
June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

1

SEEING THE TREES AND THEIR BRANCHES
IN THE NETWORK IS HARD

I. A. KANJ

School of Computer Science, Telecommunications, and Information Systems, DePaul University,
Chicago, IL 60604-2301, USA
E-mail: ikanj@cs.depaul.edu

L. NAKHLEH∗ and C. THAN†

Department of Computer Science, Rice University,
Houston, TX 77005-1892, USA

∗E-mail: nakhleh@cs.rice.edu †E-mail: cvthan@cs.rice.edu

G. XIA

Department of Computer Science, Acopian Engineering Center, Lafayette College,
Easton, PA 18042, USA

E-mail: gexia@cs.lafayette.edu

Phylogenetic networks are a restricted class of directed acyclic graphs that model evolu-
tionary histories in the presence of reticulate evolutionary events, such as horizontal gene
transfer, hybrid speciation, and recombination. Characterizing a phylogenetic network as a
collection of trees and their branches has long been the basis for several methods of recon-
structing and evaluating phylogenetic networks. Further, these characterizations have been
used to understand molecular sequence evolution on phylogenetic networks.

In this paper, we address theoretical questions with regard to phylogenetic networks,
their characterizations, and sequence evolution on them. In particular, we prove that the
problem of deciding whether a given tree is contained inside a network is NP-complete.
Further, we prove that the problem of deciding whether a branch of a given tree is also a
branch of a given network is polynomially equivalent to that of deciding whether the evo-
lution of a molecular character (site) on a network is governed by the infinite site model.
Exploiting this equivalence, we establish the NP-completeness of both problems, and pro-
vide a parameterized algorithm that runs in time O(2k/2n2), where n is the total number
of nodes and k is the number of recombination nodes in the network, which significantly
improves upon the trivial brute-force O(2kn) time algorithm for the problem. This reduc-
tion in time is significant, particularly when analyzing recombination hotspots.

Keywords: Phylogenies; Networks; Complexity; Parameterized algorithms.



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

2

1. Introduction

Phylogenies, i.e., evolutionary histories, play a major role in representing the rela-
tionships among biological entities. Their pervasiveness has led biologists, math-
ematicians, and computer scientists to design a variety of methods for their recon-
struction. Until recently, most of these methods were designed to construct trees.
Yet, biologists have long recognized that trees oversimplify our view of evolu-
tion in certain cases, since they cannot model events such as hybrid speciation,
horizontal gene transfer (HGT), and recombination. These events, which are col-
lectively referred to as reticulation events or reticulate evolutionary events, give
rise to non-treelike evolutionary histories which are best modeled by phylogenetic
networks. Reconstructing and evaluating the quality of phylogenetic networks is
very important, given the emerging evidence of the ubiquity of reticulation events
and the evolutionary roles they play.

Relationships between phylogenetic networks on one hand, and the trees and
their branches on the other, have great significance. From the computational per-
spective, these relationships form the basis for the wide array of methods that
have been devised for reconstructing phylogenetic networks.8,10 From the biolog-
ical perspective, these relationships shed light on how molecular sequences evolve
down these networks. Events such as recombination, hybrid speciation, and lateral
gene transfer break up the genomic history into many small pieces, each of which
has a strictly treelike pattern of descent.9 Identifying these trees and reconcil-
ing their discordance is the basis for several phylogenetic network reconstruction
methods.3,13 Understanding the relationship between a phylogenetic network and
its branches, particularly in terms of the clusters (or splits) of taxa that they in-
duce, has been the basis for another category of reconstruction methods.1,4 Very
recently, Nakhleh and colleagues introduced new approaches for augmenting a
tree into a phylogenetic network to fit the evolution of a set of sequences based on
parsimony6 and likelihood5 criteria.

Almost all of the aforementioned methods are based on understanding rela-
tionships among networks, trees, and clusters of taxa. Further, some of them rely
on analysis of the evolution of sequences on networks. In this paper, we pro-
vide a theoretical treatment of the computational complexity of establishing some
of these relationships. Nakhleh and Wang14 devised efficient algorithms for re-
stricted cases of some of these problems, while leaving the computational com-
plexity of the general cases as open questions. In this paper, we prove that the
problem of deciding whether a given tree is contained inside a network is NP-
complete. Further, we prove that the problem of deciding whether a branch of a
given tree is also a branch of a given network is polynomially equivalent to that
of deciding whether the evolution of a molecular character (site) on a network is



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

3

governed by the infinite site model. Exploiting this equivalence, we establish the
NP-completeness of both problems, and provide a parameterized algorithm that
runs in time O(2k/2n2), where n is the total number of nodes and k is the num-
ber of recombination nodes in the network, which significantly improves upon
the trivial brute-force O(2kn) time algorithm for the problem. This improvement
is very significant in practice.12 Kanj et al.7 considered the problem of character
compatibility on a different model of phylogenetic networks that is used in histor-
ical linguistics. Whereas the NP-hardness result from that work is modified and
used here, that is not the case, however, for the new parameterized algorithm that
we present here. The algorithmic techniques do not carry over to the biologically-
motivated model of phylogenetic networks that we consider here. Due to the lack
of space, many proofs have been omitted.

