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Abstract— A deep understanding of the structural properties
of wireless networks is critical for evaluating the performance of
network protocols and improving their designs. Many protocols
for wireless networks — routing, topology control, information
storage/retrieval and numerous other applications — have been
based on the idealized unit-disk graph (UDG) network model.
The significant deviation of the UDG model from many real
wireless networks is substantially limiting the applicability of
such protocols. A more general network model, the quasi unit-
disk graph (quasi-UDG) model, captures much better the charac-
teristics of wireless networks. However, the understanding on the
properties of general quasi-UDGs has been very limited, which
is impeding the designs of key network protocols and algorithms.

In this paper, we present results on two important properties
of quasi-UDGs: separability and the existence of power efficient
spanners. Network separability is a fundamental property leading
to efficient network algorithms and fast parallel computation. We
prove that every quasi-UDG has a corresponding grid graph
with small balanced separators that captures its connectivity
properties. We also study the construction of wireless back-
bones through topology control for efficient communicationand
present a distributed localized algorithm that builds a nearly
planar backbone in any quasi-UDG with low constant stretch
factor and degree. We demonstrate the excellent performance
of these properties through simulations and show, among many
applications, their application in efficient routing.

I. I NTRODUCTION

The connectivity structures of wireless networks exhibit
strong correlations with the physical environment due to the
signal transmission model of wireless nodes. A deep under-
standing of the structural properties of wireless networksis
critical for evaluating the performance of network protocols
and improving their designs. So far, many protocols have been
based on the idealized unit-disk graph (UDG) network model,
where two wireless nodes can directly communicate if and
only if their physical distance is within a fixed parameterR.
Examples of these protocols include routing [3], [9], topology
control [1], distributed information storage/retrieval [4] and a
great variety of other applications. In practice, however,the
UDG model significantly deviates from many real wireless
networks, due to reasons including multi-path fading [6], [13],
antenna design issues, inaccurate node position estimation,
etc. It is not uncommon to observe stable links that are five
times longer than unstable short links [13]. The significant
deviation of the UDG model from practice is substantially
limiting the applicability of protocols based on UDGs. To
combat the problem, a much more general network model, the

quasi unit-disk graph (quasi-UDG) model, has been proposed
in recent years to capture the non-uniformity characteristic of
most wireless networks. Formally, it is defined as follows.

Definition 1: A quasi-UDGmodel is characterized by two
positive parametersR and r (R ≥ r). For any two nodes
u, v in a quasi-UDG network deployed in a plane, letd(u, v)
denote their Euclidean distance. Then, ifd(u, v) ≤ r, an edge
(link) exists betweenu andv; if d(u, v) > R, the edge does
not exist; if r < d(u, v) ≤ R, the edge may or may not exist.

The understanding on the properties of general quasi-UDGs,
however, has been very limited. That is in sharp contrast to
UDG, whose properties have been well understood [1], [9].
Among the limited knowledge about quasi-UDG, a notable
result is the “link-crossing” property discovered for quasi-
UDGs whereR ≤

√
2·r [2]. The serious lack of understanding

on the properties of general quasi-UDGs is impeding the
designs of key network protocols and algorithms.

In this paper, we present results on two important properties
of quasi-UDGs: separability and the existence of power effi-
cient spanners. Network separability is a fundamental property
leading to efficient network algorithms and fast parallel com-
putation [11]. A (vertex)separatorof a graphG is a set of
vertices whose removal splits the graph into two non-adjacent
parts of similar sizes. We call a graphG well separableif
any subgraph ofG has relatively small separators. A well
separable graph has strong locality properties. As a result, the
performance of protocols for routing, information retrieval,
network monitoring, etc., can be significantly improved for
such graphs. We first construct a grid graph that is an ab-
straction of the given quasi-UDGG and show that the grid
graph is well separable. The separator we obtain is of size
O(

√
N) and can split the graph into two parts of size roughly

N
2 , whereN is the number of nodes of the grid graph. In
addition, both the degrees of the grid nodes and the number
of edges crossing any edge are upper bounded by constants.
Among many applications of the separators, we present, as
an example, a compact routing protocol based on the grid
graph construction and distance labelling. We prove that the
routing table size of each node in our protocol is bounded
by O(

√
N log N), which is much better than the tight bound

proved for general graphs and close to the lower bound of
Ω(

√
N) for degree bounded graphs in [7]. The ratio of the

routing path length to the shortest path length is upper bounded
by 2 + ǫ whereǫ is a small constant. More extensions of the



results are also included.
In the second part of the paper we study the existence and

the construction of energy efficient backbones for quasi-UDGs.
A backbone is a spanning subgraph of the wireless network
for efficient communication, obtained through pruning a set
of edges. By using only those edges in the backbone for
communication, signal interference, routing table size and
power usage can be substantially reduced. A major require-
ment for backbone construction is to preserve the shortest
path distances between vertices as much as possible. For a
backboneB of a graphG = (V, E), the stretch factor is
defined ass(B) = max{ fB(u,v)

fG(u,v) |u, v ∈ V }, wherefB(u, v)

andfG(u, v) are the distances between verticesu, v in B and
G, respectively. The stretch factor reflects the quality of the
backbone. There have been results showing that for UDGs,
bounded degree and planar spanners can be constructed when
the distance functionf(u, v) is defined as the minimum power
needed to send a message fromu to v [8][14]. In this paper,
we present a distributed algorithm that constructs a backbone
B for any quasi-UDGG with a constant power stretch factor.
The node degrees of the backboneB are upper bounded by
a constant. In addition, although it is in general impossible
to construct planar backbones with constant stretch factors for
quasi-UDG, we show thatB is nearly planar, specifically,B
has a constant upper bound on the average number of edges
crossing an edge. The latter property is useful for geographic
routing algorithms based on cross link detection [10].

