive Research Grant.

1

[1, 5, 6, 8, 17, 21]. Currently, the best parameterized algorithm for Vertex Cover has running
time O(kn + 1.285k) for general graphs [5], and the best parameterized algorithm for Vertex
Cover on degree-3 graphs has running time O(kn + 1.237k) [6].

The most popular technique for solving NP-hard problems precisely is the branch-and-search
process, which can be depicted by a search tree model described as follows. Each node of the search
tree corresponds to an instance of the problem. At a node α in the tree the search process considers
a local structure in the problem instance corresponding to α, and enumerates some feasible partial
solutions to the instance based on the specific local structure. Each such enumeration induces a new
reduced problem instance that corresponds to a child of the node α in the search tree. The search
process is then applied recursively to the children of α. The complexity of a branch-and-search
process, which is roughly the size of the search tree, depends mainly on two things: how effectively
the feasible partial solutions are enumerated, and how efficiently the instance size is reduced. In
particular, all exact algorithms proposed in the literature for the Maximum Independent Set
problem and the Vertex Cover problem are based on this strategy, and most improvements
were obtained by more effective enumerations of feasible partial solutions and/or more efficient
reductions in the size of the problem instance [1, 5, 19, 22].

A desirable local structure may not exist at a stage of the branch-and-search process. In this
case, the branch-and-search process has to pick a less favorable local structure and make a less
effective branch and/or less efficient instance-size reduction. Most proposed branch-and-search
algorithms for NP-hard problems were analyzed based on the worst-case performance. That is, the
computational complexity of the algorithm was derived based on the worst local structure occurring
in the search process. Obviously, this worst-case analysis for a branch-and-search process is very
conservative — the worst cases can appear very rarely in the entire process, while most other cases
permit much better branching and reductions.

In the current paper, we suggest new methods to analyze the branch-and-search process. First
of all, we label the nodes of a search tree to record the reduction in the parameter size for each
branching process. We then perform an amortized analysis on each path in the search tree. This
allows us to capture the following notion: an operation by itself may be very costly in terms of the
size of the search tree that it corresponds to, however, this operation might be very beneficial in
terms of introducing many efficient branches and reductions in the entire process. Therefore, the
expensive operation can be well-“balanced” by the induced efficient operations.

This analysis has also enabled us to consider new algorithm strategies in a branch-and-search
process. In particular, now we do not have to always strictly avoid expensive operations. To
illustrate our analysis and algorithmic techniques, we propose a very simple branch-and-search
algorithm (of few lines) for Vertex Cover on degree-3 graphs, abbreviated VC-3. The algorithm
also induces a new algorithm for Maximum Independent Set on degree-3 graphs, abbreviated IS-
3. Using the new analysis and algorithmic strategies, we are able to show that the new algorithms
improve the best existing algorithms in the literature. More specifically, our algorithm for VC-3
runs in time O(n + 1.194k), improving the previous best algorithm of running time O(kn + 1.237k)
[6], and our algorithm for IS-3 runs in time O(1.1254n), improving the previous best algorithm of
running time O(1.1259n) [2].

We would like to further comment on why we picked VC-3 and IS-3 as our candidates. As
we mentioned before, Vertex Cover and Maximum Independent Set are among the most
extensively studied NP-hard problems with many proposed algorithms [1, 3, 5, 8, 12, 17, 19, 20,
21, 22]. In particular, Vertex Cover and Maximum Independent Set on graphs of degrees 3
and 4 have received a lot of attention recently [2, 5, 6]. In spite of the restriction imposed on graph
degrees (being bounded by 3 or 4), improvements on the previous upper bounds for these problems

2

can be challenging and meticulous. Moreover, most of the algorithms for Vertex Cover and
Maximum Independent Set on general graphs end up reducing the problem to a graph with
low-degree [5, 17, 19]. Thus, a simple and uniform algorithm that induces significant improvements
on the existing bounds for these problems is of high interest, and shows the power and effectiveness
of the new analysis and algorithmic methods. In addition, recent research has shown that these
problems are “complete” in terms of their worst case running time for a large group of well-known
NP-hard problems [4, 11, 13]. More specifically, combining the results in [11], [13], and [4], one can
show that if IS-3 can be solved in time O((1+ε)n), or if VC-3 can be solved in time O((1+ε)kp(n))
(p is a polynomial), for every constant ε > 0, then k-SAT, Maximum Independent Set, and
Vertex Cover can all be solved in subexponential time, which seems very unlikely. Hence,
there are constants c1, c2 > 0, such that IS-3 and VC-3 have no exact algorithms of running time
O((1 + c1)n) and O((1 + c2)kp(n)), respectively. Thus, further improvement in the base of the
exponential function in the running time of the algorithms that solve these problems may lead to
better understanding of the problems and their associated complexity class.

2 A simple algorithm for VC-3 and the reduction rules

Let G = (V,E) be an undirected graph. For a subset V ′ of vertices in G, denote by G(V ′) the
subgraph of G induced by V ′. For a subgraph H of G, denote by G−H the subgraph of G obtained
by removing all vertices in H. For a vertex u in G, denote by N(u) the set of neighbors of u and
by d(u) the degree of u. A set C of vertices in G is a vertex cover for G if every edge in G has
at least one endpoint in C. Denote by τ(G) the size of a minimum vertex cover of the graph G.
An instance of the Vertex Cover problem consists of a pair (G, k) asking whether τ(G) ≤ k.
The VC-3 problem is the Vertex Cover problem on graphs whose vertex degree is bounded
by 3. Note that if every vertex in G has degree bounded by 3, and hence, can cover at most 3
edges, it is true that for any induced connected non-tree subgraph H of G with nH vertices, we
have τ(H) ≥ nH/3. Let (G, k) be an instance of the VC-3 problem. This version of the following
proposition appears in [6], and is based on a theorem by Nemhauser and Trotter [16].

Proposition 2.1 (Proposition 2.1, [6]) There is an algorithm of running time O(k
√

k) that,
given an instance (G, k) of the VC-3 problem, constructs another instance (G1, k1), where the
graph G1 contains at most 2k1 vertices with k1 ≤ k, and such that the graph G has a vertex cover
of at most k vertices if and only if the graph G1 has a vertex cover of at most k1 vertices.

Proposition 2.1 allows us to assume, without loss of generality, that in an instance (G, k) of
the VC-3 problem, the graph G contains at most 2k vertices.

Let v be a degree-2 vertex in the graph with two neighbors u and w such that u and w are not
adjacent. We construct a new graph G′ as follows: remove the vertices v, u, and w and introduce
a new vertex v0 that is adjacent to all neighbors of the vertices u and w in G (of course except the
vertex v). We say that the graph G′ is obtained from the graph G by folding the vertex v. See
Figure 1 for an illustration of this operation. We have the following lemma whose proof is easy and
can be found in [5].

Lemma 2.2 ([5]) Let G′ be a graph obtained by folding a degree-2 vertex v in a graph G, where the
two neighbors of v are not adjacent to each other. Then τ(G) = τ(G′) + 1. Moreover, a minimum
vertex cover for G can be constructed from a minimum vertex cover for G′ in constant time.

3

tv
tu tw tv0��
�

HH
H

�
�

x1
A
A

x2
�
�

y1
A
A

y2
�
�
�

x1
�
�

x2
S
S

y1
Q

Q
Q

y2

-

Figure 1: Vertex folding

We introduce some terminologies. A vertex folding on a degree-2 vertex v is safe if folding v
does not create vertices of degree larger than 3. A cycle of length l in a graph is an alternating
cycle if it contains exactly bl/2c degree-2 vertices of which no two are adjacent. Finally, a subgraph
T in G is an alternating tree if: (1) T is induced by a subset of vertices in G; (2) T is a tree; (3)
all leaves of T are of degree 3 in G; and (4) no two adjacent vertices in T are of the same degree
in G. An alternating tree T is maximal if no alternating tree contains T as a proper subgraph.

Our algorithm takes as input a graph G and a parameter k and works by growing a partial
minimum vertex cover C for G based on a branch-and-search process. If any search path finds
a vertex cover of at most k vertices, the algorithm reports a success. Otherwise, the algorithm
reports a failure. By branching on a vertex set S in which no two vertices are adjacent, we mean
branching by either including all vertices in S in the partial cover C, or including all vertices that
are not in S but are adjacent to some vertices in S, then recursively working on the remaining
graph.