2. Phylogenetic Networks, Trees, and the Infinite Site Model

Let T = (V,E) be a tree, where V and E are the tree nodes and tree edges, re-
spectively, and let L(T ) denote its leaf set. Further, letX be a set of taxa (species).
Then, T is a phylogenetic tree over X if there is a bijection between X and L(T ).
A tree T is said to be rooted if the set of edges E is directed and there is a single
distinguished internal node r with in-degree 0.

A character c labeling the leaves of T is a function c : L(T ) → {0, 1}. Bio-
logically, such character corresponds to a single SNP, and the two states it takes
are the two possible alleles that the SNP may exhibit.a The commonly assumed
model of evolution of SNPs is the infinite site model, which states that when a
character (site) mutates, it changes its state to a new one that is not observed any-
where else in the tree. We denote by c(v) the state of character c for node v. A
haplotype of length k is a sequence of such characters c1 · · · ck. A full labeling,
or labeling for short, for character c on the tree is an extension, ĉ, of character c

to label all the nodes of T ; i.e., ĉ : V (T ) → {0, 1} and ĉ(v) = c(v) for every
v ∈ L(T ). In this paper, we focus on characters that exhibit exactly two states.

Definition 2.1. A character c is compatible on tree T if there is a labeling ĉ which
extends c such that there exists exactly one edge e = (u, v) ∈ E(T ) where ĉ(u) 6=
ĉ(v), and for all other edges e′ = (u′, v′) 6= e, ĉ(u′) = ĉ(v′).

Notice that if SNP c evolves under the infinite site model, then there is a tree
on which it is compatible. Hence, the compatibility criterion reflects this model
of evolution. A sequence of characters c1 · · · ck is compatible on tree T if every

aEven though SNPs may exhibit all four states (A, C, T, and G), bi-allelic SNPs, i.e., SNPs that exhibit
two states, are the most common.



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

4

character ci, 1 ≤ i ≤ k, is compatible on T . By this definition of compatibility, it
suffices to establish the computational complexity of and develop algorithms for
testing the compatibility of single characters. Therefore, from this point on, we
focus on the case of a single character. Testing whether a character is compatible
on a tree T with n leaves can be done in O(n) time.11

As explained in Section 1, when reticulation events occur, the evolutionary
history of a set of sequences is best modeled by a phylogenetic network. A phy-
logenetic network N = (V,E) is a rooted directed acyclic graph, with set L(N)
of leaves, such that there is a bijection between a set of taxa X and L(N). A
network N has three types of nodes: (1) one node r with in-degree 0, which cor-
responds to the root; (2) nodes with in-degree 1, which correspond to coalescence
events; and (3) nodes with in-degree 2, which correspond to recombination. Fig. 1
shows an example of a phylogenetic network on four taxa A, B, C, and D. A

. ..
.

.

B CA D

.
.

.

B CA D

.
.

.

B CA D

N T1 T2

Fig. 1. A phylogenetic network N on four taxa A, B, C, and D, and the two trees T1

and T2 it contains. Character c1, where c1(A) = c1(D) = 0 and c1(B) = c1(C) = 1
is compatible on tree T1, but not compatible on tree T2. Character c2, where c2(A) =
c2(B) = 0 and c2(C) = c2(D) = 1 is compatible on T2 but not on T1. It can be easily
checked that there does not exist any tree T on which both characters are compatible.
However, both characters are compatible on network N . The two horizontal edges in N
are directed towards the parent of C.

phylogenetic network N induces, or contains, a set of trees; these trees model
the evolutionary histories of sets of non-recombining segments (or, genes) in the
genomic sequences. We denote by T (N) the set of all trees contained inside net-
work N . Each such tree is obtained by the following two steps: (1) for each node
of in-degree 2, remove one of the incoming edges, and then (2) for every node
x of in-degree and out-degree 1, whose parent is u and child is v, remove node
x and its two adjacent edges, and add a new edge from u to v. If node x is the
root and its out-degree is 1, remove x and make its only child the new root for the
tree. Figure 1 shows the two trees contained inside network N . The membership
problem of trees and networks, which is heavily used in network reconstruction
methods, is formulated as follows.