We evaluate the performance of the separators, the routing
protocol and the backbone construction through extensive
simulations. Their performance is much better compared to
the theoretical analysis of the worst cases. This shows that
although the quasi-UDG model is quite different from the
UDG model, efficient algorithms can still be developed by
exploiting the locality in the model.

The rest of the paper is organized as follows. In section
II, we present the grid graph construction and prove its
separability result. In section III, we present the backbone
construction through topology control. In Section IV, we
present the compact routing protocol based on the grid graph
and distance labelling, as well as the simulation results. We
conclude the paper in section V.

II. GRID GRAPH OF QUASI-UDGS

In this section, we present a distributed algorithm for
constructing a grid graph for any quasi-UDG, and prove that
the grid graph is well separable. The grid graph, whose node
density and edge density are both upper bounded by constants,
is an abstraction of the quasi-UDG. A quasi-UDG may have
highly variable node and edge densities, which prevent it from
having small separators. The grid graph is a “sparsified” ver-
sion of the quasi-UDG, which retains the distance information
for vertices and well represents the deployment region of the
quasi-UDG. As a result, the connectivity-related results for the
grid graph can be easily mapped to results for the quasi-UDG.
An example of a quasi-UDG and its corresponding grid graph

is shown in Fig. 1(a), (b). In the following, we present details
on the grid graph.

(a) (b)

(c) (d)

Fig. 1. Grid Graph Example. (a) A quasi-UDGG with 100 vertices and
R/r = 0.5; (b) The grid graph corresponding toG; (c) The auxiliary graph
used to find the top level separator ofG; (d) The backbone ofG.

A. Construction of the grid graphH

To obtain a grid graphH for a quasi-UDGG, we impose
a grid on the plane and view each non-empty cell as a vertex.
The construction is shown in Fig. 2.

Algorithm GridGraph

INPUT: G = (VG, EG): a quasi-UDG with parametersR and r
OUTPUT: H = (VH , EH): the grid graph forG

1. Impose a grid of cell sizer√
2
× r√

2
on the plane;

2. For each cell that has at least one vertex ofG, H has a
corresponding vertex, whose position is set at the center ofthe
cell;

3. There is an edge between two vertices ofH if and only if
there is at least one edge connecting two vertices ofG that are,
respectively, in the two corresponding cells.

Fig. 2. Constructing grid graph for quasi-UDG

All the vertices ofG in the same grid cell are adjacent.
The algorithmGridGraph can be easily implemented in a
distributed manner. The following theorem proves the constant
upper bounds for the node density, edge density and the
number of edges crossing any edge in the grid graphH .

Theorem 1:The algorithmGridGraph constructs a grid
graphH for given quasi-UDGG such that: (1) inside any disk
of radiusy, there are at mostO(y2

r2 ) vertices; (2) the degree
of each vertex is upper bounded byO(R2

r2 );(3) the number of
edges crossing any edge is upper bounded byO(R4

r4 ).
Proof: By the algorithm, the Euclidean distance between

any two vertices ofH is at least r√
2
. Hence if we place an



open disk of radius r
2
√

2
centered at every vertex, no two disks

will intersect. Therefore given any disk of radiusy, the number
of such open disks intersecting it is upper bounded byO(y2

r2 ).
So is the number of vertices ofH inside the disk.

Consider a vertexU of H , denote byv(U) the set of nodes
of G inside the cell represented byU . The number of vertices
of H within distanceR + r to U is bounded byO(R2

r2 ). No
node ofG in v(U) can be adjacent tow ∈ v(V ) whereV is
more than distanceR + r from U . Hence the degree ofU is
upper bounded byO(R2

r2 ).
Similarly, for an edge{U, V } of H , the number of grid

vertices within distanceR + r to any point in the line
segment connectingU andV is also upper bounded byO(R2

r2 ).
Therefore, the total number of edges crossing{U, V } is upper
bounded byO(R4

r4 ).
If two vertices of H are h hops away from each other,

then two vertices ofG in the two corresponding cells are at
most2h + 1 hops away from each other. Note that the above
method for constructing grid graphs, and the above results,can
be easily extended to three and higher dimensional spaces.

B. Separability of the grid graphH

Network separability is a fundamental property that leads
to efficient network algorithms (in particular, those algorithms
based on the divide and conquer paradigms),— fast parallel
computation, and improvements in the study of computational
complexity [11]. Many applications in wireless ad hoc net-
works (routing, information retrieval, etc.), as well as quite
a number of hard theoretical problems, have more efficient
solutions if the underlying graph is well separable. For exam-
ple, shortest path routing can be realized with small routing
tables when the graph has small separators, as in the case of
planar graphs or graphs with bounded tree width [7]. Also,
NP hard problems such as vertex cover and independent set
are solvable in polynomial time if the input graph and all its
subgraphs have bounded separators.

In this subsection, we study the separability of the grid
graph obtained above. We begin with a formal definition of
the separability of graphs.

Definition 2: Given a graphG of n vertices, ab-separator
of G is a set of vertices whose removal splitsG into two non-
adjacent subgraphs, each of which contains at mostbn vertices.
We call a graphG (f(n′), b)-separable if every subgraph of
G has ab-separator of at mostO(f(n′)) vertices, wheref(n′)
is a function of the number of verticesn′ in that subgraph.

In order to compute a small separator for the grid graph
H , we use the help of a planar auxiliary graphT . First, we
impose a larger grid on the plane and map the grid graphH to
an auxiliary graph that is nearly planar. Then, we planarizeit
by adding a virtual vertex at the middle of each diagonal edge,
eliminating all edge crossings. (Note that we see all the edges
as being straight.) The detailed construction of the auxiliary
graphT is presented in Fig. 3. All the virtual vertices inT
are denoted byred verticesand the others — which represent
cells — are denoted byblack vertices. Each red vertex has

weight zero, while each black vertex has a weight that equals
the number of vertices ofH in the corresponding cell.