The algorithm is given in Figure 2. The algorithm uses two subroutines Fold(v) and Reducing.
The subroutine Fold(v) simply applies the safe folding operation to a degree-2 vertex v. We also
implicitly assume that after each step, the algorithm calls a subroutine Clean, which eliminates all
isolated vertices and degree-1 vertices (a degree-1 vertex is eliminated by including its neighbor in
the partial cover C), and updates the graph G, the partial cover C, and the parameter k accordingly.
In particular, we will assume without loss of generality that at beginning of each step, the graph
contains no vertices of degree less than 2.

VC3-solver
Input: an instance (G, k) of VC-3
Output: a vertex cover C of G of size bounded by k in case it exists

1. while there exists a degree-2 vertex v such that folding v is safe do Fold(v);
2.1 if Reducing is applicable then apply Reducing and go to step 1 in VC3-solver;
2.2 else if there is a degree-2 vertex v then branch on the two neighbors of v;
2.3 else branch on a degree-3 vertex v.

Reducing
0. if there is a component H of size bounded by 50

then compute a minimum vertex cover of H by brute force;
1. else if there are two adjacent triangles (u, v, w) and (u, v, z) then include v in the cover;
2. else if there is an alternating cycle K in G then include all degree-3 vertices on K in the cover;
3. else if removing a cut-vertex or a two-edge cut results in a component H with 2 ≤ |V (H)| ≤ 50

then remove H without any branching as explained in Theorem 2.3;
4. else if there is a maximal alternating tree T of at least 4 vertices in G

then branch on the vertices in T that are of degree-3 in G.

Figure 2: The algorithm VC3-solver

4

Theorem 2.3 The algorithm VC3-solver solves the VC-3 problem correctly.

Proof. To prove the correctness of the algorithm, we show that at least one path in the search
tree of the algorithm always has the updated partial cover C entirely contained in a minimum
vertex cover of the input graph G. Thus, for a step without branching, we must ensure that the
vertices to be included in the partial cover C by this step are entirely contained in a minimum
vertex cover of the current graph, while for a branching step, we must show that at least one of the
outcomes of the branching includes only vertices in a minimum vertex cover of the current graph
into the partial cover C.

By Lemma 2.2, folding a degree-2 vertex is always valid. Also, it is easy to see that including
the neighbor of a degree-1 vertex into the partial cover C is always safe. Branching on a single
vertex v is valid because a minimum vertex cover either contains v or contains all its neighbors.
Moreover, it has been proved in [5] that for any degree-2 vertex v, there is a minimum vertex cover
that either contains both neighbors of v or contains none of them. Thus, all steps in the main
algorithm VC3-solver, except the call to the subroutine Reducing, are correct. Now consider
the subroutine Reducing. The steps in Reducing can be justified as follows. Step 0 should be
clear. Step 1 in Reducing: since any minimum vertex cover must contain at least two vertices in
any triangle, one of the vertices u and v in the two adjacent triangles (u, v, w) and (u, v, z) must be
included in a minimum vertex cover. By symmetry, we can simply include u. Step 2 in Reducing:
since at least dl/2e vertices on K are needed to cover the l edges of the cycle K, picking the dl/2e
vertices of degree 3 on K is a safe choice because they not only cover all edges on the cycle K, but
also cover all edges incident on K. Step 4 in Reducing: we show that there is a minimum vertex
cover that either contains all vertices in T that are of degree 3 in G or contains none of them.
Pick any vertex v in T of degree 3 in G, and let Ni be the set of vertices in T such that, for every
vertex u in Ni, the unique path from v to u along the edges of T has length i. By the definition
of an alternating tree, all vertices in Ni are of degree 2 in G if i is odd and of degree 3 in G if i
is even. Suppose that v is in a minimum vertex cover, then removing v makes all vertices in N1

become of degree 1. By the observation given earlier, we can safely include all vertices in N2 in the
minimum vertex cover. Now removing all vertices in N2 makes all vertices in N3 become of degree
1, so we can include all vertices in N4 in the minimum vertex cover, and so on. This process will
eventually include all vertices in T that are of degree 3 in G in the minimum vertex cover. Since
v is an arbitrary degree-3 vertex, we have shown that there is a minimum vertex cover that either
contains all vertices in T that are of degree 3 in G, or contains none of them. Therefore, branching
on the vertices in T that are of degree 3 in G is correct.

Now only step 3 in Reducing still needs explanation and justification. Suppose that there is
a cut in G, which is either a cut-vertex or a two-edge cut, whose removal results in at least one
component H satisfying 2 ≤ |V (H)| ≤ 50. Step 3 of Reducing removes H as follows.

If the cut is a cut-vertex u, let H+ be the subgraph induced by H and u. We examine in
constant time all minimum vertex covers of H+. If any minimum vertex cover C+ of H+ contains
u, we simply include C+ in the partial cover C. If no minimum vertex cover of H+ contains u, then
if u has exactly one neighbor u′ not in H, we include an arbitrary minimum vertex cover of H+

and u′ into the partial cover C; otherwise, u has two neighbors not in H. In this case we remove H
and include an arbitrary minimum vertex cover of H+ into the partial cover (note that u remains
in the resulting graph).

If the cut consists of two edges (u, u′) and (v, v′), we can assume without loss of generality that
u and v are both in H, and that u 6= v (otherwise the case is reduced to the case of a cut-vertex).
Suppose first that u′ 6= v′. We distinguish the following cases.

5

(1) If there is a minimum vertex cover CH for H that contains both u and v, then we include CH

in the partial cover C.
(2) If there is a minimum vertex cover CH for H that includes u (resp. v) and every minimum
vertex cover of H excludes v (resp. u), then we include CH and v′ (resp. u′).
(3) If there are two minimum vertex covers Cu, Cv of H such that u ∈ Cu, and v ∈ Cv, then remove
H, add an edge (u′, v′) in case it does not already exist, and reduce the parameter k by τ(H).
When the algorithm returns a minimum vertex cover C ′ of the new graph, a minimum vertex cover
of the original graph can be computed as follows. If the minimum vertex cover C ′ of the new graph
contains u′, then C ′ ∪ Cv is a minimum vertex cover for the original graph; otherwise, C ′ ∪ Cu is.
(4) If every minimum vertex cover for H excludes both u and v, then we consider two possibilities:
(4.1) if the minimum size of a vertex cover for H containing both u and v is τ(H) + 2, then we
include a minimum vertex cover for H and u′ and v′; (4.2) if the minimum size of a vertex cover
for H containing both u and v is τ(H) + 1, then we remove H, add a new vertex w′, connect w′ to
u′ and v′, and reduce the parameter by τ(H). If the minimum vertex cover C ′ for the new graph
excludes both u′ and v′, then C ′ plus a vertex cover of H including both u and v of minimum size,
is a minimum vertex cover of the original graph; otherwise, C ′ includes both u′ and v′, and C ′

plus a minimum vertex cover of H is a minimum vertex cover of the whole graph (note that, as
mentioned before, we can always assume that a minimum vertex cover of the new graph includes
both u′ and v′ or excludes both of them).

Suppose now that u′ = v′ = w′. If case (1) above applies, then we do the same as in case (1).
Otherwise, we include an arbitrary minimum vertex cover of H and w′ in the partial cover.

It is not difficult to verify the correctness of the algorithm in handling the above cases provided
that the cases are considered in the listed order. Also, it is easy to see that the cases can be detected
and implemented in constant time. We leave the details to the interested reader.

Remark 2.4 Let (G, k) be an instance of VC-3. We can assume that when the algorithm VC3-
solver is initially called on the instance (G, k) the following holds true: (1) the parameter k passed
is not larger than the size of a minimum vertex cover of G; and (2) G is connected.

Suppose first that G is connected. Condition (1) can be justified as follows. By Proposition 2.1,
k ≥ n/2 where n = |V (G)|. We start calling the algorithm on G with k′ = n/2, n/2 + 1, . . . , k.
The first time the algorithm returns a vertex cover of size k′, we stop (note that the vertex cover
returned in this case must be a minimum vertex cover). Otherwise, no vertex cover of size bounded
by k exists. Clearly each call to the algorithm satisfies condition (1). We will show later that the
size of the search tree of the algorithm on the instance (G, k) is O(1.194k). Thus, the size of the
search tree in this case is O(1.194k′ + 1.194k′+1 + . . . + 1.194k) = O(1.194k). Hence, the upper
bound on the size of the search tree with the new modification to the algorithm is unchanged.
Now to justify (2), suppose that there are G1, . . . , Gr components in G with |V (Gi)| = ni. By
Proposition 2.1, we may assume that the size of a minimum vertex cover of Gi, τ(Gi), is ≥ ni/2.
We call the algorithm on G1, with k1 = n1/2, n1/2 + 1, . . . , k. If the algorithm fails to return
a vertex cover in each of these cases, then clearly no vertex cover of size bounded by k exists.
Otherwise, the algorithm returns a minimum vertex cover of G1 of size k1 ≤ k. Now we call the
algorithm on G2 with k2 = n2/2, n2/2+1, . . . , k− k1, and so on. It is now true that on each call to
the algorithm on a graph component, conditions (1) and (2) hold true. It is not difficult to verify
that the size of the search tree is still bounded by O(1.194k). We leave the details to the interested
reader.