Problem 2.1. Tree Containment (TC)



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

5

Input: A phylogenetic network N and tree T over the same setX of taxa.
Question: Is T ∈ T (N)?

In the next section, we prove that the TC problem is NP-complete. The notion of
character compatibility is extended to phylogenetic networks so as to reflect the
biological fact that the evolutionary history of a character is modeled by one of
the trees inside the network.

Definition 2.2. A character c is compatible on network N if c is compatible on at
least one tree T ∈ T (N).

The problem of testing the infinite site model on a phylogenetic network can be
defined as follows.

Problem 2.2. Infinite Site on Phylogenetic Networks (ISPN)
Input: Phylogenetic network N and a binary character c labeling the
leaves of N .
Question: Is c compatible on N?

Given a network N with k nodes of in-degree 2, the size of T (N) is O(2k).
Therefore, The ISPN problem is solvable in O(2kn) time, given the algorithm for
solving the problem when N is a tree.11 In the next sections, we prove that ISPN
is NP-complete and introduce a more efficient algorithm for solving it.

Further, we establish equivalence between the ISPN problem and another
problem from phylogenetics, namely the Cluster Containment problem.14 Let T

be a phylogenetic tree on a set X of taxa. We say that edge e induces, or defines,
cluster X ⊆ X , where X is the set of all leaves reachable from the root of T

through edge e. We denote by C(T ) the set of all clusters defined by tree T . This
notion is extended to networks by C(N) = ∪T∈T (N)C(T ). The Cluster Contain-
ment problem is defined as follows.

Problem 2.3. Cluster Containment (CC)
Input: A phylogenetic Network N and set X of taxa.
Question: Is X ∈ C(N)?

Nakhleh and Wang14 devised a polynomial time algorithm for a restricted ver-
sion of the CC problem, yet its complexity in the general case was left open.
We show that CC and ISPN are polynomially equivalent, thus establishing NP-
completeness of the former problem as well.

3. Computational Complexity of the TC Problem

A straightforward way to answer this question is to generate all possible trees from
the network and compare them with T . Checking if two trees are identical can be



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

6

done in polynomial time. However, for a network N with k recombination nodes,
the number of trees induced by the network is O(2k), and therefore checking if
a tree is contained in a network using this brute-force approach takes exponential
time.

Theorem 3.1. The problem TC is NP-complete.

4. The ISPN Problem: Complexity and A Parameterized Algorithm

4.1. NP-completeness of ISPN

Kanj et al.7 proved the NP-completeness for the problem of character compat-
ibility on phylogenetic networks when the network edges are bi-directional. We
modify their proof to make it work for the ISPN problem and present the theorem.

Theorem 4.1. ISPN is NP-complete.

4.2. A Parameterized Algorithm for ISPN

A Prelude to the Algorithm

An instance of a parameterized problem is a pair consisting of an input instance x

of size n and a parameter k. A parameterized problem is fixed-parameter tractable
if it can be solved in time f(k)nO(1), where f is a computable function of the
parameter k.2

Naturally, the ISPN problem can be parameterized by the number of recom-
bination nodes (nodes of in-degree 2) k in the phylogenetic network, which is
usually much smaller than the total number of nodes in the network.12 Every re-
combination node in N has two incoming edges, and hence two possible parents.
Deciding the parent of each recombination node in N induces a tree from N , and
N is compatible if and only if there exists an induced tree from N that is compati-
ble. Since there are O(2k) such induced trees, the ISPN problem can be solved in
O(2kn) time, where n is the number of nodes in N , by enumerating all possible
induced trees then checking whether any of them is compatible using the linear
time algorithm.11 We shall improve on this trivial upper bound next by presenting
a simple branch-and-search algorithm that runs in O(2k/2n2) time.

For two nodes u and v in N , we denote by the ordered pair (u, v) the directed
edge from u to v (in case the edge exists in N ). A node u in N is an internal node
if u is not a leaf in N , that is, if the out-degree of u is greater than 0.

Definition 4.1. For a node u ∈ N we define the weight of u, denoted wt(u), to
be the in-degree of u minus 1 if u is not the root of N , and to be 0 if u is the root
of N .



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

7

Definition 4.2. A node u in N is a said to be a recombination node if it is weight
is greater or equal to 1, otherwise, u is said to be a non-recombination node.

Definition 4.3. Let N be a network. A node p in N is said to be a partition node if
there exists an induced compatible tree T from N such that there is a valid labeling
for the nodes in T with all the nodes in the subtree rooted at p in T labeled with
the same label, and all the other nodes in T labeled with the other label.