Algorithm AuxiliaryGraph

INPUT: H = (VH , EH): a grid graph with parametersR and r
OUTPUT: T = (VT , ET ): the auxiliary graph forH

1. Impose a grid of cell-size(R + r√
2
) × (R + r√

2
) on the plane;

2. For each cell that has at least one vertex ofH, T has a
correspondingblack vertex v, whose position is set at the center
of the cell; we assign tov a weight that equals the number of
vertices ofH in that cell;

3. Add an edge between two black verticesu, v of T if and only if
there is at least one edge connecting two vertices ofH that are,
respectively, in the two corresponding cells;

4. For each pair of crossing edges{u, v}, {w, x}, add ared vertex
at the intersection of the two edges and replace those two original
edges with four new edges that connect the red vertex, respectively,
to the four black verticesu, v, w andx; let the weight of the red
vertex to be0;

5. For each diagonal edge between two black vertices, we add ared
vertex of weight0 at the middle of the edge and replace that
original diagonal edge with two new edges that connect the red
vertex, respectively, to those two black vertices.

Fig. 3. AuxiliaryGraph(H)

Fig. 1(c) shows an example of the auxiliary graph. The
longest edge in the auxiliary graph has lengthR +

√
2r
2 ,

and red vertices are either of degree 2 or 4. Since the cell
we apply in this algorithm is large enough (of side length
R + r√

2
) and all black vertices are placed at the centers of

their corresponding cells, any black vertex may only connect
to the eight black vertices around it before the red vertices
were added. Therefore, around each black vertex, there can be
at most four red vertices; and no two red vertices are adjacent
to each other. Formally, we have the following lemma.

Lemma 1:Let NT,b be the number of black vertices in the
auxiliary graphT . ThenT is a planar graph of at most2NT,b

vertices, and no two red vertices are adjacent.
Lipton and Tarjan proved in their celebrated Separation

Theorem [11] that for any vertex-weighted planar graph ofn
vertices, there exists a set ofO(

√
n) vertices that separates the

graph into two non-adjacent subgraphs, each of which weighs
at most 2

3 of the total weight of the graph. The separator
algorithm presented in [11], however, is relatively complex.
For the planar auxiliary graphT , which has a constrained
structure, we present a simpler and practically more efficient
algorithm for finding such a small separator. Based on that,
the algorithm also finds a small separator for the grid graph
H . The details of the algorithm are presented in Fig. 4.

We now prove that the algorithmSeparator constructs
small balanced separators forH andT . We start with a lemma.

Lemma 2:Let T̂ be any subgraph of the auxiliary graph
T . If its outer face hask vertices, then the number of inner
vertices (the vertices not on the outer face) is at most⌊ k2

2π ⌋.
Proof: The outer face of the planar graphT ′ is a closed

curve (or closed curves, if̂T is disconnected) on the plane.
Let x = R + r/

√
2 be the side length of the cells in the

construction of the auxiliary graphT . For each inner vertex
of T̂ , we place a

√
2x
2 ×

√
2x
2 square centered at it, then rotate



Algorithm Separator

INPUT: H: a grid graph with parametersR and r
OUTPUT: SH : a separator forH.

ST : a separator forT . (T is the auxiliary graph ofH.)
1. Let T be the auxiliary graph ofH. Let T ′ be a copy ofT .
2. Build a breadth-first search (BFS) tree for a dynamically changing

graphT ′ (T ′ changes because new edges are added to it during
the BFS procedure) in the following way: (1) pick a vertexv
on the outer face ofT ′ to be the root and start the BFS; (2)
during the BFS process, when a vertexu is dicovered (put into
the BFS tree), for every face containingu, add edges fromu
to as many other vertices in the face as possible so long as
T ′ remains a simple planar graph; if after adding those edges,
there are still faces containingu that are not triangulated, add
edges to triangulate them arbitrarily. During the BFS, a vertex’s
undiscovered neighbors are visited in the clockwise order (starting
with the vertex’s parent in the BFS tree as the reference point);

3. Check everyfundamental cycle(a cycle formed by a non-tree edge
and some tree edges) in the BFS tree. LetST be a fundamental
cycle that separatesT ′ (therefore alsoT ) in the most balanced
way, i.e. the difference between the summation of the weights of
vertices in the two separated subgraphsA1, B1 is minimized.

4. Consider the graphT . Let S′
T be a copy ofST . For each red

vertex u in S′
T

with the set of neighboring verticesN(u), we
distinguish two cases:Case (1)All vertices in N(u) belong to
A1(respectively,B1) except those inS′

T . Then, we moveu from
S′

T to A1(respectively,B1); Case (2)Both A1 and B1 contain
vertices ofN(u). Then, we put all vertices inN(u) into S′

T
and

moveu from S′
T

to A1.
5. Let SH be the set of vertices ofH in those cells corresponding

to the black vertices ofT in S′
T

. Let A2, B2 be the two sets of
vertices ofH in those cells corresponding to the black vertices of
T in A1 andB1. Clearly, SH separatesH into A2 andB2.

Fig. 4. Separator

the square by 45 degrees. It is simple to see that now these
(diamond shaped) squares centered at the inner vertices do not
overlap each other. The area of each square isx2

2 .
First consider the case when the outer face is connected, i.e.

T̂ is connected. The outer face ofT̂ consists of several (at least
one) simple cycles. Suppose there arei such simple cycles of
size k1, k2, . . . , ki in the outer face.

∑i
j=1 kj can be greater

than k, the number of vertices in the outer face, because in
the summation a vertex can be counted more than once. The
simple cycles form the outer face of a planar graph, so the
number of times vertices are over-counted is exactlyi − 1.
Thus

∑i
j=1 kj = k + i − 1.

