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Abstract— A deep understanding of the structural properties
of wireless networks is critical for evaluating the performance of
network protocols and improving their designs. Many protomls
for wireless networks — routing, topology control, information
storage/retrieval and numerous other applications — have ben
based on the idealized unit-disk graph (UDG) network model.
The significant deviation of the UDG model from many real
wireless networks is substantially limiting the applicablity of
such protocols. A more general network model, the quasi unit
disk graph (quasi-UDG) model, captures much better the chaac-
teristics of wireless networks. However, the understandig on the
properties of general quasi-UDGs has been very limited, wich
is impeding the designs of key network protocols and algoritms.

In this paper, we present results on two important properties
of quasi-UDGs: separability and the existence of power effient
spanners. Network separability is a fundamental property eading
to efficient network algorithms and fast parallel computation. We
prove that every quasi-UDG has a corresponding grid graph
with small balanced separators that captures its connectity
properties. We also study the construction of wireless back
bones through topology control for efficient communicationand
present a distributed localized algorithm that builds a nearly
planar backbone in any quasi-UDG with low constant stretch
factor and degree. We demonstrate the excellent performarc
of these properties through simulations and show, among man
applications, their application in efficient routing.

I. INTRODUCTION

quasi unit-disk graph (quasi-UDG) model, has been proposed
in recent years to capture the non-uniformity characierast
most wireless networks. Formally, it is defined as follows.

Definition 1: A quasi-UDGmodel is characterized by two
positive parameter®? andr (R > r). For any two nodes
u,v in a quasi-UDG network deployed in a plane, &t v)
denote their Euclidean distance. Thend(f:;, v) < r, an edge
(link) exists between, andv; if d(u,v) > R, the edge does
not exist; ifr < d(u,v) < R, the edge may or may not exist.

The understanding on the properties of general quasi-UDGs,
however, has been very limited. That is in sharp contrast to
UDG, whose properties have been well understood [1], [9].
Among the limited knowledge about quasi-UDG, a notable
result is the “link-crossing” property discovered for guas
UDGs whereR < v/2-r [2]. The serious lack of understanding
on the properties of general quasi-UDGs is impeding the
designs of key network protocols and algorithms.

In this paper, we present results on two important propertie
of quasi-UDGs: separability and the existence of power effi-
cient spanners. Network separability is a fundamentalgntgp
leading to efficient network algorithms and fast parallaineo
putation [11]. A (vertex)separatorof a graphG is a set of
vertices whose removal splits the graph into two non-adjace
parts of similar sizes. We call a gragh well separableif

The connectivity structures of wireless networks exhibany subgraph of has relatively small separators. A well

strong correlations with the physical environment due ® ttseparable graph has strong locality properties. As a rebelt
signal transmission model of wireless nodes. A deep undeerformance of protocols for routing, information retagv
standing of the structural properties of wireless netwdsks network monitoring, etc., can be significantly improved for
critical for evaluating the performance of network protisco such graphs. We first construct a grid graph that is an ab-
and improving their designs. So far, many protocols have bestraction of the given quasi-UDG@ and show that the grid
based on the idealized unit-disk graph (UDG) network modejraph is well separable. The separator we obtain is of size
where two wireless nodes can directly communicate if ar@(v/N) and can split the graph into two parts of size roughly
only if their physical distance is within a fixed parameter % where N is the number of nodes of the grid graph. In
Examples of these protocols include routing [3], [9], taggyl addition, both the degrees of the grid nodes and the number
control [1], distributed information storage/retrievd] and a of edges crossing any edge are upper bounded by constants.
great variety of other applications. In practice, howetke Among many applications of the separators, we present, as
UDG model significantly deviates from many real wirelesan example, a compact routing protocol based on the grid
networks, due to reasons including multi-path fading [6B][ graph construction and distance labelling. We prove that th
antenna design issues, inaccurate node position estmati@uting table size of each node in our protocol is bounded
etc. It is not uncommon to observe stable links that are fily O(v/N log N), which is much better than the tight bound
times longer than unstable short links [13]. The significamtroved for general graphs and close to the lower bound of
deviation of the UDG model from practice is substantiallf2(v/N) for degree bounded graphs in [7]. The ratio of the
limiting the applicability of protocols based on UDGs. Taouting path length to the shortest path length is upper dedn
combat the problem, a much more general network model, the 2 + ¢ wheree is a small constant. More extensions of the



results are also included. is shown in Fig. 1(a), (b). In the following, we present distai
In the second part of the paper we study the existence apnilthe grid graph.

the construction of energy efficient backbones for quastadD

A backbone is a spanning subgraph of the wireless network
for efficient communication, obtained through pruning a set
of edges. By using only those edges in the backbone fors
communication, signal interference, routing table sizel an »
power usage can be substantially reduced. A major require-*
ment for backbone construction is to preserve the shortes
path distances between vertices as much as possible. For
backboneB of a graphG = (V, E), the stretch factoris
defined ass(B) = max{42“ |y v € V}, where fz(u, v)

fa(u,v)

and f¢(u,v) are the distances between vertiees in B and @
G, respectively. The stretch factor reflects the quality &f th
backbone. There have been results showing that for UDGs . 5

bounded degree and planar spanners can be constructed wh
the distance functiorf(u, v) is defined as the minimum power
needed to send a message frono v [8][14]. In this paper,
we present a distributed algorithm that constructs a bawkbo
B for any quasi-UDGG with a constant power stretch factor. * * s
The node degrees of the backbaoBeare upper bounded by
a constant. In addition, although it is in general impossibl
to construct planar backbones with constant stretch fadtwr (c) (d)
quasi-UDG, we show thaB is nearly planar specifically, B Fig. 1. Grid Graph Example. (a) A quasi-UDG with 100 vertices and
has a constant upper bound on the average number of edgés= 0.5; (b) The grid graph corresponding @; (c) The auxiliary graph
crossing an edge. The latter property is useful for geogcapHse" to find the top level separator Gf (d) The backbone of:.
routing algorithms based on cross link detection [10].