6

3 Analysis of the algorithm

We analyze the time complexity of the algorithm VC3-solver in this section. Denote by L(k) the
number of leaves in the search tree of our algorithm looking for a vertex cover of size bounded
by k. Let α be a node in the search tree with a corresponding parameter k′ (i.e., the resulting
parameter at α is k′). If we branch at α by reducing the parameter k′ by k′1, k′2, . . ., k′s, in each
branch respectively, then such a branch will be called a (k′1, k′2, . . . , k′s)-branch.

Previously, the size of the branching tree (number of leaves) was analyzed by considering the
worst-case recurrence relation over all recurrence relations corresponding to the branching cases of
the algorithm, and computing the size of the search tree corresponding to this recurrence relation.
One can easily see that such analysis is very conservative since we do not always branch with the
worst-case recurrence, and hence, the size of the search tree will be much smaller than the size of
the search tree obtained in such a conservative analysis.

We present next a novel way of analyzing the size of the search tree. This can be achieved by
looking at the set of operations performed by the algorithm as an interleaved set of operations.
This allows us to counter-balance the effect of inefficient operations with efficient ones, thus
providing a better upper bound on the size of the search tree. Our goal is to show that the
size of the search tree corresponding to the running time of the algorithm on input (G, k) is not
larger than the size of a search tree corresponding to (G, k) with all its branches satisfying the
recurrence relation L(k) ≤ L(k − 3) + L(k − 5). This will allow us to conclude that the size
of the search tree is O(rk), where r ≤ 1.194 is the unique positive root of the polynomial x5−x2−1.

The graph G is called clean if no vertex of degree 0 or 1 exists in G. The graph G is called nice
if it is clean and no safe folding is applicable to any vertex in G. We will divide the operations
performed by the algorithm into four categories.

1. Folding operations: the operations performed in step 1 of the algorithm VC3-solver.

2. (1, 3) branching operations: the operations performed in step 2.3 of VC3-solver when we
branch on a degree-3 vertex. These operations occur only when the graph becomes 3-regular.

3. (2, 5) branching operations: the operations performed in step 2.2 of VC3-solver when we
pick a degree-2 vertex and branch on its neighbors. Note that at this point of the algorithm
the graph is nice, and hence, no safe folding is applicable. This means that the two vertices
that we branch on have five neighbors, and the branch in this case is a (2, 5)-branch.

4. The operations performed in Reducing and those performed by Clean.

Let i be an operation1 in any of the above categories. We define the following parameters for
operation i: ei the number of edges removed in operation i, vi the number of vertices removed in
operation i, and ki the reduction in the parameter after operation i. We define the surplus si of
operation i as follows. If i is a non-branching operation that reduces the parameter by ki, then
si = ki. If i is the a-side (resp. b-side) of a branching operation (a, b), where a ≤ b, then si = a− 3
(resp. si = b − 5). Informally speaking, si is the addition or reduction in the parameter, relative
to a (3, 5)-branch, that is gained or lost in an operation i. For instance, if i is the 6-side in a

1When looking at the search tree, a branching operation will denote the two sides of the branch, whereas when
looking at a certain path in the search tree, one side of a branching operation will be considered an operation by
itself. It should be clear from the context what is meant by a branching operation (i.e., either one side of the branch
or the whole branch).

7

(3, 6)-branch, then si = 6−5 = 1, whereas if i is the 2-side in a (2, 5)-branch, then si = 2−3 = −1.
We define the amortized cost mi of operation i by mi = 5ei − 6vi + 6si − 3ki. Note that if an
operation i is followed by Clean, we will combine the amortized cost of Clean with mi. Also note
that for any non-branching operation si = ki, therefore the amortized cost of such operation is
mi = 5ei − 6vi + 3ki.

The amortized cost defined above will serve as a measure to how good an operation is relative
to a (3, 5)-branch. Even though an operation may not be as good as a (3, 5)-branch, the operation
may induce some changes to the graph that are measured by the amortized cost. These changes
(like removing many edges relative to the number of vertices removed) will allow us to conclude that
if such an operation is performed, there will be some gain somewhere along the way to compensate
for this operation (like creating degree-1 vertices, or two adjacent degree-2 vertices). For instance,
we will show that the amortized cost of the 2-side of a (2, 5)-branch is non-negative. This will allow
us eventually to conclude that, whenever we have an operation that is a 2-side of a (2, 5)-branch, we
must have some efficient operation (like a safe folding operation) that can be used to compensate
for the 2-side of the branch, to make the branch at least as efficient as a (3, 5)-branch. We start
with the following lemma.

Lemma 3.1 Let C0 be a connected component in G, and let m0 be the amortized cost incurred by
invoking Clean on C0. If C0 is not a tree then m0 ≥ 0, and if C0 is a tree then m0 ≥ −6.

Proof. Suppose first that C0 is a non-tree connected component in G. Let e0, v0, k0 be the
parameters of the operation of applying Clean to C0. Since Clean is a non-branching operation, we
have m0 = 5e0− 6v0 + 3k0. If Clean removes the whole component C0, then since C0 is connected
and is not a tree, we have e0 ≥ v0. Also, k0 ≥ e0/3 since every removed edge must be covered
by the vertices that have been included in the vertex cover, and each vertex can cover at most 3
edges. It follows that the amortized cost m0 = 5e0− 6v0 + 3k0 ≥ 0. Now suppose that Clean does
not remove the whole component C0. Then any connected subgraph C ′ of C0 that is removed by
Clean must have at least one edge connecting it to C0, which is also removed by Clean. It follows
that the number of edges e′ removed when removing C ′ is at least as large as the number of vertices
v′ in C ′. Also, the reduction in the parameter k′ incurred in C ′ is k′ ≥ e′/3 by the same argument
as above. It follows that the amortized cost m′ induced by m0 on every connected subgraph C ′ of
C removed by Clean is non-negative. It is very easy to see that the amortized cost m0 on C0 is
the summation of the amortized cost on each connected subgraph removed by Clean (this follows
from the linearity of the expression for the amortized cost). It follows that the amortized cost m0

incurred by cleaning a non-tree component is always non-negative.
Suppose now that C0 is a tree. In this case Clean removes the whole component C0. It follows

that e0 = v0 − 1. This, together with k0 ≥ e0/3, give m0 = 5e0 − 6v0 + 3k0 ≥ −6.

Lemma 3.2 A non-branching operation on a connected component of a clean graph G has a non-
negative amortized cost.

Proof. Since G is clean, every connected component of G is also clean, and hence, is not a tree.
It follows, by a similar argument to that in Lemma 3.1, that the induced amortized cost on every
connected subgraph of G removed by the operation plus Clean is non-negative. Hence, the total
amortized cost is non-negative.

Fact 3.3 A tree with exactly two leaves is a chain (i.e., a path between the two leaves).

8

Lemma 3.4 On a nice graph G, an operation i performed in step 3 of Reducing followed by an
invocation to Clean, is not worse than a (3, 5)-branch and its amortized cost mi is non-negative.

Proof. In step 3 of Reducing, the algorithm removes a cut-vertex or two cut-edges. In both
cases, by our assumption, this results in a component H satisfying 2 ≤ |V (H)| ≤ 50.