First we havek2 =
[(

∑i
j=1 kj

)

− i + 1
]2

=
∑i

j=1 k2
j +

∑i
j=1

(

kj

∑i
l 6=j kl

)

−
∑i

j=1 2(i−1)kj+(i−1)2 ≥
∑i

j=1 k2
j +

∑i
j=1

[

kj

(

∑i
l 6=j kl − 2(i − 1)

)]

≥ ∑i
j=1 k2

j . The last in-

equality holds becausekj ≥ 2 and
∑

l 6=j kl contains exactly
i − 1 terms. The equality holds wheni = 1.

Each simple cycle ofkj vertices haskj edges, thus the
perimeter of the cycle is at mostkjx. Therefore the area

of the region inside the cyclekj is at most⌊k2

j x2

4π ⌋ and the
total area of the regions inside the outer face is bounded by
∑i

j=1⌊
k2

j x2

4π ⌋ ≤ ⌊k2x2

4π ⌋.
Now if there are several disconnected cycles in the outer

face, each connected part — say, ofk′ vertices — surrounds a

region of area no more than⌊k′2x2

4π ⌋, since
∑

k′2 ≤ (
∑

k′)2 =
k2, the total area of the regions surrounded by the outer face
is also bounded by⌊k2x2

4π ⌋ Thus, in all cases, the total number
of inner vertices is bounded by⌊k2x2

4π ⌋/x2

2 = ⌊ k2

2π ⌋.
Define thedepthof a tree to be the maximum number of

edges in a path from the root to a leaf. We have:
Lemma 3:Let NT be the number of vertices in the auxiliary

graphT . The BFS tree constructed in Step 2 of the algorithm
Separator is of depth at most

√
NT .

Proof: Let d be the depth of the BFS tree. Because of
the triangulation operation enforced on the graphT ′ during the
BFS process, fori = 1, 2, · · · , d− 1, the vertices at leveli (if
i = 1, include the root as well) of the BFS tree actually contain
all the vertices on the outer face of the subgraph induced by
the vertices at levelsi, i + 1, · · · , d. So it suffices to show
that if we “peel off” one outer face fromT ′ at each step,T ′

becomes an empty graph aftert ≤
√

NT steps.
Let nx be the number of vertices remaining in the graphT ′

afterx steps. (By convention, definen0 = NT .) By Lemma 2,
we know that in thex-th step we have “peeled off” at least
⌈
√

2πNx⌉ vertices. Sont−1 ≥ 1, ni ≥ ni+1 + ⌈√2πni+1⌉
for i = t − 2, t − 3, · · · , 0. Now let us prove thatnt−j ≥ j2

by induction: whenj = 1, we havent−1 ≥ 1 and when
j = 2, we havent−2 ≥ 4; suppose our claim is true for
2 ≤ j ≤ i; consider the casej = i + 1, wherent−(i+1) ≥
nt−i + ⌈√2πnt−i⌉ ≥ i2 + ⌈

√
2π⌉i ≥ i2 + 2i + 1 = (i + 1)2.

We haveNT = n0 = nt−t ≥ t2. So t ≤
√

NT .
By Lemma 2 in [11], if a vertex-weighted planar graph has

a spanning tree of depthh, then there exists a fundamental
cycle of size at most2h + 1 that separates the graph into two
non-adjacent subgraphs each of which weighs no more than
2/3 of the total weight of the graph. As the BFS tree obtained
in Step 2 of AlgorithmSeparator is of depth at most

√
NT ,

we have the following theorem immediately.
Theorem 2:Let NT be the number of vertices in the

auxiliary graphT , and letNH be the number of vertices in
H . Then, the total weight of the vertices ofT is NH , and
the setST obtained in AlgorithmSeparator contains at most
2
√

NT + 1 vertices and separatesT into two non-adjacent
subgraphs each of which weighs no more than2NH

3 .
We now prove that the algorithmSeparator also finds a

small balanced separator for the grid graphH .
Theorem 3:Let NH be the number of vertices in the grid

graphH . Then, the algorithmSeparatorconstructs a separator
SH of sizeO(

√
NH) that separatesH into two non-adjacent

subgraphs each of which has no more than2NH

3 vertices.
Moreover, the grid graphH is (

√
n′, 2

3 )-separable when the
weights of all the vertices ofH are set to be 1.

Proof: Let N ′ be the number of black nodes inT . Clearly
N ′ ≤ NH ; and it is straightforward that each cell correspond-
ing to a black vertex ofT contains at most⌈ 2(R+

√
2r/2)2

r2 ⌉
vertices ofH . Hence we haveN ′ = Θ(NH). From lemma 1
we know that the number of red vertices is no more than
N ′, and the total weight of vertices inT is NH . Hence the
separatorST for T contains no more than2

√
2N ′+1 vertices



whose weights sum up toO(
√

NH), and separatesT into two
parts each of which weighs no more than2NH

3 .

Now we show that after Step 4 of AlgorithmSeparator,
S′

T is still a separator forT of sizeO(
√

N ′), andA1 andB1

are still of weight no more than2NH

3 . Consider any red vertex
u ∈ S′

T in Step 4, in the case where all ofu’s neighbors are
either inST or A1 (respectively,B1), S′

T \{u} can separateT
into A1 ∪ {u} andB1 (respectively,A1 andB1 ∪ {u}). Note
that u has weight0, so movingu from S′

T to A1 (or, B1)
does not change their weights. In the complimentary case, the
algorithm moves allu’s neighbors intoS′

T and movesu into
A1; clearly S′

T still separatesA1 andB1. And by doing that,
we decrease the weights of bothA1 andB1. The size ofS′

T

increases by at most 3 for each red vertex.