We evaluate the performance of the separators, the routidg Construction of the grid grapli/

protocol and the backbone construction through extensiverqy gptain a grid graphi for a quasi-UDGG, we impose

simulations. Their performance is much better compared £0yig on the plane and view each non-empty cell as a vertex.

the theoretical analysis of the worst cases. This shows t construction is shown in Fig. 2.

although the quasi-UDG model is quite different from the

UD(|3 _tr_'nodtehl, ?ﬁ|C|ﬁnt_aI?hor|thmds Ican still be developed by Algorithm GridGraph

exploiting the focality in _e mo e_' .| INPUT: G = (Vg, Eg): a quasi-UDG with parameters? and r
The rest of the paper is organized as follows. In sectionouyrpur:  H = (Viy, Ex): the grid graph forG

I, we present the grid graph construction and prove its 1. Impose a grid of cell size’ x = on the plane;

separability result. In section Ill, we present the backbon 2. For each cell that has at least one vertex @f H has a

construction through topology control. In Section 1V, we colrlr.esponding vertex, whose position is set at the centahef
resent the compact routing protocol based on the grid graph _ %"

P . P . gp . . 9 grap 3. There is an edge between two vertices Bf if and only if

and distance labelling, as well as the simulation results. W there is at least one edge connecting two vertices’dhat are,

conclude the paper in section V. respectively, in the two corresponding cells.

Fig. 2. Constructing grid graph for quasi-UDG
Il. GRID GRAPH OF QUAStUDGS 9 g grid grap 9

All the vertices of G in the same grid cell are adjacent.
pe algorithmGridGraph can be easily implemented in a

constructing a grid graph for any quasi-UDG, and prove th gtributed manner. The following theorem proves the cmtst
the grid graph is well separable. The grid graph, whose no per bounds for the node density, edge density and the

density and edge density are both upper bounded by COnStaHgmber of edges crossing any edge in the grid griph

s an abstraction of the quasi-UDG. A quasi-UDG may have Theorem 1:The algorithmGridGraph constructs a grid

highly variable node and edge densities, which prevenoinfr . : ) o .
having small separators. The grid graph is a “sparsified” Veq;apf;ﬁ for gr|]ven quasi-UDG syuzch thaF. (1? mSIdE agy disk
sion of the quasi-UDG, which retains the distance inforomati Of radiusy, there are at mosb(i;) vertices; (2) the degree

. 2
for vertices and well represents the deployment region ef tRf €ach vertex is upper bounded BY 1 ):(3) the4number of
quasi-UDG. As a result, the connectivity-related resudtstfie edges crossing any edge is upper boundedbé ).
grid graph can be easily mapped to results for the quasi-UDG. Proof: By the algorithm, the Euclidean distance between
An example of a quasi-UDG and its corresponding grid gragy two vertices offf is at least-. Hence if we place an

In this section, we present a distributed algorithm f



open disk of rad|u centered at every vertex, no two diskaveight zero, while each black vertex has a weight that equals
will intersect. There[re given any disk of radiysthe nun12ber the number of vertices off in the corresponding cell.
of such open disks intersecting it is upper boundedXfys ).

So is the number of vertices df inside the disk. Algorithm AuxiliaryGraph
Consider a vertek/ of H, denote byv(U) the set of nodes | InpuT: = (Vi, Ex): a grid graph with parametersk and r
of G inside the cell represented Y. The number of vertices | OUTPUT: T = (Vr, Er): the auxiliary graph forH
. . . - 2 i _qj _r_ _r_ .
of H within distanceR + r to U is bounded byO(%;). No L 'mpose a grid of cell-siz€R + 77) x (R + 77) on the plane;
node of@ in ’U(U) can be adjacent to € v(V) whereV is 2. For each cell that has at least one vertex I6f T has a
. . correspondinglack vertex v, whose position is set at the center
more than distancé +r from U. Hence the degree d@f is of the cell; we assign ta a weight that equals the number of
upper bounded b@(%) vertices ofH in that cell;
Similarly, for an edge{U, V} of H, the number of grid 3. Add an edge between two black V(_ertioe,w of T if and only if
ti ithin dist eR ¢ int in the i there is at least one edge connecting two verticeg/ahat are,
vertices within _'S anc + r 10 any point in € 2'ne respectively, in the two corresponding cells;
segment connecting andV’ is also upper bounded k@( )- 4. For each pair of crossing edgés, v}, {w,z}, add ared vertex
Therefore, the total number of edges crossjbgV'} is upper at the intersection of the two edges and replace those twginati
bounded byO( RrR* ) - edges with four new edges that connect the red vertex, resggc
to the four black vertices:, v, w and z; let the weight of the red|
If two vertices of H are h hops away from each other, vertex to be0;
then two vertices of7 in the two corresponding cells are at| 5. For each diagonal edge between two black vertices, we aed @
most2h + 1 hops away from each other. Note that the above ~ Vertex of weight0 at the middle of the edge and replace that
. . original diagonal edge with two new edges that connect tide [re
method for constructing grid graphs, and the above residts, vertex, respectively, to those two black vertices.

be easily extended to three and higher dimensional spaces.