Since the operation in this case does not involve any branching, it is not worse than a (3, 5)-
branch. We only need to verify that the amortized cost is non-negative. In the cases when the
operation does not add any vertices or edges to the graph, the fact that the amortized cost is non-
negative follows from Lemma 3.2. We only need to show this statement for case (3) in Theorem 2.3
when one edge is added, and case (4.2), when one vertex and two edges are added. We show the
statement for case (3). The proof that this statement holds true for case (4.2) is very similar.
Following the same notation in Theorem 2.3, let (u, u′), and (v, v′) be the two edges joining H
to the remaining graph with u, v being in H. The operation in case (3) removes H and adds an
edge (u′, v′) if this edge does not already exist. If the edge (u′, v′) already exists, then no edge
is added and we are done. Suppose that there is no edge (u′, v′) in G. Note that H cannot be a
tree, otherwise, since the operation is performed on a clean connected component of the graph, H
would have exactly two leaves namely u and v (note that a tree with at least two vertices must have
at least two leaves), and by Fact 3.3, H must be a chain. This would imply that there were two
adjacent degree-2 vertices in the graph prior to this operation (note that H can consist of only u
and v) contradicting the fact that no folding is applicable at this stage of the algorithm. Thus, we
must have eH ≥ vH , where eH and vH are the number of edges and vertices in H, respectively. The
operation removes eH + 1 edges (eH edges in H, (u, u′), (v, v′) are removed and (u′, v′) is added),
vH vertices, and reduces the parameter by kH . By a similar argument to that made in Lemma 3.1,
we must have kH ≥ eH/3. Since the operation is a non-branching operation, its amortized cost
mi = 5(eH + 1) − 6vH + 3kH ≥ 6eH − 6vH + 5 ≥ 5. Also, since prior to this operation the graph
was clean, it is easy to see that the resulting graph is also clean, and hence, the subroutine Clean
is not applicable. This completes the proof.

Proposition 3.5 Let G be a nice graph, and let S be a collection of disjoint induced trees in G
that are joined to G− S by l edges. Then |V (S)| ≤ 4l − 5.

Proof. It suffices to prove the proposition for the case when S contains one induced tree T .
The proof for the general case follows by successive application of the statement to each induced
tree in S.

Since the graph is nice, all leaves of T must be joined to G − T . Let E1 be the set of edges
that join the leaves of T to G − T , and let E2 be the set of other edges joining T to G − T . Let
l1 = |E1| and l2 = |E2| = l − l1. We remove the edges in E2 and perform the following operation
on the internal vertices of T : For any two degree-2 adjacent internal vertices merge them into one
vertex. Let T ′ be the resulting tree. Since G was nice before removing the edges in E2, it is easy
to verify that |V (T ′)| ≥ |V (T)| − 2l2. Now T ′ satisfies the following conditions: (1) T ′ has at most
l1 leaves; (2) no two internal degree-2 vertices in T ′ are adjacent; and (3) no internal vertex in T ′

is connected to G− T ′. A simple inductive argument shows that |V (T ′)| ≤ 4l1 − 5. It follows that
|V (T)| ≤ |V (T ′)|+ 2l2 ≤ 4l1 − 5 + 2l2 ≤ 4l − 5. This completes the proof.

Lemma 3.6 On a nice graph G, an operation i performed in step 4 of Reducing followed by an
invocation to Clean, is not worse than a (3, 5)-branch, and its amortized cost mi is non-negative.

Proof. Let T be a maximal alternating tree with |V (T)| ≥ 4. Let D2 and D3 be the sets of

9

vertices in T of degree 2 and degree 3 in G, respectively, and let x = |D3|. Let Y be the set of
neighbors of D3 that are not in T , i.e., Y = N(D3)−D2, and let |Y | = y. Since T is an alternating
tree containing x ≥ 1 degree-3 vertices, it can be easily verified that: (1) |D2| = x − 1 and hence
|V (T)| = 2x − 1; and (2) there are exactly (x + 2) edges between T and Y . Since the number of
vertices in an alternating tree is 2x − 1 which is an odd number, we have |V (T)| ≥ 5, and hence,
x ≥ 3. Part (2), together with the fact that x ≥ 3, imply that there are at least five edges between
T and Y . Since every vertex in the graph has degree bounded by 3, we have y ≥ 2. If y = 2, then
x ≤ 4, and the subgraph H induced by V (T)∪Y has size at most 9. Since no isolated components of
size ≤ 50 exist at this point of the algorithm by step 0 in Reducing, there must exist a cut-vertex
in Y that separates H from the rest of the graph. Since 2 ≤ |H| ≤ 50, this is again not possible
at this point of the algorithm by step 3 of Reducing. It follows that y ≥ 3, and branching in step
4 of Reducing on D3 gives a (|D3|, |D2| + |Y |) = (x, x − 1 + y) branch, which is not worse than
a (3, 5)-branch since both x and y are ≥ 3. What is left is showing that the amortized cost mi of
operation i is non-negative.

Consider first the side of the branch where we include the vertices in D3 in the partial cover.
The vertices removed by this branch are exactly those in T whose number is vi = 2x−1. The edges
removed are those in T plus the edges between T and Y . It is easy to see that these edges are
exactly the edges incident on the vertices in D3. Since no two degree-3 vertices in T are adjacent, it
follows that the number of edges ei removed by the branch is exactly 3x. Moreover, the reduction
ki in the parameter is exactly x, and the surplus is x− 3. Now let S be the set of tree components
in the resulting graph G − T , and let ti be the number of tree components in S. By Lemma 3.1,
the amortized cost of Clean on a non-tree component is non-negative, and on a tree component is
at least −6. It follows that the amortized cost of operation i including the invocation of Clean is

mi ≥ 5ei − 6vi + 6si − 3ki − 6ti

≥ 5(3x)− 6(2x− 1) + 6(x− 3)− 3x− 6ti

= 6x− 12− 6ti (1)

Observe that the tree components in S are disjoint, and each tree component must be connected
by at least two edges to T (since no degree-1 vertices exist in G). It follows from this observation
that there cannot be more than b(x + 2)/2c tree components in S, and hence, ti ≤ b(x + 2)/2c.
If x ≥ 6, then from Inequality (1), we get mi ≥ 0. Suppose now that x ≤ 5. We claim that in
this case either there exists a non-tree component in G − T that is joined to T by at least three
edges, or there exist at least two non-tree components in G − T . If all components in G − T are
tree components, i.e., G − T = S, then S is a collection of disjoint induced trees that are joined
to T by at most x + 2 = 7 edges satisfying the conditions of Proposition 3.5 with l = 7. It follows
in this case that the number of vertices in S is bounded by 23, and hence, the total number of
vertices in the graph component induced by V (T) ∪ V (S) is bounded by 32. This is not possible
at this point of the algorithm due to the fact that step 0 in Reducing was not applicable. Now
suppose that there is exactly one non-tree component C0 in G − T that is joined by exactly two
edges to T . By a similar argument to the above, the graph induced by V (T) ∪ V (S) has at most
24 vertices, and is connected to C0 by exactly two edges. This is again not possible by step 3 of
Reducing. It follows that the claim holds true. An immediate consequence of this claim is that
ti ≤ b(x+2−3)/2c = b(x−1)/2c. Combining this with (1), we get mi ≥ 3x−9 ≥ 0 because x ≥ 3.

Now on the other side of the branch we include the neighbors of D3: D2 and Y . Let α be the
number of edges between the vertices of Y , and z that between the graph induced by V (T) ∪ Y
and the remaining graph. It is not difficult to verify that in this side of the branch the number of

10

edges ei removed is 3x + z + α, the number of vertices vi removed is 2x− 1 + y, and the reduction
in the parameter ki is x − 1 + y. Let S be the set of tree components in (G − T) − Y , and ti the
number of tree components in S. Now

mi ≥ 5ei − 6vi + 6si − 3ki − 6ti

≥ 5(3x + z + α)− 6(2x− 1 + y) + 6(x− 1 + y − 5)− 3(x− 1 + y)− 6ti

≥ 6x− 3y + 5α + 5z − 6ti − 27. (2)

Since the alternating tree is maximal, all vertices in Y have degree 3. By counting the sum of
the degrees of the vertices in Y , we get

3y = x + 2 + z + 2α. (3)

Combining (2) and (3) and noting that ti ≤ bz/2c, we get

mi ≥ 5x + 3α + 4z − 6ti − 29 (4)
≥ 5x + z + 3α− 29. (5)

If x ≥ 6, then from Inequality (5) we have mi ≥ 0. If x = 5, then from: Inequality (5), the fact
that z ≥ 3, Equality (3), and the fact that y is an integer, we have mi ≥ 0. If x = 4 and z ≥ 9,
then again by Inequality (5), mi ≥ 0. We are left with the cases x = 4 and z < 9, or x = 3. In the
case when x = 3, it is easy to check that z ≤ 10, because there cannot be more than 5 vertices in
Y each of which has to be joined by at least one edge to T . It follows that in both cases z ≤ 10
and |V (T)∪Y ∪V (S)| ≤ 50 (since |V (S)| ≤ 35 by Proposition 3.5). By an argument similar to the
above, we must have at least two non-tree components in G− (V (T)∪Y), or a non-tree component
that is joined to Y by at least three edges. It follows that ti ≤ b(z − 3)/2c. Combining this with
Inequality (4), we get

mi ≥ 5x + 3α + 4z − 6b(z − 3)/2c − 29 (6)
≥ 5x + z + 3α− 20. (7)

Since x ≥ 3 and z ≥ 3, if x ≥ 4, z ≥ 5, or α ≥ 2, by (7) we get mi ≥ 0. Assume now that x = 3,
z ∈ {3, 4}, and α ∈ {0, 1}. Because x, y, z, α are all integers, it is easy to see from (3), that the
only possible case is when x = 3, y = 3, z = 4, α = 0. Substituting these values in (6), we get
mi ≥ 2.