While applying the branch-and-search process, the algorithm will label some
of the internal nodes in the network. Therefore, the network will get partially
labeled as the algorithm progresses. In many cases the (resulting) network can be
simplified, or even, its compatibility can be inferred easily. We describe next some
of the scenarios in which the compatibility of the network can be directly decided.
We also describe some operations that simplify the network. The algorithm will
make use of these operations and simplifications.

Proposition 4.1. If there is at most one leaf of label 0 (similarly 1) in N then N

is compatible.

Proposition 4.2. Let u ∈ N be a node. Suppose that u has two children that are
non-recombination nodes. Suppose further that these two children have different
labels and none of them is a partition node. Then N is not compatible.

Proposition 4.3. If a labeled node u ∈ N has a non-recombination child v such
that label(v) 6= label(u) and v is not a partition node, then N is not compatible.

Proposition 4.4. Let u be a recombination node in N and let (u′, u) be an incom-
ing edge to u. Suppose that label(u) 6= label(u′). Let N ′ be the network resulting
from N by removing the edge (u′, u). Then N is compatible if and only if N ′ is.
Moreover, if p is a partition node in N then p is also a partition node in N ′.

Proposition 4.5. Let u be a labeled non-recombination node in N with the in-
coming edge (u′, u). Suppose that u′ is unlabeled. Let N ′ be the network ob-
tained from N by setting label(u′) = label(u) if u is not the partition node, and
label(u′) = 1− label(u) if u is the partition node. Then N is compatible and p is
a partition node in N if and only if N ′ is compatible and p is a partition node in
N ′.

Proposition 4.6. Let u be a node in N and let (u′, u) be an incoming edge to
u. Suppose that label(u) = label(u′). Suppose further that u is a recombination
node and let (u′′, u) be another incoming edge to u. Let N ′ be the network result-
ing from N by removing the edge (u′′, u). Then N is compatible with a partition
node p if and only if N ′ is compatible with a partition node p.



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

8

Proposition 4.7. Let w be a node in N such that all its children are leaves labeled
with the same label. Let N ′ be the network obtained from N by: (1) replacing w

and its children with a leaf w′ labeled with the same label as the children of w, (2)
making every incoming edge to w an incoming edge to w′, and (3) making every
incoming edge to a child of w an incoming edge to w′. Then N is compatible if
and only if N ′ is. Moreover, if p is a partition node of N then p is also a partition
node of N ′, unless p is either w or one of its children and in which case w′ is a
partition node in N ′.

We describe below a procedure that simplifies the network according to the
operations and simplifications described in the previous propositions.

Simplify(N )
1. while there is a node u ∈ N of out-degree 0 do remove u from N ;
2. if there is only one leaf in N with label 0 (or 1) then return (TRUE);
3. if the partition node p is a leaf then return (FALSE);
4. if there exists a node u ∈ N that has two children with different labels that are

non-recombination nodes and such that none of them is a partition node
then return (FALSE);

5. if there exists a labeled node u ∈ N that has a non-recombination child v such that
label(v) 6= label(u) and v is not a partition node then return (FALSE);

6. if there exists a recombination node u ∈ N and an edge (u′, u) ∈ N such that
label(u′) 6= label(u) then remove (u′, u) and decrease wt(u) by 1;

7. if u′ is unlabeled and has a labeled child u such that u is a non-recombination node then
if u is designated as the partition node then set label(u′) = 1− label(u);
else set label(u′) = label(u);

8. if there exists a recombination node u ∈ N and an edge (u′, u) ∈ N such that
label(u′) = label(u) then

for every edge (u′′, u) ∈ N where u′′ 6= u do
remove (u′′, u) and decrease wt(u) by 1;

9. if there exists a node w ∈ N such that all the children of w are leaves labeled with the
same label then

9.1. remove w and its children and replace them with a leaf w′;
9.2. label w′ with the same label as the children of w;
9.3. make all incoming edges to w and its children incoming edges to w′ and

set wt(w′) to be wt(w) plus the sum of the weights of the children of w;
9.4. if w is designated as the partition node then designate w′ as the partition

node in the resulting network;

Fig. 2. The procedure Simplify.

Proposition 4.8. Let N be a network with a given partition node p. If the proce-
dure Simplify decides the instance N , then its decision is correct, and if it applies
an operation to N to obtain a network N ′ with a partition node p′, then N is
compatible with p as a partition node if and only if N ′ is compatible with p′ as a



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

9

partition node.