Fig. 3. AuxiliaryGraphf)

B. Separability of the grid grapf Fig. 1(c) shows an example of the auxiliary graph. The

to efficient network algorithms (in particular, those alftms and red vertices are either of degree 2 or 4. Since the cell
based on the divide and conquer paradigms),— fast paralig apply in this algorithm is large enough (of side length
computation, and improvements in the study of computation® + —_) and all black vertices are placed at the centers of
complexity [11]. Many applications in wireless ad hoc netheir corresponding cells, any black vertex may only cohnec
works (routing, information retrieval, etc.), as well asitgu to the eight black vertices around it before the red vertices
a number of hard theoretical problems, have more efficieRere added. Therefore, around each black vertex, thereean b
solutions if the underlying graph is well separable. Fomexa at most four red vertices; and no two red vertices are adjacen
ple, shortest path routing can be realized with small r@utino each other. Formally, we have the following lemma.
tables when the graph has small separators, as in the case @emma 1:Let Ny, be the number of black vertices in the
planar graphs or graphs with bounded tree width [7]. Als@uxiliary graphT’. ThenT is a planar graph of at mogtVr
NP hard problems such as vertex cover and independent \agitices, and no two red vertices are adjacent.
are solvable in polynomial time if the input graph and all its Lipton and Tarjan proved in their celebrated Separation
subgraphs have bounded separators. Theorem [11] that for any vertex-weighted planar graph of

In this subsection, we study the separability of the gridertices, there exists a set@f/n) vertices that separates the
graph obtained above. We begin with a formal definition afraph into two non-adjacent subgraphs, each of which weighs
the separability of graphs. at most2 of the total weight of the graph. The separator

Definition 2: Given a graph= of n vertices, ab-separator algorithm presented in [11], however, is relatively comxple
of G is a set of vertices whose removal splifsinto two non- For the planar auxiliary grapf’, which has a constrained
adjacent subgraphs, each of which contains at mosertices. structure, we present a simpler and practically more efficie
We call a graph (f(n’), b)-separableif every subgraph of algorithm for finding such a small separator. Based on that,
G has ab-separator of at mosd(f(n’)) vertices, wheref(n’) the algorithm also finds a small separator for the grid graph
is a function of the number of vertices in that subgraph. H. The details of the algorithm are presented in Fig. 4.

In order to compute a small separator for the grid graphWe now prove that the algorithn$eparator constructs
H, we use the help of a planar auxiliary grafh First, we small balanced separators firand7". We start with a lemma.
impose a larger grid on the plane and map the grid gidphb Lemma 2:Let 7' be any subgraph of the auxiliary graph
an auxiliary graph that is nearly planar. Then, we planaitizeT'. If its outer face has: vertices, then the number of inner
by adding a virtual vertex at the middle of each diagonal edgeertices (the vertices not on the outer face) is at nﬁst
eliminating all edge crossings. (Note that we see all theeedg ~ Proof: The outer face of the planar graffti is a closed
as being straight.) The detailed construction of the aamili curve (or closed curves, i’ is disconnected) on the plane.
graphT is presented in Fig. 3. All the virtual vertices ii Let x = R + r/v/2 be the side length of the cells in the
are denoted byed verticesand the others — which represen'constructlon of the auxiliary grapfi. For each inner vertex
cells — are denoted bplack vertices Each red vertex has of 7', we place a@ X \/_”” square centered at it, then rotate



Algorithm Separator region of area no more thaﬁgj, sinced k" < (D K)? =

INPUT; H: a grid graph with parameters? and r k2, the total area of the regions surrounded by the outer face
y
. . . 2, 2 .
OuTPUT:  Su: a separator forH. N is also bounded by%~2- | Thus, in all cases, the total number
St: a separator forT. (T is the auxiliary graph ofH.) 22 2
1. LetT be the auxiliary graph off. Let T’ be a copy ofT". of inner vertices is bounded u)'k— / = |_271—J u
2. Build a breadth-first search (BFS) tree for a dynamicatignging Define thedepthof a tree to be the maximum number of

graphT” (T’ changes because new edges are added to it dy ringedgeS in a path from the root to a leaf. We have:

the BFS procedure) in the following way: (1) pick a vertex . . -
on the Ouﬁer face ())T/ to be the n?ot a?]’d (St)aﬁ the BFS; (2) Lemma 3:Let Np be the number of vertices in the auxiliary

during the BFS process, when a vertexs dicovered (put intol  graph7’. The BFS tree constructed in Step 2 of the algorithm

the BFS tree), for every face containing add edges fromu ; t/ N
to as many other vertices in the face as possible so long assepa'ratorIS of depth at most/Nr.

T’ remains a simple planar graph; if after adding those edges, Proof: Let d be the depth of the BFS tree. Because of
there are still faces containing that are not triangulated, add  the triangulation operation enforced on the grdphluring the
edges to triangulate them arbitrarily. During the_ BFS, aews BES process foi=1.2.--. .d—1. the vertices at level (if

1 ) 3 3 1

undiscovered neighbors are visited in the clockwise orsi@rtng - . ]
with the vertex’s parent in the BFS tree as the referencetpoi % = 1, include the root as well) of the BFS tree actually contain

3. Check everfundamental cycléa cycle formed by a non-tree edde  all the vertices on the outer face of the subgraph induced by
and some tree edges) in the BFS tree. BEgt be a fundamental the vertices at levels,i + 1,--- ,d. So it suffices to show

cycle that separated” (therefore alsdl’) in the most balanced . “ ” ’ /
way, i.e. the difference between the summation of the weight that if we peel off” one outer face frorii” at each stepT