Hence after Step 4, we have replaced all red vertices inS′
T

by black ones, increasing the size ofS′
T by at most three times,

not increasing the weights ofA1 and B1. Most importantly,
S′

T still separatesA1 and B1. ThereforeS′
T is still of size

O(
√

N ′) = O(
√

NH), and the weights ofA1 andB1 are no
more than2NH

3 . Each cell corresponding to a black vertex of
T contains a bounded number of vertices ofH , so SH is of
sizeO(

√
NH). Also, the number of vertices inA2 (resp.,B2)

equals the weight ofA1 (resp.,B1) (at most 2NH

3 ).

By the construction of the auxiliary graphT , if no two black
vertices are joined by an edge or two edges with a red vertex
in the middle, there is no edge connecting vertices ofH in
those two corresponding cells.A1 andB1 are not adjacent in
T , andS′

T has no red vertex. SoA2 andB2 obtained in Step
5 are not adjacent inH , andSH separatesA2 andB2 in H .

It is simple to see that any subgraph ofH can be used as
the input of AlgorithmSeparator, and the above arguments
still hold. HenceH is (

√
n′, 2

3 )-separable.

For some applications, a perfectly balanced separator is
desirable. By using the same technique described in [11], we
can construct a separator of sizeO(

√
NH) that separatesH

into two parts each of which has no more thanNH

2 vertices.
The idea is to separate the larger part of the outcome of the
algorithm recursively. Hence we have

Corollary 1: Let NH be the number of vertices in the grid
graphH . H is (

√
n′, 0.5)-separable.

For the grid graph, we can develop a shortest path routing
scheme based on its separators, using the idea of distance
labelling [7]. We can then transform it into a compact routing
scheme for the underlying quasi-UDGG with a small stretch
factor. The following theorem summarizes the result. We leave
the details of the routing algorithm, the proof of Theorem 4
and the extended results to section IV.

Theorem 4:For any quasi-UDGG of NG vertices, let
h(u, v) be the minimum hop distance between verticesu, v.
There is a routing protocol that guarantees the routing path
from u to v to have at most2h(u, v) + 1 hops, for any two
verticesu and v. The size of the routing table at each node
and the message overhead are bothO(

√
NG log NG).

III. B ACKBONE WITH CONSTANT STRETCH FACTOR

We denote bybackboneof a given graph a subgraph that
contains the same set of vertices but fewer edges. One example
of backbones are spanning trees. Backbones, particularly those
with small stretch factors and degrees, have very important
applications in wireless communication because they can help
reduce signal interferences and simplify algorithms.

In this section, we present a distributed construction of a
backbone with constant stretch factor, constant node degree
and a small number of edge crosses for quasi-UDGs. It is
also an extension of the grid method described in Section II.
We will show in Section IV that these backbones can also help
reduce the routing table size in our routing scheme.

A. Algorithm constructing the backbone

Energy is a major limitation in wireless networks. Accord-
ingly, the stretch factor of backbones is often defined based
on energy consumption. We start with its formal definition.

Definition 3: Let u = u1 → u2 → · · ·uk = v be a
path from u to v in the graphG. Denote by |ab|G the
Euclidian distance between any two verticesa and b. The
communication cost betweenu, v following the given path
is defined as:

cG(u, v) =
∑k−1

i=1 α|uiui+1|βG,
whereβ is the path loss exponent,2 ≤ β ≤ 5, and α is a
scaling factor linear in the number of sent bits. If there is no
path fromu to v, cG(u, v) is defined as+∞.

Definition 4: Given a graphG = (V, E) and a backboneB
of G, the stretch factor of B is defined as:

max
u,v∈V

{

cB,min(u, v)

cG,min(u, v)

}

,

where cB,min(u, v) and cG,min(u, v) denote theminimum
communication cost (over all the paths) betweenu, v in graph
B andG, respectively.

The stretch factor defined above is also called thepower
stretch factor. We say that a backbone isenergy efficientif its
power stretch factor is bounded by a constant.

We next present a distributed localized algorithm that, when
given a quasi-UDGG, constructs a backbone where the
maximum degree of a node is bounded byO(R2

r2 ), the average
number of crossings of an edge is bounded byO(R4

r4 ) and the
power stretch factor is bounded by3+ǫ, whereǫ is a constant
that can be made arbitrarily small. To run the algorithm, we
classify the edges in the quasi-UDGG into two types:short
edgeswhose lengths are no greater thanr; and long edges
whose lengths are strictly larger thanr.

In our algorithm, we first reduce the number of short edges
in the graph by applying an operation similar to Gabriel
Planarization [5] to make the subgraph induced by all short
edges ofG a planar graph. In the second step, we apply
an operation described in [8] to bound the number of short
edges incident to any node. Finally, we apply a grid operation
to reduce the number of long edges in the graph. Figure 5
contains the details for our algorithm.



Algorithm QuasiUDG-Backbone

INPUT: G: a quasi-UDG with parametersR and r
OUTPUT: B: a backbone ofG

1. Planarize the subgraph induced by short edges ofG
The subgraphB will contain the same vertex set asG. Initially,
the edge set ofB is set to empty. For each edgee{u, v} in G,
if there is no common neighbor ofu and v in G residing in the
disk whose diameter is the edgee{u, v}, we adde{u, v} into B.
Similar to the Algorithm 1 described in [14], this process can be
done in a distributed manner by exchanging no more thanO(m)
messages wherem is the number of edges inG.