It follows that branch i is not worse than a (3, 5)-branch, and the amortized cost of i including
the invocation to Clean is non-negative. This completes the proof.

Theorem 3.7 Let i be an operation performed by Reducing followed by an invocation to Clean.
Then i is not worse than a (3, 5)-branch and the amortized cost mi of i is non-negative.

Proof. Steps 0, 1, and 2 of Reducing followed by invocations to Clean do not involve
any branching operations, and hence, they are more efficient than (3, 5) branches. Moreover, by
Lemma 3.2, the amortized cost corresponding to any non-branching operation is non-negative.
Lemma 3.4 shows that Step 3 of Reducing followed by an invocation to Clean is not worse than
a (3, 5)-branch and has a non-negative amortized cost, and Lemma 3.6 establishes the same fact
for Step 4 of Reducing.

11

Proposition 3.8 Let O be an operation that removes e0 edges, v0 vertices, reduces the parameter
by k0, and has surplus s0. Let m0 = 5e0 − 6v0 + 6s0 − 3k0 be the amortized cost of operation O.

(i) If O is a category 1 operation then m0 ≥ 1.

(ii) If O is the 1-side branch in a category 2 operation then m0 = −6.

(iii) If O is the 3-side branch in a category 2 operation then m0 ≥ −6.

(iv) If O is the 2-side branch in a category 3 operation then m0 = 0.

(v) If O is the 5-side branch in a category 3 operation then m0 ≥ 1.

(vi) If O is a category 4 operation, then m0 ≥ 0.

Proof. A folding operation can either remove two edges and two vertices or three edges and
2 vertices. Hence, e0 ≥ 2 and v0 = 2. In both cases we have s0 = k0 = 1 (since there is no
branching). It follows that m0 ≥ 1. Now in the 1-side of the (1, 3)-branch it is always the case that
exactly one vertex and three edges are removed. Since s0 = −2 and k0 = 1, we have m0 = −6.
Also, the remaining graph is clean, and Clean is not applicable. Similarly, for the 2-side of the
(2, 5)-branch, 6 edges and 3 vertices are removed, and no degree-1 vertices are created since all the
neighbors of the two vertices that we removed must be of degree-3 (otherwise we would have an
alternating tree of size at least 5, which is not possible since Reducing is not applicable at this
point). Since s0 = −1 and k0 = 2, we have m0 = 0. In all the above cases, the subroutine Clean
is not applicable since all the remaining vertices have degrees larger than one. This proves parts
(i), (ii), (iv).

To prove part (iii), note first that in the 3-side of the (1, 3) branching we have s0 = −2
and k0 = 3. Also, we know that before this operation the graph G is 3-regular. Let u be the
degree-3 vertex that we branch on, and let v, w, z be its neighbors. Let H be the graph induced
by {u, v, w, z}. Since Reducing does not apply at this point, there cannot be more than one
edge among v, w, z (otherwise, we would have two adjacent triangles). Suppose that there exists
one edge among v, w, z. This means that there are exactly four edges connecting H to G − H.
Note that in this case no component in G − H can be a tree, otherwise, using Proposition 3.5,
the graph induced by the vertices of the tree component plus the vertices of H has size bounded
by 50, and is connected to the remaining graph by at most two edges (since the tree component
has to be connected to {v, w, z} by at least two edges), which is not possible at this stage of the
algorithm since steps 0 and 3 of Reducing do not apply. Thus, we can assume that no component
in G − H is a tree, and hence by Lemma 3.1, the amortized cost of Clean in case it is invoked
is non-negative. The number of edges and vertices removed in this case is 8 and 4, respectively,
giving m0 ≥ 5e0 − 6v0 − 21 = −5.

Now suppose that no edge exists among v, w, z, and hence, there are exactly six edges connecting
H to G − H. By a similar argument to the above, we cannot have two different components in
G − H that are trees. Thus, in the worst case, the amortized cost of Clean is at least −6 by
Lemma 3.1. The branch itself removes 9 edges and 4 vertices from the graph. Since the total
amortized cost is the sum of the amortized cost of the branch and that of Clean, it follows that
m0 ≥ 5e0 − 6v0 − 27 = −6.

Now we look at part (v) which is the 5-side of the (2, 5)-branch. Note that in this case we
have s0 = 0 and k0 = 5. Let u be the degree-2 vertex that we branch on, and let v and w be
its neighbors. Let v1 and v2 be the neighbors of v other than u, and w1 and w2 be those of w.

12

Observe that since folding is not applicable, v and w must be of degree 3 and they do not share
any neighbors. Also, since no alternating tree of size ≥ 5 exists at this point, v1, v2, w1, w2 must
be all of degree 3. Let H be the graph induced by {u, v, w, v1, v2, w1, w2}. If there are more than
two edges among the vertices {v1, v2, w1, w2}, the graph H, which has size bounded by 50, would
be connected to G−H by at most two edges, which is not possible at this stage of the algorithm.
If the number of edges between {v1, v2, w1, w2} is two, then there are exactly four edges connecting
H to G−H. By a similar argument to the above, there cannot be any tree component in G−H,
otherwise, there will be at most two edges connecting H and the tree (having size bounded by
50), to the remaining graph. The number of edges and vertices removed in this case is 12 and 7
giving m0 ≥ 3, and the amortized cost of Clean is positive (since there is no tree component).
Now suppose there is exactly one edge between {v1, v2, w1, w2}. In this case the number of edges
between H and G −H is exactly six, and the number of edges and vertices removed is 13 and 7.
By the same token, there cannot be two tree components in G−H, and hence the amortized cost
of Clean is at least −6 by Lemma 3.1. This gives m0 ≥ 5e0 − 6v0 − 21 = 2. If there are no edges
among {v1, v2, w1, w2}, then there are exactly eight edges connecting H to G−H, and the number
of edges and vertices removed is 14 and 7. Again, we cannot have more than two tree components
in G−H giving an amortized cost of at least −12 for Clean. This gives m0 ≥ 5e0 − 6v0 − 27 = 1.
It follows that in all cases of the branch m0 ≥ 1.

To prove part (vi), note that a category 4 operation is either an operation that is performed in
Reducing or one that is performed in Clean. If O is an operation that is performed in Reducing,
then by Theorem 3.7, the amortized cost of O including the call to Clean is non-negative. Now if O
is an operation in Clean that does not follow an operation in Reducing, by the above discussion,
O must be the operation following a 3-side of a (1, 3)-branch, or a 5-side of a (2, 5)-branch (these
cover all the cases in which Clean is called). By parts (iii) and (v) above, the negative part of
the amortized cost of Clean was combined with the amortized cost of the operation itself, and the
remaining part is positive. This completes the proof.

Based on Proposition 3.8, we give in Figure 3 the parameters for any operation i in the four
categories. If operation i is a category 4 operation (or one side of a category 4 operation), then we
denote its surplus by si, reduction in the parameter by ki, and amortized cost by mi. In all cases,
either the amortized cost or a lower bound on it, is given in the table.

(2, 5) branching
5-side
2-side

(1, 3) branching
3-side
1-side

Folding

Operations reduction
in k

surplus amortized
cost

A category 4 operation i

1 1
1 −2
3 −2
2 −1
5 0
ki si

1
−6
−6

0
1

mi ≥ 0

Figure 3: The parameters of the operations

Definition 3.9 Let α be a node in the search tree T of the algorithm corresponding to (G, k). We
define the label of α to be the reduction in the parameter along the branch in the tree from the parent
of α to α. If α is the root of T , then the label of α is k, where k is the original parameter.