[0

vertices in the two separated subgraphg B; is minimized. becomes an empty graph afte /Nr steps.
4. Consider the grapl’. Let S be a copy ofSt. For each red Let n, be the number of vertices remaining in the gragh

vertex u in S/, with the set of neighboring verticed/(u), we ; : _
distinguish two casesCase (1)All vertices in N(u) belong to after steps. (By convention, defing = {‘VT) By Ler"nma 2,
Aj(respectively,B;) except those |rﬂ% Then, we movey from we know that in thez-th Step we have peeled off” at least

St to Ax(respectively,B1); Case (2)Both A; and By cgntain [vV27N,] vertices. Son;—1 > 1, n; > nip1 + [27mni11
vertices of N (u). Then, we put all vertices itV (u) into S7. and fori=t—2,t—3,---,0. Now let us prove thaht,j > j2

move u from S7. to A;. . . .
5. Let Sy be the set of vertices off in those cells corresponding by induction: whenj = 1, we haven,, > 1 and when

to the black vertices of” in Si.. Let A2, B be the two sets of  j = 2, we haven; o > 4; suppose our claim is true for
vertices ofH in those cells corresponding to the black verticesiof 9 < j < 4; consider the casg = i + 1, WheI’Ent,(Hl) >

T in A; and B;. Clearly, Sy separated? into A and Bs. . . . . .
! ! ¥, SH Sep 2 2 e + [V2mng_| > 2+ [V21]i > 2 +2i+1=(i+1)%
Fig. 4. Separator We haveNy = ng = ny—; > t2. Sot < /Nr. |

By Lemma 2 in [11], if a vertex-weighted planar graph has
a spanning tree of depth, then there exists a fundamental
the square by 45 degrees. It is simple to see that now thesele of size at mos2h + 1 that separates the graph into two
(diamond shaped) squares centered at the inner verticestdorfon-adjacent subgraphs each of which weighs no more than
overlap each other. The area of each squarg is 2/3 of the total weight of the graph. As the BFS tree obtained

First consider the case when the outer face is connected, ineStep 2 of AlgorithmSeparator is of depth at most/Nr,

T is connected. The outer face Bfconsists of several (at leastwe have the following theorem immediately.
one) simple cycles. Suppose there ageich simple cycles of Theorem 2:Let Ny be the number of vertices in the
size ki, k2,..., k; in the outer face}"._, k; can be greater auxiliary graphT', and letNy be the number of vertices in
than &, the number of vertices in the outer face, because fi. Then, the total weight of the vertices @f is Ny, and
the summation a vertex can be counted more than once. The setSr obtained in AlgorithmSeparator contains at most
simple cycles form the outer face of a planar graph, so the/N; + 1 vertices and separateg into two non-adjacent
number of times vertices are over-counted is exattly 1. subgraphs each of which weighs no more tﬁ%#
Thus}>._  kj=k+i—1. We now prove that the algorithrBeparator also finds a

- 2 i . 2 i 2 small balanced separator for the grid grafgh

F|rst we havek~ = [(Zi—l kﬂ) et 1} = L= ki + Theorem 3:Let Ny be the number of vertices in the grid
Py (k s kz) S 2(i—1)k+(i—1 ) >>'_ 1 k?+ graphH. Then, the algorithnSeparator constructs a separator
S {k (Zl# by — 20— 1) )} > S, k2. The last in- Sy of sizeO(/Ny) that separates/ into two non-adjacent

subgraphs each of which has no more thdh vertices.
equality holds becausk; > 2 and_, kl contalns exactly Moreover, the grid grapt is (v/n/, 2)-separable when the
i — 1 terms. The equality holds whane 1. )  the grid grap ", 5)-SeP
. i weights of all the vertices off are set to be 1.

Each simple cycle ofi; vertices hask; edges, thus the Proof: Let N’ be the number of black nodesin Clearly
perimeter of the cycle is at most;z. Therefore the area N’ < Ny; and it is straightforward that each cell correspond-
of the region inside the cyclg; is at mostL ing to a black vertex ofl’ contains at mosfg(R+‘/2§T/2)21
total area of the regions inside the outer face is bounded Q¥itices of 7. Hence we haveV’ — O(Npg). From femma 1
. 1L < |k, we know that the number of red vertices is no more than

Now if there are several disconnected cycles in the outdf, and the total weight of vertices il is Ny. Hence the
face, each connected part — sayjiofvertices — surrounds a separatoiSy for T' contains no more tha2y/2N’ + 1 vertices




whose weights sum up t0(1/Ny ), and separates into two I1l. BACKBONE WITH CONSTANT STRETCH FACTOR

parts each of which weighs no more th‘%%i' We denote bybackboneof a given graph a subgraph that

Now we show that after Step 4 of Algorithi@eparator, contains the same set of vertices but fewer edges. One egampl
S/ is still a separator fofl” of size O(v/N’), andA; andB;  of backbones are spanning trees. Backbones, particutarbet
are still of weight no more thaﬁj\gf—H. Consider any red vertex with small stretch factors and degrees, have very important
u € S, in Step 4, in the case where all afs neighbors are applications in wireless communication because they cm he
either inSy or A, (respectivelyB;), S;-\ {u} can separat& reduce signal interferences and simplify algorithms.
into A; U{u} and B, (respectively,A; and B; U {u}). Note In this section, we present a distributed construction of a
that . has weight0, so movingu from S7. to A; (or, B1) backbone with constant stretch factor, constant node degre
does not change their weights. In the complimentary case, #ind a small number of edge crosses for quasi-UDGs. It is
algorithm moves alk’s neighbors intoS;, and moves: into  also an extension of the grid method described in Section II.
Ay; clearly S still separatesd; and B;. And by doing that, We will show in Section IV that these backbones can also help
we decrease the weights of bath and B,. The size ofS7.  reduce the routing table size in our routing scheme.

increases by at most 3 for each red vertex.