2. Reduce the number of short edges incident to each vertex
Let G′ be the subgraph ofB that includes all the vertices and
short edges ofB. Note that hereG′ is in fact the Gabriel graph
constructed from a UDG (with communication ranger); soG′ is
planar. We apply the algorithm described in [8] onG′. Here is a
brief description of the algorithm that is performed by eachvertex:
Direct the edges inG′ (using the classical acyclic orientation
of a planar graph) so that every vertex inG′ has at most5
incoming edges; Perform a standard Yao step [8] on the set of
outgoing edges; Select certain edges that form large angleswith
consecutive edges (see [8] for details); Finally, communicate with
all the neighbors of the vertex and keep edges that have been
selected by least one of their ends.
When the above algorithm ends, we remove fromB those edges
that have been removed by the algorithm fromG′. This step will
reduce the number of short edges incident to every vertex to a
constantk + 5, wherek is a selectable parameter, and it can be
done locally. Compared to the subgraph ofG that contains all the
short edges ofG, B increases the minimum communication cost
between any two vertices by a factor of at most1+(2 sin(π/k))β ,
wherek is a parameter, andβ is the path loss exponent.

3. Reduce the number of long edges incident to each vertex
Add all the long edges ofG to B. We impose a grid of cell-size

r√
2
× r√

2
on the plane. Clearly, any long edge must be connecting

vertices in two different cells. For each pair of cells, we remove
from B all the long edges between them except for the shortest
one.

Fig. 5. Construct a backbone for a given quasi-UDG

Theorem 5:The algorithm QuasiUDG-Backbone con-
structs a backbone of the given quasi-UDGG such that its
maximum degree isO(R2

r2 ), the average number of edges
crossing an edge isO(R4

r4 ), and the power stretch factor is
3+ǫ (whereǫ is a constant that can be made arbitrarily small).

Proof: Let G′ be the subgraph ofG that includes all
the vertices and short edges ofG. It is easy to see thatG′ is
a UDG. Therefore after Step 1 and Step 2 of the algorithm,
we have removed the crossings between shortest edges, and
reduced the number of short edges incident to any vertex to
no more thank + 5, wherek > 8 is the parameter to the
algorithm [8]. Note that in Step 3, we keep at most one edge
between any two cells, and the number of cells reachable from
any vertex is bounded byO(R2

r2 ). The total number of long
edges incident to any vertex is then bounded by the same
constant. Thus in the final backbone, the degree of a node is
bounded byO(R2

r2 ).
On the other hand, any edge crossing in the final backbone

has to involve a long edge since the subgraph induced by
short edges is planar. For an arbitrary edgee, we will bound
the number of long edges that can cross it. Any long edge that
crossese must connect one cell at one side ofe to another
cell on the other side. We can verify that the number of cells

on one side ofe that can connect to a cell on the other side
is ω = O(R2

r2 ). Therefore, the number of long edges that can
crosse is at mostω2 = O(R4

r4 ). Suppose that the total number
of edges in the final backbone ism. Then the total number of
edge crossings is bounded byO(R4

r4 )m. Therefore the average
number of edges crossing an edge is bounded byO(R4

r4 ).
After Step 1 and 2, we have constructed a planar power

spanner forG′ of stretch factor bounded by1+ 2β sinβ(π/k)
[8]. In Step 3, by removing all the edges between any two cells
C1 andC2 except the shortest among them, the stretch factor
is increased but still bounded by3+2β+1 sinβ(π/k). To prove
this bound, we only need to prove that for any edge{x, y}
of G that is removed, there is a path fromu to v in the final
backbone such that the ratio of the communication cost of the
path and that of the edge{u, v} is at most3+2β+1 sinβ(π/k).

If the edge{u, v} is removed in the Step 1, we know that
the communication cost betweenu, v did not change (because
β ≥ 2). Otherwise we distinguish two cases:

Case 1, the edge{u, v} is removed in step 2. In this case,
[8] guarantees that by the end of step 2, there is a path from
u to v consisting of edges of length at mostr and the stretch
factor of the path is bounded by1+ 2β sinβ(π/k). Since step
3 only removes edges of length greater thanr, the above path
from u to v is preserved in the backbone and the stretch of the
path is bounded by1 + 2β sinβ(π/k) < 3 + 2β+1 sinβ(π/k).

Case 2, the edge{u, v} is removed in Step 3. In this
case, the length of{u, v} is greater thanr and there is
another edge{u′, v′} in the final backbone such thatu and
u′ belong to the same cell,v and v′ belong to the same
cell, and d(u′, v′) ≤ d(u, v). By an argument similar to
that in case 1, there must exit a path betweenu and u′

in the final backbone whose communication cost is at most
(1 + 2β sinβ(π/k))d(u, u′)β ≤ (1 + 2β sinβ(π/k))rβ <
(1+2β sinβ(π/k))d(u, v)β . Similarly, there is a path between
v and v′ in the final backbone whose communication cost
is at most (1 + 2β sinβ(π/k))d(u, v)β . Since d(u′, v′) ≤
d(u, v), the stretch factor of the path(u, u′, v′, v) is at most
2(1 + 2β sinβ(π/k)) + 1 = 3 + 2β+1 sinβ(π/k). Note that
2β+1 sinβ(π/k) can be made arbitrarily small by choosing a
sufficiently large parameterk. This completes the proof.

IV. A PPLICATIONS AND PERFORMANCEEVALUATION

In this section, we first present out routing algorithm based
on the separators, then prove the bound for the path stretch fac-
tor of our routing protocol. As the second part of the section,
we show the simulation results of the backbone constructions
and the routing performance of our routing algorithms to verify
the theoretical bounds we prove.

A. A routing scheme based on the separators

As one of the applications of the small separators of the
grid graphs, we present a routing scheme for quasi-UDG
based on the grid graph and analyze its performance. Our
routing scheme is suitable for systems in which the size of the
messages itself is relatively large. We will give the simulation
results later in this section.



Our routing scheme is based on the distance labelling
scheme described in [7]. The basic idea of distance labelling
is to give each vertex a label such that the distance between
two vertices can be computed using only their labels. A
straightforward labelling scheme is to store in each node a
full table of the distances to all the other vertices. The goal
of the distance labelling scheme in [7] is to find the labels of
minimum length. The separability of the underlying graph isa
key factor of how good a distance labelling scheme is available
for the network. In [7] the authors proved that for a graph
which has a separator of sizek, there is a distance labelling
scheme of label sizeO(k log n + log2 n), and the distance
between two nodes can be computed in timeO(log n), where
n is the number of nodes in the network.