13

Definition 3.10 Let P = (αi, . . . , αj) be a path in the search tree T corresponding to the execution
of the algorithm. Let x1 be the number of nodes on P of label 1 corresponding to the 1-side of the
(1, 3) branches, x3 the number of nodes of label 3 corresponding to the 3-side of the (1, 3) branches,
and x2 the number of nodes of label 2 corresponding to the 2-side of the (2, 5) branches. Let d be
the sum of the labels of all the nodes on P that correspond to folding operations plus the sum of
all the surplus si over every category 4 operation i on P . The path P is said to be compressible if
d ≥ 2x1 + 2x3 + x2.

Informally speaking, d corresponds to the “extra” (or bonus) reduction in the parameter re-
sulting from efficient operations along the path. Therefore, if a path P is compressible, then along
P we can find enough “bonus” reduction in the parameter that can be used to render all ineffi-
cient operations (1-side, 3-side of (1, 3) branches, and 2-side of (2, 5) branches) along P at least as
efficient as (3, 5) branches.

Proposition 3.11 Let T be the search tree corresponding to the execution of the algorithm on
input (G, k). Suppose that all the branching operations performed by the algorithm can be classified
as (1, 3), (2, 5), and other branching operations (a, b), where (a, b) is at least as efficient as a (3, 5)-
branch. If every root-leaf path in T is compressible, then the number of leaves L(k) in T is bounded
by O(rk) where r is the root of the polynomial x5 − x2 − 1.

Proof. Since every root-leaf path in T is compressible, the reduction in the parameter along
any root-leaf path corresponding to folding operations and the surplus of category 4 operations d
satisfies the inequality d ≥ 2x1 + 2x3 + x2. This can be interpreted as follows. For every 1-side
of a (1, 3)-branch we have an “extra” reduction in the parameter of value 2, for every 3-side of a
(1, 3)-branch we have an “extra” reduction in the parameter of value 2, and for every 2-side of a
(2, 5)-branch we have an “extra” reduction in the parameter of value 1. Thus, the nodes labeled
1 and 3 that correspond to the 1-side and 3-side of the (1, 3) branches, and the nodes labeled 2
that correspond to the 2-side of the (2, 5) branches, can be re-labeled (combined with the nodes
corresponding to the efficient operations that reduce the parameter on the path) to yield nodes
labeled 3, 5, and 3 that correspond to the 3-side, 5-side, and 3-side branches respectively. All other
nodes correspond to operations that are at least as efficient as (3, 5) branching. If we compress
every root-leaf path in the tree, we transform the tree into a tree that corresponds to an algorithm
whose branches are at least as efficient as (3, 5) branches. This completes the proof.

To prove that the number of leaves in the search T is bounded by O(rk), where r is the positive
root of the polynomial x5 − x2 − 1, by the above proposition, it suffices to show two things. The
first is that every branching operation in category 4 is not worse than a (3, 5)-branch which was
done in Theorem 3.7, and the second is that every root-leaf path in T is compressible. We show
next that every root-to-leaf path in T is compressible.

Proposition 3.12 Let S = (αi, αi+1, . . . , αi+l−1, αi+l), l > 0, be a subpath of a path P in T .
Suppose that none of the nodes αj, i < j < i + l, corresponds to a 3-regular graph. If αi+l

corresponds to a 3-regular graph then the subpath S = (αi, . . . , αi+l−1) is compressible.

Proof. Let mi, ni be the number of edges and vertices of the graph at αi, and mi+l, ni+l those
at αi+l. Since the graph at αi+l is 3-regular, we have mi+l/ni+l = 3/2. Let m′ = mi − mi+l,
n′ = ni − ni+l. Since mi/ni ≤ 3/2 (the graph has degree bounded by 3), it is easy to see that
m′/n′ ≤ 3/2.

14

Let xf be the number of folding operations on S, Ef the number of edges removed, Vf the
number of vertices removed, Sf the surplus, and Kf the reduction of the parameter, in all folding
operations on S. In a similar way, define x1, E1, V1, S1, K1, for the 1-side of the (1, 3) branches;
x3, E3, V3, S3, K3, for the 3-side of the (1, 3) branches; x2, E2, V2, S2, K2 for the 2-side of the
(2, 5) branches; x5, E5, V5, S5, K5, for the 5-side of the (2, 5) branches; and xr, Er, Vr, Sr, Kr, for
the category 4 operations on S. Since m′/n′ ≤ 3/2, we can write

Ef + E1 + E3 + E2 + E5 + Er

Vf + V1 + V3 + V2 + V5 + Vr
≤ 3

2
(8)

Arranging (8), we get

3Vf − 2Ef ≥ (2E1 − 3V1) + (2E3 − 3V3) + (2E2 − 3V2) + (2E5 − 3V5) + (2Er − 3Vr) (9)

By the linearity of the amortized cost, we can define the amortized cost for each type of op-
erations, λ (λ = 1, 2, 3, 5, r, f), by: Mλ = 5Eλ − 6Vλ + 6Sλ − 3Kλ. Since the total Kλ ver-
tices included in the partial cover for any group of operations λ must cover all the Eλ edges
removed by that type, and since each vertex can cover at most three edges, Kλ ≥ dEλ/3e. Hence,
2Eλ − 3Vλ ≥ −3Sλ + Mλ/2. Using this inequality and the parameters of the operations given
in Figure 3, we get: 3Vf − 2Ef ≤ 5

2xf , 2E1 − 3V1 ≥ 3x1, 2E3 − 3V3 ≥ 3x3, 2E2 − 3V2 ≥ 3x2,
2E5 − 3V5 ≥ 1

2x5, 2Er − 3Vr ≥ −3Sr + Mr/2. Substituting these bounds in Inequality (9) and
arranging it we get:

xf + Sr ≥ x2 + (x1 + x3) + x5/6 + xf/6 + Mr/6 (10)

By Proposition 3.8, a category 4 operation has non-negative amortized cost. Hence Mr ≥ 0.
Let d = xf + Sr be the reduction in the parameter along S caused by folding and the surplus of
category 4 operations (as defined in Definition 3.10). From Equation (10), we have d ≥ x2 + (x1 +
x3) + xf/6 + x5/6 + Mr/6. Note that the graph becomes 3-regular at most once along S (this can
only happen at node αi), and hence, x1 + x3 ≤ 1. Also, since the graph becomes 3-regular at node
αi+l, it is not difficult to verify the following: Either we must have at least one folding operation
along S, or at least one operation of those described in case (3) of Theorem 2.3. This is true since
these are the only operations that could make the graph become 3-regular (note that by part (2)
of Remark 2.4, we can assume that initially G is connected. The only way to create a 3-regular
component during the execution of the algorithm is either by a folding operation or by an operation
in case (3) of Theorem 2.3, which adds an edge to the resulting graph). Since the amortized cost
of the operation in case (3) of Theorem 2.3 was proved in Lemma 3.4 to be ≥ 5, it follows that if
the graph becomes 3-regular along S then either xf ≥ 1 or Mr ≥ 5. Thus, if x1 + x3 = 1, since d is
an integer, we have d ≥ x2 +2 = x2 +2(x1 +x3). If x1 +x3 = 0, again we have d ≥ x2 +2(x1 +x3).
It follows that d ≥ x2 + 2(x1 + x3), and the subpath S is compressible.

Proposition 3.13 Let G be a nice graph and let m and n be the number of edges and vertices in
G, respectively. Then m/n ≥ 6/5.

Proof. Since G is nice, no folding operation is safe. It follows that no two degree-2 vertices
are adjacent. Let n2 and n3 be the number of degree-2 and degree-3 vertices in G, respectively.
Then n = n2 + n3 (G is clean). Since no two degree-2 vertices in G are adjacent, every edge in
the graph either joins two degree-3 vertices, or a degree-2 vertex to a degree-3 vertex. It follows
that m = 2n2 + (3n3 − 2n2)/2. Moreover, from the same hypothesis it follows that 3n3 ≥ 2n2.
Combining the above three relations we get the desired result.

15

Lemma 3.14 Every root-to-leaf path in the search tree T corresponding to the algorithm VC3-
solver is compressible.