Hence after Step 4, we have replaced all red vertices/in A. Algorithm constructing the backbone

by black ones, increasing the sizeS§f by at most three times, ~ Energy is a major limitation in wireless networks. Accord-
not increasing the weights of; and B;. Most importantly, ingly, the stretch factor of backbones is often defined based
Sk still separatesd; and B;. ThereforeS). is still of size On energy consumption. We start with its formal definition.
O(VN") = O(v/Ng), and the weights off, and B, are no  Definiton 3: Let v = wy — w2 — ---ux = v be a
more than?5. Each cell corresponding to a black vertex opath fromw to v in the graphG. Denote by ablc the
T contains a bounded number of verticesf so Sy is of Euclidian distance between any two verticesand b. The
size O(v/Np). Also, the number of vertices id, (resp.,B,) communication costbetweenu,v following the given path
equals the weight ofi; (resp.,B;) (at most2z). is defined as:

ca(u,v) = S0 ofuui|

B_y the con.st_rucuon of the auxiliary grafh if no two black where 3 is the path loss exponert, < 3 < 5, anda is a
vertices are joined by an edge or two edges with a red vertex

. ) g . . sCaling factor linear in the number of sent bits. If thereds n
in the middle, there is no edge connecting verticesHoin ; :
; . . path fromu to v, cg(u,v) is defined astoo.
those two corresponding celld; and B; are not adjacent in o L
, : : Definition 4: Given a graptG = (V, E) and a backbon®&
T, andS7. has no red vertex. Sd, and B, obtained in Step of (& the stretch factor of B is defined as:
5 are not adjacent i/, and Sy separatesi; and By in H. ’ ’

It is simple to see that any subgraph &f can be used as max {W} ’
the input of AlgorithmSeparator, and the above arguments uveV | eqmin(u, v)
. . 2 .« _»
still hold. HenceH is (vn', 5)-separable. B where cp min(u,v) and cg min(u,v) denote theminimum

For some applications, a perfectly balanced separatorc@mmunication cost (over all the paths) betwegn in graph
desirable. By using the same technique described in [11], Weeand G, respectively.
can construct a separator of sigd\/Ny) that separateg! The stretch factor defined above is also called plogver
into two parts each of which has no more th%(}q vertices. stretch factor We say that a backbone énergy efficientf its
The idea is to separate the larger part of the outcome of tpewer stretch factor is bounded by a constant.
algorithm recursively. Hence we have We next present a distributed localized algorithm that,whe
given a quasi-UDGG, constructs a backbone where the
maximum degree of a node is bounded(by’f—f), the average
. .number of crossings of an edge is bounded’,ljyf—f) and the
For the grid graph, we can develop.a shorte_st path rc_’Ut'nger stretch factor is bounded By ¢, wheree is a constant
scheme based on its separators, using the idea of distaitg can be made arbitrarily small. To run the algorithm, we
labelling [7]. We can then transform it into a compact roQt'”cIassify the edges in the quasi-UDG into two types:short

scheme for the ulnderlying quasi-UDQ with a small stretch edgeswhose lengths are no greater thanand long edges
factor. The following theorem summarizes the result. Wedea, ,ose lengths are strictly larger than

the details of the routing algorithm, the proof of Theorem 4 In our algorithm, we first reduce the number of short edges

and the extended results to section IV. in the graph by applying an operation similar to Gabriel

Theorem 4:For any quasi-UDGG of Ng vertices, let Planarization [5] to make the subgraph induced by all short
h(u,v) be the minimum hop distance between vertices. edges ofG a planar graph. In the second step, we apply
There is a routing protocol that guarantees the routing path operation described in [8] to bound the number of short
from wu to v to have at mosRh(u,v) + 1 hops, for any two edges incident to any node. Finally, we apply a grid openatio
verticesu andwv. The size of the routing table at each nod& reduce the number of long edges in the graph. Figure 5
and the message overhead are bOth/N¢ log N¢). contains the details for our algorithm.

Corollary 1: Let Ny be the number of vertices in the grid
graphH. H is (v/n/,0.5)-separable.



on one sidg ok that can connect to a cell on the other side
is w = O(%;). Therefore, the number of long edges that can
crosse is at mostv? = O(f—:). Suppose that the total number

Algorithm QuasiUDG-Backbone

INPUT: G: a quasi-UDG with parameterg and r
OUTPUT.  B: a backbone o7

1. Planarize the subgraph induced by short edges of7

The subgraphB will contain the same vertex set &s. Initially,
the edge set oB3 is set to empty. For each edgdu,v} in G,
if there is no common neighbor of andv in G residing in the
disk whose diameter is the edgéu, v}, we adde{u, v} into B.
Similar to the Algorithm 1 described in [14], this process dze
done in a distributed manner by exchanging no more thém)
messages whera is the number of edges i6'.

. Reduce the number of short edges incident to each vertex
Let G’ be the subgraph of3 that includes all the vertices an
short edges of3. Note that here’ is in fact the Gabriel graph
constructed from a UDG (with communication range so G’ is
planar. We apply the algorithm described in [8] 6f. Here is a
brief description of the algorithm that is performed by eseftex:
Direct the edges inG’ (using the classical acyclic orientatio|
of a planar graph) so that every vertex @& has at mosts
incoming edges; Perform a standard Yao step [8] on the sg
outgoing edges; Select certain edges that form large angtes
consecutive edges (see [8] for details); Finally, commateiavith
all the neighbors of the vertex and keep edges that have
selected by least one of their ends.