Although a quasi-UDGG may not possess a small separator,
we have proved that the grid graphH with n vertices con-
structed forG does have a balanced separator of sizeO(

√
n).

Conceptually, our routing protocol utilizes two-level routing:
virtually, the message is sent in the grid graph from the cell
containing the source to the cell containing the destination,
via the shortest path in the grid graph; in reality, the routing
is implemented in the underlying quasi-UDG to route from
cell to cell. (Note that in each cell, the quasi-UDG vertices
are fully connected, so routing from one cell to the next takes
at most two hops.) The basic idea to achieve shortest path
routing in the grid graph is to splitH into two non-adjacent
parts using the small separator. Each vertex ofH remembers
the distance to all separator vertices. Thus, two vertices in the
two parts (or the separator) can compute their shortest path
distance using that information, because their shortest path
must go through a separator vertex. We recursively apply the
same process to partition each part into small parts, to enable
any two vertices to compute their shortest path distance using
their stored information (their labels). We stop partitioning a
part when its size is below a certain constant. (We call such
a part abasic block.) Since we use balanced separators, the
process ends afterO(log n) levels of partitioning.

For a vertexW of H , let v(W ) be the set of quasi-UDG
vertices ofG that reside in the cell corresponding toW . The
following list contains the information that each vertexu ∈
v(W ) in G stores in our protocol.

• the minimum distances (inH) to all the separator vertices
that are on the boundaries of all the partitionsW is in;

• the neighboring quasi-UDG vertex through which it can
get to other cells adjacent toW in H ;

• a shortest path routing table for the vertices ofH in the
basic block whereu resides.

The routing protocol assumes that the source knows the
label of the destination. This piece of information can be
obtained from location service. Since location service is not
directly related to our topic, we skip the details here.

If the destination is not in the same cell as the source, the
message will follow a shortest path inH from the source cell
to the destination cell. By utilizing the second part of the list
(label), a vertex can send a message to any of its neighboring
cell in two hops. Within a basic block, the third part of the

routing table points out the shortest path between cells directly.
Our routing protocol compares favorably with shortest path
routing algorithms and compact routing algorithms for general
networks for its significantly smaller routing table size and
maintained constant stretch factor.

Proof of Theorem 4
Proof: In the routing protocol described above, the first

part of a node’s routing table is of sizeO(
√

N log N). The
second and third parts of the routing table both consist of a
constant number of entries because the number of neighboring
cells and the number of cells in each basic block are both
constants. The size of the routing table is thenO(

√
N log N).

Inside each message we need only to carry the label of the
destination vertex, so the overhead in the message size is also
bounded byO(

√
N log N).

Given a pathp from u to v, let d(p) denote its number of
hops, and letc(p) denote the number of times the pathp travels
from one cell to another. Letpopt be the shortest path fromu
to v, and letp′ be the routing path of our protocol. Clearly,
c(popt) ≤ d(popt), and c(p′) ≤ c(popt) because our protocol
uses shortest path routing in the grid graph.p′ travels from one
cell to the next in at most two hops, sod(p′) ≤ 2c(p′) + 1.
So d(p′) ≤ 2d(popt) + 1.

Sometimes we are more concerned about the energy con-
sumption than the hop distance if the wireless nodes are able
to adjust their communication range to save power. Let the
communication cost be as defined in Section III. In reality,
it is infeasible for a node to reduce its communication range
to infinitely small. There is always a constant rangeδ below
which the wireless node cannot reduce its communication
range. With this assumption, we prove the following theorem.

Theorem 6:Let the communication cost be as defined in
Section III, and assume that the minimum communication
range isδ. (Therefore, the communication cost of an edge
of Euclidean lengthd is α · (max{d, δ})β.) Then, the com-
munication cost of a routing path fromu to v generated by
our routing protocol is upper bounded by a constant times the
minimum communication cost over all the paths fromu to v.

Proof: Let popt be the optimal path fromu to v with
the minimum communication costCopt, and let p′ be the
routing path of our algorithm with costC′. If u, v are in
the same cell of the grid graphH , then Copt ≥ αδβ , and
C′ ≤ αrβ since vertices in the same cell form a clique. So
C′ ≤ (rβ/δβ)αδβ ≤ (rβ/δβ)Copt = Copt · O(1).

Now assume thatu, v are in different cells ofH . Let lopt and
l′ denote, respectively, the number of hops inpopt andp′. By
Theorem 4,l′ ≤ 2lopt+1. SoC′ ≤ l′αRβ ≤ (2lopt+1)αRβ ≤
2lopt+1

lopt
· Rβ

δβ · loptαδβ ≤ 3 · Rβ

δβ · Copt = Copt · O(1).

B. Simulations

We conducted extensive simulations to evaluate the perfor-
mance of our backbone construction algorithm and routing
protocol. The performance has been stable and consistent. In
the following experiment, we randomly deployN quasi-UDG
nodes in a 2-D space of size1500 × 1500. We increase the
number of nodes,N , in the system from1000, 1500 to 2000



to verify the effects of density change on the performance.
We also increase the valueR/r from 1, 1.5, 2, 3 to 10 to
see the performance of our algorithms for different wireless
connectivity models. To mimic nontrivial network topologies,
we randomly generate a big hole of radius randomly picked in
the range[R, 2R] and five small random holes of radius picked
in the range[0, R]. The centers of the holes are uniformly
randomly chosen in the plane. If the distance between two
nodes is in the range(r, R], we put a direct link between them
probabilistically. For each configuration, we run the simulation
30 times and take the average of the performance metrics.