Proof. Let P ′ be an arbitrary root-leaf path in T , and let α be the last node on P ′ that
corresponds to a 3-regular graph if such a node exists, otherwise, let α be the root of P ′. If α
corresponds to a 3-regular graph, then one can easily show using Proposition 3.12 and a simple
inductive argument (on the number of nodes that correspond to 3-regular graphs), that the subpath
of P ′ from the root to the node preceding α is compressible. To show that P ′ is compressible, it
remains to show that the subpath from α to the leaf of P ′, henceforth denoted by P , is compressible.
Let n,m, and k be the number of vertices, edges, and parameter, respectively, in the graph at the
root node of P (i.e., α). Then the following inequalities hold:

m/n ≤ 3/2 (11)

k ≥ n/2 (12)

Inequality (12) is true for any 3-regular graph, and if node α does not correspond to a 3-regular
graph, then α is the root node of P ′, and Inequality (12) holds by Proposition 2.1.

Let α0 be the last node on P corresponding to a branching operation (i.e., all nodes after α0

correspond to folding or non-branching operations). Let xf , Ef , Vf , Kf , Sf , x1, E1, V1, K1, S1,
x3, E3, V3, K3, S3, x2, E2, V2, K2, S2, x5, E5, V5, K5, S5, xr, Er, Vr, Kr, Sr, denote the same
entities as in Proposition 3.12 along the subpath on P from the root to the node preceding α0. Let
e′, n′, k′, and s′, be the number of edges eliminated, number of vertices eliminated, reduction in
the parameter, and the surplus, respectively, in the remaining subpath of P starting at α0. Each
operation performed by the algorithm reduces the parameter k by the coefficient listed in the table
in Figure 3 for that operation. For instance, each folding operation reduces the parameter by 1.
Since xf is the number of folding operations performed by the algorithm, the total reduction in the
parameter attributed to the folding operations is xf . Similarly for the other operations. By part
(1) in Remark 2.4, we can assume that the parameter k is not larger than the size of a minimum
vertex cover of G. Thus, at the leaf node of the path P we can write the following inequality:

xf + x1 + 2x2 + 3x3 + 5x5 + Kr + k′ ≥ k (13)

One point in the above inequality needs clarification. As it was shown before, the partial cover
grown at each step of the algorithm is always contained in a minimum vertex cover. Thus, when the
algorithm terminates along any path in the search tree, either the computed cover is a minimum
vertex cover, and hence, the reduction in the parameter along the path is exactly equal to the size
of the minimum vertex cover, or the size of the resulting cover has exceeded the parameter k, and
hence, the reduction in the parameter along the path is greater than k. This justifies writing the
above inequality.

According to our algorithm, before it performs a branching operation the graph must be nice,
i.e., there are no degree-0 and degree-1 vertices, and no safe folding is applicable. It follows that
before the last branch at node α0 the graph is nice. By Proposition 3.13, at the node preceding α0

the ratio of the number of edges to the vertices in the graph is not smaller than 6/5. Thus, we can
write the following inequality:

m− Ef −E1 − E3 − E2 − E5 − Er

n− Vf − V1 − V3 − V2 − V5 − Vr
≥ 6

5
(14)

16

In a similar way to that in Proposition 3.12, we can define the amortized cost for each type of
operations λ (λ = 1, 2, 3, 5, r, f), by: Mλ = 5Eλ − 6Vλ + 6Sλ − 3Kλ. Hence, we have 5Eλ − 6Vλ =
Mλ + 3Kλ − 6Sλ. Using this equality and the parameters of the operations given in Figure 3 we
get: 6Vf − 5Ef ≤ 2xf , 5E1 − 6V1 ≥ 9x1, 5E3 − 6V3 ≥ 15x3, 5E2 − 6V2 ≥ 12x2, 5E5 − 6V5 ≥ 16x5,
5Er − 6Vr ≥ Mr + 3Kr − 6Sr. Combining the previous inequalities with Inequalities (11), (12),
(13), (14), and arranging the terms we get:

5xf ≥ 6x1 + 6x2 + 6x3 + x5 + Mr − 6Sr − 3k′ (15)
Hence:

xf + Sr ≥ x2 + (x1 + x3) + x5/6 + Mr/6 + xf/6− k′/2 (16)

Accommodating for the surplus s′ in Inequality (16), we get:

xf + Sr + s′ ≥ x2 + (x1 + x3) + x5/6 + Mr/6
+xf/6 + s′ − k′/2 (17)

Let d be the reduction in the parameter along the path P corresponding to folding and category
4 operations (as defined in Definition 3.10), then d = f +Sr +s′. By Proposition 3.8, the amortized
cost of category 4 operations Mr ≥ 0. It follows that

d ≥ x2 + (x1 + x3) + xf/6 + s′ − k′/2 (18)

We can assume that the size of a minimum vertex cover in the resulting graph at α0 is larger
than 16 (i.e., k′ ≥ 17); otherwise, either the size of the graph would be bounded by 50 (since the
graph is nice and has degree bounded by 3) and no branching is needed since step 0 of Reducing
would be applicable, or the algorithm can reject the instance with no branching if the size of the
graph is larger than 50 (since covering such a graph with fewer than 17 vertices is not possible).
If the branch at α0 is a side of a branch that is not worse than a (3, 5)-branch (like a branch that
occurs in Reducing), then the branch at α0 along P does not contribute to the parameters x1, x2,
x3 involved in the path compression. To show that P is compressible in this case, we need to show
that d ≥ x2 +2(x1 +x3). Since s′ ≥ k′−5 (from the definition of the surplus), and k′ ≥ 17, we have
d ≥ x2 +(x1 +x3)+xf/6+7/2. Since d is an integer, d ≥ x2 +(x1 +x3)+4. Note that at most one
node on P (node α) can be a side of a (1, 3)-branch. This is true since only the root node on P can
correspond to a 3-regular graph. Thus, x1 + x3 ≤ 1. Hence, d ≥ x2 + 2(x1 + x3), and the path P is
compressible. Now suppose that α0 contributes to the parameters x1, x2, or x3. We assume that α0

is the 2-side of a (2, 5)-branch (the other cases when α0 is the 1-side or 3-side of a (1, 3)-branch are
easier to handle). Then s′ = k′ − 2 (all the reduction in the parameter along P after node α0 is a
surplus). To show that P is compressible, we need to show in this case that d ≥ (x2+1)+2(x1+x3)
(α0 contributes by 1 to the number of 2-side branches x2 on the path on P up to the node before
α0). Since k′ ≥ 17 and d is an integer, we get d ≥ x2 + (x1 + x3) + 7 = (x2 + 1) + (x1 + x3) + 6. By
the same token, x1 + x3 ≤ 1, and d ≥ (x2 + 1) + 2(x1 + x3). Thus, P is compressible. This shows
that in all cases P is compressible. It follows that the path P ′ is compressible, and hence, every
root-leaf path in T is compressible. This completes the proof.

Theorem 3.15 The algorithm VC3-solver runs in time O(1.194k + n).

Proof. First observe that by spending O(n) time pre-processing the input instance, we can
remove vertices of degree 0 and 1. After that, it must be true that every component in the graph
is a non-tree component, and hence, at least one third of the number of vertices in each component

17

must be included in any vertex cover of the component. This means that the resulting parameter
k satisfies k ≥ n/3, where n is the number of vertices in the resulting graph (otherwise the answer
to the instance is negative). Then the algorithm mentioned in Proposition 2.1 is applied. This
algorithm runs in O(k

√
k) time. Finally the algorithm VC3-solver is invoked. Let T be the

search tree corresponding to the execution of the algorithm VC3-solver on the input instance. By
Lemma 3.14, every root-leaf path in T is compressible. Since every branching operation in T can
be classified as a (1, 3), (2, 5), or (a, b), with (a, b) not worse than a (3, 5)-branch, it follows from
Proposition 3.11 that the number of leaves in T is O(rk), where r ≤ 1.194 is the positive root of the
polynomial x5 − x2 − 1. Now we claim that along every root-leaf path in T the time spent by the
algorithm is linear in the size of the graph (which is O(k)). Let us look at the operations performed
by the algorithm. First, whenever Clean is invoked, the time spent is proportional to the size of the
subgraph removed. Also, it is not difficult to search for the vertices that need cleaning after each
operation, since the search can be localized. It follows that along the whole path in the tree the
time taken by Clean is O(k). By the same argument, the total time taken by Fold along a root-leaf
path in T is O(k). Also the time taken by a branching operation is constant, which means that the
total time taken by branching operations along a path is O(k). The only thing that remains to be
analyzed is the time taken by Reducing. Observe the following. Even though the statements in
the subroutine Reducing ask for checking whether a certain structure exists in the graph, which
normally would take O(k) to do, we only need to check the existence of such a structure in the
vicinity of a vertex that we need to branch at. This is true since the analysis only assumes that
no such structure exists in the vicinity of the vertex and not in the whole graph. Thus, the search
can be localized to a specific vertex. For instance, if the graph is 3-regular, then according to the
algorithm, in such a case we pick any vertex and branch on it. Now we can pick a vertex v, and
apply the subroutine Reducing to the vicinity of v. If the algorithm does not find any of the
structures mentioned in Reducing in the vicinity of v, then the algorithm branches at v (the size
of the vicinity of a vertex can be upper bounded by a constant). If the algorithm finds one of the
structures specified in Reducing, then this structure is removed. The time spent by the subroutine
now is proportional to the size of the structure removed. This means that if we remove a structure
with a certain number of vertices, then those vertices will never contribute to the search time in
later operations along the path. It should not be difficult to see that with this implementation of
the algorithm, and using suitable data structures, the time spent by Reducing along a path in T
is O(k). Now the running time of the algorithm is O(n + k