When the above algorithm ends, we remove fréthose edges
that have been removed by the algorithm fré#h This step will
reduce the number of short edges incident to every vertex
constantk + 5, wherek is a selectable parameter, and it can
done locally. Compared to the subgraph(®that contains all the|
short edges of7, B increases the minimum communication cg
between any two vertices by a factor of at mbst(2 sin(w/k))?,

of edges in the final backbone7i§. Then the total number of
edge crossings is bounded W%)m. Therefore the average

number of edges crossing an edge is bounded)b@i).

After Step 1 and 2, we have constructed a planar power

spanner foiG’ of stretch factor bounded by+ 27 sin® (7 /k)
[8]. In Step 3, by removing all the edges between any two cells
C:1 and(C;y except the shortest among them, the stretch factor
is increased but still bounded By 27+ sin” (7 /k). To prove
this bound, we only need to prove that for any edgey}
of G that is removed, there is a path framto v in the final
backbone such that the ratio of the communication cost of the
path and that of the edde, v} is at mosB3+2°+ sin” (7 /k).

If the edge{u, v} is removed in the Step 1, we know that
the communication cost betweenv did not change (because
peens > 2). Otherwise we distinguish two cases:

Case 1 the edge{u, v} is removed in step 2. In this case,
[8] guarantees that by the end of step 2, there is a path from
tf)’ 2y to v consisting of edges of length at masand the stretch
® factor of the path is bounded hby+ 27 sin” (7 /k). Since step
st 3 only removes edges of length greater tlrathe above path
from u to v is preserved in the backbone and the stretch of the

n

t of

wherek is a parameter, and is the path loss exponent.

Reduce the number of long edges incident to each vertex
Add all the long edges ofs to B. We impose a grid of cell-size
-~ x -Z= on the plane. Clearly, any long edge must be connec
vertices in two different cells. For each pair of cells, wenowe
from B all the long edges between them except for the shor

one.

path is bounded by + 27 sin” (7 /k) < 3 4 28+ sin” (7 /k).
Case 2 the edge{u,v} is removed in Step 3. In this

ing case, the length ofu,v} is greater thanr and there is
st another edggw’, v’} in the final backbone such that and

u’ belong to the same celly and v belong to the same
cell, and d(uv/,v") < d(u,v). By an argument similar to
that in case 1, there must exit a path betweerand v’
in the final backbone whose communication cost is at most
(1 4 20sin (n/k))d(u,u)? < (1 + 2°sin?(x/k))r? <
(1+2%sin”(n/k))d(u,v)?. Similarly, there is a path between
maximum degree i@(f—f), the average number of edged and v’ in the final backbone whose communication cost

) ) “1s at most (1 + 2% sin®(7/k))d(u,v)?. Since d(v/,v) <
crossing an edge |é)(f—f), and the power stretch factor |sI (1 + 2%sin’ (m/k))d(u, v) I (W',o) <

5 h . h b de arbitraril I (u,v), the stretch factor of the pattu,u’,v’,v) is at most
+e¢ (wheree is a constant that can be made arbitrarily sma (1 +20sin’ (7 /k)) + 1 = 3 + 20+ sin®(x/k). Note that
Proof: Let G’ be the subgraph off that includes all

26+1sin® (7 /k) can be made arbitrarily small by choosing a
the vertices and short edges @f It is easy to see that’ is stn’ (/k) y y g

sufficiently large parametér. This completes the proof. ®
a UDG. Therefore after Step 1 and Step 2 of the algorithm, ylarge p P P

we have removed the crossings between shortest edges, anl/. APPLICATIONS AND PERFORMANCEEVALUATION

reduced the number of short edges incident to any vertex tp this section, we first present out routing algorithm based
no more thank + 5, wherek > 8 is the parameter to the g the separators, then prove the bound for the path strateh f

algorithm [8]. Note that in Step 3, we keep at most one edggy of our routing protocol. As the second part of the section
between any two cells, and the number of cells reachable frofg show the simulation results of the backbone construstion

any vertex is bounded b@(Z;). The total number of long and the routing performance of our routing algorithms tafyer
edges incident to any vertex is then bounded by the sagpg theoretical bounds we prove.

constant. Thus in the final backbone, the degree of a node is
bounded byO(f—j). A. A routing scheme based on the separators

On the other hand, any edge crossing in the final backboneéAs one of the applications of the small separators of the
has to involve a long edge since the subgraph induced gsid graphs, we present a routing scheme for quasi-UDG
short edges is planar. For an arbitrary edgaeve will bound based on the grid graph and analyze its performance. Our
the number of long edges that can cross it. Any long edge thiatiting scheme is suitable for systems in which the size @f th
crossese must connect one cell at one side oo another messages itself is relatively large. We will give the sintiola
cell on the other side. We can verify that the number of celtesults later in this section.