We would like to point out that the performances of our
routing algorithm and backbone construction method are rela-
tively independent of the size of the network. Our theoretical
bounds and the simulation results both show that the qualityof
the backbone constructed and the stretch of the routing paths
are closely related to the ratio ofr to R.

1) Backbone construction:In the backbone construction
simulations, we measure the power stretch factor, maximum
degree, the average degree and the average number of edge
crossings on an edge in the backbone constructed and compare
them to the original graph. For node pairs whose distances
are betweenr andR, we adjust the probability of their being
connected to ensure an expected average degree of 10 in order
to compare the results between different densities and values of
R/r. The results shown in Table I and Fig. 6 are for backbones
constructed by only performing the first step and the last step
in Algorithm Backbone. We eliminated the results for the
case whenR = r since there the backbones are known to
be planar with power stretch factor being1 because of the
Gabriel operation in the first step of the algorithm. Our results
showed that for all configurations the backbones have very
small power stretch factors, much smaller maximum degree
and in most cases, we can bring the average degree to below
6 (which is the upper bound of the average degree for planar
graphs). Even whenR/r = 10, the average degree of our
backbones is no more than 8. As for the number of crossings,
our algorithm reduced it by at least60% in all cases.

TABLE I

POWER STRETCH FACTOR FOR THE BACKBONES(β = 2)

Stretch Factor
N R/r=10 R/r=3 R/r=2 R/r=1.5

1000 1.048 1.141 1.190 1.184
1500 1.044 1.155 1.198 1.129
2000 1.046 1.176 1.239 1.204

From the three bar graphs in Fig. 6, the reduction in the
metrics is quite uniform. It implies that the performance of
our algorithm is stable for different sizes of the network.

2) Routing performance:We apply our routing protocol not
only to the original quasi-UDGs but also to the backbones we
obtain. To study the performance, we measure the maximum
label size, average label size and the stretch factor of routing
path that is defined as the distance in the actual routing path
over the shortest path between the source and the destination.
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Fig. 6. The Maximum degree, the average degree, and the average number
of edges crossing an edge for quasi-UDGs and their backbones. The 6 bars
in each group are, from left to right (1) maximum degree in quasi-UDG; (2)
maximum degree in backbone; (3) average degree in quasi-UDG; (4) average
degree in backbone; (5) average number of crossings per edgein quasi-UDG;
(6) average number of crossings per edge in backbone. Note that in some
groups, the last bar is not shown, because the average numberof crossings
per edge in backbones equals 0 there.

The length of the path for routing in the original graphs is
defined as the hop distance between two nodes, while in the
backbones, we use the communication cost withβ = 2 as
the length of the path. In both cases we randomly pick 1000
source-destination pairs in the graph, simulate the routing
process and compare the length of the path with the shortest.
Due to the page limit we only present the results on the quasi-
UDG with expected degree 10 and remark that the results are
consistent for graphs with other edge densities.

Table II shows the average values of the maximum label
size and the average label size (with a node ID as a unit)
over the experiments for two cases. We observe that the label
sizes with the algorithm applied to the backbones are smaller
than those to the original graphs. This is mainly because the
backbones are sparser than the original quasi-UDGs, hence the
grid graphs we get are also sparser and have smaller separators.
We will see later that this advantage comes at a cost of slightly
larger stretch factors.

Fig. 7(a) shows the average hop distance stretch factors
of the routing path for the routing algorithm applied to the
original graphs directly. In all cases we have the path stretch



TABLE II

LABEL SIZES OF ROUTING SCHEME BASED ON SEPARATORS

On original On backbone

N R/r Max Size Avg Size Max Size Avg Size

1000 10 220.667 155.911 184.800 131.614

1000 3 139.733 106.553 130.733 89.561

1000 2 129.933 91.318 97.434 68.825

1000 1.5 100.367 72.960 90.634 60.562

1000 1 75.834 55.876 72.434 51.231

1500 10 325.900 233.056 287.567 205.997

1500 3 218.933 152.448 166.067 121.646

1500 2 165.767 115.528 143.400 90.668

1500 1.5 133.900 91.548 122.967 78.739

1500 1 102.167 72.627 90.800 63.852

2000 10 320.033 243.665 292.733 219.245

2000 3 232.100 172.638 219.200 151.097

2000 2 196.500 142.079 151.400 102.410

2000 1.5 271.500 224.919 124.433 86.575

2000 1 115.867 84.759 108.933 74.227

factors no larger than1.3.
Fig. 7(c) shows the power stretch factors and Fig. 7(b)

shows the hop distance stretch factors of the routing paths
when the algorithm is applied to the backbones. The hop
stretch factors shown in Fig. 7(b) are moderately larger than
the ones shown in Fig. 7(a). It is the price we paid for the
reduction in the size of the routing tables.

It looks interesting from the figures that whenR/r is
large(10), the algorithm generally performs better than the
other cases. This is because to maintain the same average node
degree of the graphs we have to decrease the value ofr. In
that case a grid graph actually describes the original graph
more accurately and with more details. Hence the sizes of the
labels are larger(see Table II), but the paths we discoveredare
closer to the shortest ones.

We have also implemented the well known greedy-
forwarding plus local-flooding (expanding ring search with
doubling radius) routing algorithm, and performed the same
number of experiments on the same set of graphs. The average
stretch factors are shown in Figure 7(d). Our results indicate
that compared to that algorithm, the routing protocol based
on separators has a much better stretch factor because of its
robustness to the existence of holes.

V. CONCLUSION

In this paper, we have studied two structural properties of
quasi-UDGs: separability and the existence of power efficient
spanners. Such results lead to a deeper understanding of the
locality properties of quasi-UDG networks and an improve-
ment in the development of networking protocols. As the
future work, we will explore the separability of quasi-UDGs
deployed in 3D space, other properties of quasi-UDGs, and
their network applications.
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