√
k + 1.194kk) = O(1.194kk + n), where

O(k
√

k + n) is the pre-processing time. Niedermeier and Rossmanith showed how to get rid of the
size of the kernel in the running time [18]. Applying their techniques, we conclude that the running
time of the algorithm VC3-solver is O(1.194k + n).

4 An algorithm for IS-3

In this section we show how the algorithm for VC-3 implies an algorithm for IS-3. The approach is
exactly the same as that used in [5]. The algorithm for IS-3 runs in time O(1.1254n), and slightly
beats Beigel’s O(1.1259n) time algorithm [2].

Lemma 4.1 (Lemma 6.1, [5]) Let G be a connected graph of n vertices and degree bounded by
3. Then a minimum vertex cover of G contains at most (2n + 1)/3 vertices.

Theorem 4.2 The IS-3 problem can be solved in time O(1.1254n).

Proof. Let G be a graph of degree bounded by 3. The graph G may not necessarily be connected.

18

Let C1, . . ., Ck be the connected components of G of sizes n1, . . ., nk, respectively. It is clear that a
maximum independent set of G is the union of maximum independent sets of the components C1,
· · ·, Ck. For each component Ci of G, instead of finding a maximum independent set for Ci, we try
to construct a vertex cover of ki vertices, for ki = 1, 2, At the first ki for which we are able to
construct a vertex cover of ki vertices for Ci, we know this vertex cover is a minimum vertex cover.
Thus, the complement of this vertex cover is a maximum independent set for Ci. By Lemma 4.1,
we must have ki ≤ (2ni + 1)/3. Thus, by Theorem 3.15, a maximum independent set for the
component Ci can be constructed in time O(1.194(2ni+1)/3+ni), which is O(1.1254ni). In conclusion,
a maximum independent set in the graph G can be constructed in time O(1.1254n1 +· · ·+1.1254nk).
Now it is fairly straightforward to verify that O(1.1254n1 + · · ·+ 1.1254nk) = O(1.1254n).

5 Conclusion

In this paper we presented algorithms for the parameterized Vertex Cover and the Maximum
Independent Set problems on degree-3 graphs. Our algorithm for VC-3 runs in time O(1.194k +
n) and improves Chen et al.’s O(1.237k + kn) time algorithm [6]. Our algorithm for IS-3 runs in
time O(1.125n) and improves Beigel’s O(1.126n) time algorithm [2].

We emphasize that the importance of our results lies in the techniques that we use to analyze
the size of the search tree. Despite the fact that the analysis of the algorithm is lengthy, the
algorithm itself is very simple and uniform. The algorithm distinguishes few cases to eliminate
cut-vertices and bridges from the graph. However, all these cases are solved easily and without any
branching. As a matter of fact, these cases use very simple and elegant graph-theoretic operations
that can be generalized in a straightforward manner to the Vertex Cover problem on general
graphs. If one looks carefully at the algorithm itself, the algorithm is very intuitive. Basically the
overall behavior of the algorithm can be described as follows. As long as the case can be solved
without any branching, solve it (folding, reducing, and cleaning). If none of the above applies, then
either we can do an efficient and uniform branch (alternating tree), which is a single branch that
does not distinguish any cases, or we branch arbitrarily at any vertex, and the amortized analysis
shows that this operation will be balanced later by non-branching operations. The analysis of the
algorithm might be lengthy, but the techniques involved are elementary combinatorial techniques.

Finally, we indicate that our approach opens a new direction in the analysis of the running
time of exact algorithms for NP-hard problems that use the search tree method. Instead of looking
at sophisticated algorithms and deriving an easy but conservative upper bound on the size of the
search tree, we can consider instead very simple and intuitive algorithms, and perform an amortized
analysis that reflects more closely the actual size of the search tree. We believe that this method
of analysis is applicable to a variety of NP-hard optimization problems.

References

[1] R. Balasubramanian, M. R. Fellows, and V. Raman, An improved fixed parameter
algorithm for vertex cover, Information Processing Letters 65, (1998), pp. 163-168.

[2] R. Beigel, Finding maximum independent sets in sparse and general graphs, in Proceedings
of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA’99), (1999), pp. 856-857.

[3] J. F. Buss and J. Goldsmith, Nondeterminism within P, SIAM Journal on Computing
22, (1993), pp. 560-572.

[4] L. Cai and D. Juedes, On the existence of subexponential-time parameterized algorithms,
available at http://www.cs.uga.edu/ ˜ cai/.

19

[5] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further observations and further improve-
ments, Journal of Algorithms 41, (2001), pp. 280-301.

[6] J. Chen, L. Liu, and W. Jia, Improvement on Vertex Cover for low-degree graphs, Networks
35, (2000), pp. 253-259.

[7] DIMACS Workshop on Faster Exact Algorithms for NP-hard problems, Princeton, NJ, (2000).

[8] R. Downey and M. Fellows, Parameterized computational feasibility, in Feasible Math-
ematics II, P. Clote and J. Remmel, eds., Boston, Birkhauser (1995), pp. 219-244.

[9] R. Downey and M. Fellows, Parameterized Complexity, New York, Springer, (1999).

[10] P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Comput-
ing 44, (1990) pp. 279-303.

[11] R. Impagliazzo, R. Paturi, and F. Zane, Which Problems Have Strongly Exponential
Complexity?, Journal of Computer and System Sciences (JCSS) 63-4, (2001), pp. 512-530.

[12] T. Jian, An O(20.304n) algorithm for solving the maximum independent set problem, IEEE
Transactions on Computers 35, (1986) pp. 847-851.

[13] D. Johnson and M. Szegedy, What are the least tractable instances of max. independent
set?, Proceedings of the (SODA’99), (1999), pp. 927-928.

[14] D. S. Johnson and M. A. Tricks, Eds., ”Cliques, Coloring and Satisfiability, Second DI-
MACS Implementation Challenges”, DIMACS Series on Discrete Mathematics and Theoretical
Computer Science 26, American Mathematical Society, Providence, RI, (1996).

[15] I. A. Kanj, Vertex Cover: exact and approximate algorithms and applications, Ph.D.
Dissertation, Dept. Computer Science, Texas A&M University, College Station, Texas, (2001).

[16] G. L. Nemhauser and L. E. Trotter, Vertex packing: structural properties and algo-
rithms, Mathematical Programming 8, (1975), pp. 232-248.

[17] R. Niedermeier and P. Rossmanith, Upper bounds for vertex cover further improved,
Lecture Notes in Computer Science 1563, (1999), pp. 561-570.

[18] R. Niedermeier and P. Rossmanith, A general method to speed up fixed-parameter-
tractable algorithms, Information Processing Letters 73, (2000), pp. 125-129.

[19] J. M. Robson, Algorithms for maximum independent set, J. of Alg. 6, (1977), pp. 425-440.

[20] M. Shindo and E. Tomita, A simple algorithm for finding a maximum clique and its
worst-case time complexity, Sys. and Comp. in Japan 21, (1990), pp. 1-13.

[21] U. Stege and M. Fellows, An improved fixed-parameter-tractable algorithm for vertex
cover, Technical Report 318, Department of Computer Science, ETH Zurich, April 1999.

[22] R. E. Tarjan and A. E. Trojanowski, Finding a maximum independent set, SIAM
Journal on Computing 7, (1986), pp. 537-546.

20