Fig. 5. Construct a backbone for a given quasi-UDG

Theorem 5:The algorithm QuasiUDG-Backbone con-
structs a backbone of the given quasi-UlGsuch that its



Our routing scheme is based on the distance labellinguting table points out the shortest path between cekstir.
scheme described in [7]. The basic idea of distance lalgelli@ur routing protocol compares favorably with shortest path
is to give each vertex a label such that the distance betweenting algorithms and compact routing algorithms for gahe
two vertices can be computed using only their labels. Aetworks for its significantly smaller routing table sizedan
straightforward labelling scheme is to store in each nodenzaintained constant stretch factor.
full table of the distances to all the other vertices. Thelgoa Proof of Theorem 4
of the distance labelling scheme in [7] is to find the labels of  Proof: In the routing protocol described above, the first
minimum length. The separability of the underlying graph is part of a node’s routing table is of size(v/N log N). The
key factor of how good a distance labelling scheme is avigilatsecond and third parts of the routing table both consist of a
for the network. In [7] the authors proved that for a grapbonstant number of entries because the number of neighthorin
which has a separator of siZg there is a distance labellingcells and the number of cells in each basic block are both
scheme of label siz&)(klogn + log”n), and the distance constants. The size of the routing table is ti@n/N log N).
between two nodes can be computed in tigog n), where Inside each message we need only to carry the label of the
n is the number of nodes in the network. destination vertex, so the overhead in the message sizsas al

Although a quasi-UDG~ may not possess a small separatobounded byO (/N log N).
we have proved that the grid graghh with » vertices con-  Given a pathp from u to v, let d(p) denote its number of
structed forG does have a balanced separator of §i¢/n). hops, and let(p) denote the number of times the pattravels
Conceptually, our routing protocol utilizes two-level tmg: from one cell to another. Let,,; be the shortest path from
virtually, the message is sent in the grid graph from the cedl v, and letp’ be the routing path of our protocol. Clearly,
containing the source to the cell containing the destimatioc(p,,:) < d(popt), ande(p’) < c¢(popt) because our protocol
via the shortest path in the grid graph; in reality, the nogiti uses shortest path routing in the grid graghtravels from one
is implemented in the underlying quasi-UDG to route frorgell to the next in at most two hops, st§p’) < 2¢(p’) + 1.
cell to cell. (Note that in each cell, the quasi-UDG verticeSo d(p’) < 2d(popt) + 1. |
are fully connected, so routing from one cell to the next $ake Sometimes we are more concerned about the energy con-
at most two hops.) The basic idea to achieve shortest patmption than the hop distance if the wireless nodes are able
routing in the grid graph is to splif into two non-adjacent to adjust their communication range to save power. Let the
parts using the small separator. Each vertexfofemembers communication cost be as defined in Section Ill. In reality,
the distance to all separator vertices. Thus, two verticgheé it is infeasible for a node to reduce its communication range
two parts (or the separator) can compute their shortest pashinfinitely small. There is always a constant rarigbelow
distance using that information, because their shorteit pavhich the wireless node cannot reduce its communication
must go through a separator vertex. We recursively apply thenge. With this assumption, we prove the following thearem
same process to partition each part into small parts, tolenab Theorem 6:Let the communication cost be as defined in
any two vertices to compute their shortest path distanaggusiSection 1ll, and assume that the minimum communication
their stored information (their labels). We stop partittma range isd. (Therefore, the communication cost of an edge
part when its size is below a certain constant. (We call such Euclidean lengthl is « - (max{d,§})".) Then, the com-

a part abasic block) Since we use balanced separators, thraunication cost of a routing path from to v generated by

process ends aft&p(logn) levels of partitioning. our routing protocol is upper bounded by a constant times the
For a vertexiW of H, let v(W) be the set of quasi-UDG minimum communication cost over all the paths frano v.
vertices ofG that reside in the cell correspondingi@. The Proof: Let p,,: be the optimal path from to v with
following list contains the information that each vertexc the minimum communication cosf,,;, and letp’ be the
v(W) in G stores in our protocol. routing path of our algorithm with cost”. If u,v are in

« the minimum distances (if¥) to all the separator verticesthe same cell of the grid grapH, then C,,, > ad?, and
that are on the boundaries of all the partitidisis in;  C’ < ar? since vertices in the same cell form a clique. So
« the neighboring quasi-UDG vertex through which it cad’ < (r?/5%)ad® < (1P /65)Copt = Copt - O(1).
get to other cells adjacent 1" in H; Now assume that, v are in different cells of{. Let!,,; and
« a shortest path routing table for the verticesibfin the [’ denote, respectively, the number of hopwip, andp’. By
basic block where: resides. Theorem 41’ < 2o +1.S0C" < V'aRP < (2pp+1)aRP <
The routing protocol assumes that the source knows tﬁ%m%rl o -loptaéﬁ <3- ?—5 - Copt = Copt - O(1). u
label of the destination. This piece of information can be
obtained from location service. Since location serviceds nB: Simulations
directly related to our topic, we skip the details here. We conducted extensive simulations to evaluate the perfor-
If the destination is not in the same cell as the source, theance of our backbone construction algorithm and routing
message will follow a shortest path i from the source cell protocol. The performance has been stable and consistent. |
to the destination cell. By utilizing the second part of ttet | the following experiment, we randomly depldy quasi-UDG
(label), a vertex can send a message to any of its neighborimages in a 2-D space of siZ&00 x 1500. We increase the
cell in two hops. Within a basic block, the third part of theaumber of nodesp, in the system fromi 000, 1500 to 2000



to verify the effects of density change on the performance.
We also increase the valug/r from 1,1.5,2,3 to 10 to
see the performance of our algorithms for different wireles
connectivity models. To mimic nontrivial network topolegi
we randomly generate a big hole of radius randomly picked in
Fhe rangg R, 2R] and five small random holes of radlus_plcked 0 1/10 13 12 23
in the range[0, R]. The centers of the holes are uniformly 1R
randomly chosen in the plane. If the distance between two
nodes is in the rangg, R], we put a direct link between them
probabilistically. For each configuration, we run the siatign
30 times and take the average of the performance metrics.
We would like to point out that the performances of our
routing algorithm and backbone construction method ae rel
tively independent of the size of the network. Our theosdtic

N=1000

bounds and the simulation results both show that the quafiity 0 110 13 1/2 213
the backbone constructed and the stretch of the routingspath MR
are closely related to the ratio ofto R. N=1500

1) Backbone constructionin the backbone construction 40
simulations, we measure the power stretch factor, maximum
degree, the average degree and the average number of edge,
crossings on an edge in the backbone constructed and compare
them to the original graph. For node pairs whose distances
are betweenr and R, we adjust the probability of their being

i 1/10 1/3 1/2 2/3
connected to ensure an expected average degree of 10 in order r/IR

to compare the results between different densities anesaiti

R/r. The results shown in Table | and Fig. 6 are for backbones
constructed by only performing the first step and the lagt st€ig. 6. The Maximum degree, the average degree, and thegaveranber
in Algorithm Backbone We eliminated the results for the_Of edges crossing an edge for quasi-UDGs and their backbdines6 bars

N=2000

. in each group are, from left to right (1) maximum degree inSiHEDG; (2)
case whenkz = r since there the backbones are known tﬁ’iaximum degree in backbone; (3) average degree in quasi:\W)@verage

be planar with power stretch factor beirigbecause of the degree in backbone; (5) average number of crossings periedgasi-UDG;

Gabriel operation in the first step of the algorithm. Our tessu (6) average number of crossings per edge in backbone. Nateirthsome
h d that f I fi . he backb h roups, the last bar is not shown, because the average nwhiceossings
showed that for all configurations the backbones have v%é/r edge in backbones equals 0 there.

small power stretch factors, much smaller maximum degree
and in most cases, we can bring the average degree to below

6 (which is the upper bound of the average degree for pIanaH | h of th h f ing in th iqinal hs i
graphs). Even wherkR/r = 10, the average degree of ourT € ength of the pa_t or routing in the origina grapns 1s
fined as the hop distance between two nodes, while in the

backbones is no more than 8. As for the number of crossin@ Kb th icati it 2
our algorithm reduced it by at lea60% in all cases. ackbones, we use the communication cost vi -~ as
the length of the path. In both cases we randomly pick 1000

TABLE | source-destination pairs in the graph, simulate the rgutin
POWER STRETCH FACTOR FOR THE BACKBONES = 2) process and compare the length of the path with the shortest.
Due to the page limit we only present the results on the quasi-
Stretch Factor UDG with expected degree 10 and remark that the results are

N_| RI=10 | RIt=8 | Rir=2 | RI=15 consistent for graphs with other edge densities.
1000 | 1.048 | 1.141 | 1.190 | 1.184 ,

1500 | 1.044 | 1.155 | 1.198 | 1.129 Table Il shows the average values of the maximum label
2000 | 1.046 | 1.176 | 1.239 | 1.204 size and the average label size (with a node ID as a unit)

over the experiments for two cases. We observe that the label

From the three bar graphs in Fig. 6, the reduction in ttfézes with the algorithm applied to the backbones are smalle
metrics is quite uniform. It implies that the performance dhan those to the original graphs. This is mainly because the
our algorithm is stable for different sizes of the network. ~backbones are sparser than the original quasi-UDGs, hkace t

2) Routing performancewe apply our routing protocol not 9rid graphs we get are also sparser and have smaller sejsarato
only to the original quasi-UDGs but also to the backbones wde Will see later that this advantage comes at a cost of fight
obtain. To study the performance, we measure the maximilager stretch factors.
label size, average label size and the stretch factor ofngut Fig. 7(a) shows the average hop distance stretch factors
path that is defined as the distance in the actual routing paththe routing path for the routing algorithm applied to the
over the shortest path between the source and the destinatariginal graphs directly. In all cases we have the path ctret



TABLE I Path Hop distance Stretch Factors Path Hop distance Stretch Factors

LABEL SIZES OF ROUTING SCHEME BASED ON SEPARATORS 25 —o- N=1000 s -o- N=1000
. 2 —>— N=1500 = 8 —>— N=1500
— e — * —N=2000 225 — * —N=2000
On original On backbone g 15 3
w w2
N R/r | Max Size | Avg Size | Max Size | Avg Size § 1| === § 15 B _
1000 | 10 | 220.667| 155.911| 184.800| 131.614 B e @ 1
1000 | 3 | 139.733| 106.553| 130.733| 89.561 . °
1/10 1/3 1/2 2/3 1 1/10 1/3 1/2 2/3 1
1000 | 2 129.933| 91.318| 97.434| 68.825 e e
1000 | 1.5 | 100.367| 72.960| 90.634| 60.562 (a) based orG (b) based onB
1000 1 75.834 55.876 72.434 51.231 Power Stretch Factors Greedy+flooding Stretch Factors
1500 | 10 | 325.900| 233.056| 287.567| 205.997 28 “om Ne1000 i “om Ne1000
1500 | 3 | 218.933| 152.448| 166.067| 121.646 5 ° N2000 | Baol o TN
1500 | 2 | 165.767| 115.528| 143.400| 90.668 £ 1o £l
1500 | 1.5 | 133.900| 91.548| 122.967| 78.739 g1 2 20
(2] (2]
1500 | 1 102.167| 72.627| 90.800| 63.852 05 10
2000 | 10 | 320.033| 243.665| 292.733| 219.245 0 1 7 : O T 1 7 n
2000 | 3 232.100 | 172.638| 219.200| 151.097 R R _
2000 | 2 | 196.500| 142.079| 151.400| 102.410 (c) based on (d) Greedy+flooding
2000 | 15 271500 | 224.919 124.433 86.575 Fig. 7. Stretch factors for routing algorithmé&: is the original graph, and

2000 | 1 | 115867| 84.759| 108.933| 74.227 B is the backbone.
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