Lemma 4.1. Let N be a network with a partition node p and suppose that the
procedure Simplify if applied to N does not decide N nor does it perform any op-
eration to N . Then there exists a node w ∈ N satisfying the following properties:
(1) w has at least two children and all the children of w are leaves; (2) there are
at least two children of w with different labels; (3) w is unlabeled; and (4) every
child of w is a recombination node.

Proof. Let ` be a leaf in N such that the root-leaf path P to ` has maximum
length. Note that ` must exist by step 1 of Simplify (every path starting at the root
of N must lead to a leaf). Let w be the parent of ` on the path P . By the maximality
of P , all the children of w must be leaves. If all the children of w are labeled with
the same label, then step 9 of Simplify would apply to w. This shows that w has at
least two children labeled with different labels, and properties (1) and (2) about
w have been established.

Suppose, to get a contradiction, that w is labeled. Let u be a child of w such
that label(u) 6= label(w). By step 6 of Simplify, u must be a non-recombination
node otherwise the edge (w, u) would be removed. By step 5 of Simplify, v must
be a partition node. But then by step 3 of Simplify the procedure would have
rejected the instance, contradicting the statement of the lemma. It follows that w

is unlabeled establishing property (3) about w.
Finally, if w had a child that is a non-recombination node, then by step 7 of

Simplify, w would have been labeled contradicting property (3) shown above.
This establishes property (4) about w and completes the proof.

The Algorithm

The algorithm ISPN-Solver is given in Figure 3. The algorithm implicitly assumes
that the partition node p is given. This assumption can be removed by trying every
node in N as the partition node, then calling the algorithm with that node as the
partition node. This will increase the running time of the algorithm by an O(n)
factor. If the algorithm ISPN-Solver returns TRUE on any of these calls then N

must be compatible. To keep the presentation of the algorithm concise, we will
not enumerate the partition nodes, but we will compensate for that by multiplying
the running time of the algorithm by a linear factor at the end.

The algorithm ISPN-Solver is a branch-and-search process. Each stage of the
algorithm starts with an instance (N, k) of the problem, where k is the total weight
of all the nodes in N , and then tries to reduce k either by branching or by simpli-
fying the network. Then the algorithm recursively works on the reduced instances.



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

10

We implicitly assume that after each step, the network N and the parameter k are
updated accordingly.

ISPN-Solver (N , k)
{∗ k is the total weight of all the nodes in N ∗}
1. if k = 0 and N is not compatible then reject;
2. while the procedure Simplify is applicable to N do apply it;
3. let w be a node satisfying the statement of Lemma 4.1; branch as follows:

first side of the branch: set label(w) = 1;
second side of the branch: set label(w) = 0;

Fig. 3. The algorithm ISPN-Solver.

Theorem 4.2. The algorithm ISPN-Solver correctly decides in time O(2k/2n)
whether a phylogenetic network with a given partition node is compatible or not.

Proof.
The correctness of the algorithm can be easily checked. To analyze the running

time of the algorithm ISPN-Solver, notice that the algorithm is a branch-and-
bound process and its execution can be depicted by a search tree. The running
time of the algorithm is proportional to the number of root-to-leaf paths, or equiv-
alently the number of leaves in the search tree, multiplied by the time spent along
each such path. Therefore, the main step in the analysis of the algorithm is de-
riving an upper bound on the number of leaves in the search tree. Let T be the
search tree for the algorithm ISPN-Solver on an input instance (N, k), and let
T (k) be the number of leaves in T . Let w be a node that the algorithm ISPN-
Solver branches on in step 3.

Since all the children of w are leaves, the children of w are all labeled. Since
all the children of w are recombination nodes by property (3) of Lemma 4.1, when
the algorithm labels w in each of the two branches, at least one incoming edge to
each child of w having the same label as w will be removed by step 8 of Simplify
when applied next to the network. On the other hand, an incoming edge to every
child of w whose label is different from w will be removed by step 6 of Simplify.
Therefore, for every child of w, the weight of the child will be decreased by at least
1 in the next call to Simplify. Since w has at least two children by property (2)
of Lemma 4.1, the total weight k of all the nodes in N is reduced by at least 2 in
every side of the branch. It follows that the number of leaves T (k) of the search
tree T satisfies the recurrence relation T (k) ≤ 2T (k − 2), and T (k) = O(2k/2).

Now consider a root-leaf path in the search tree T . On every node of this
path the algorithm might need to call the procedure Simplify, which could take



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

11

O(n) time since the size of N is O(n). However this need not be the case with
a careful implementation of this procedure. Instead of calling this procedure at
each node of N , we only call it on the nodes on which the operation is applicable.
The time spent by the procedure in each such call is proportional to the number of
nodes/edges removed plus the number of nodes labeled in the call. Since we can
only have O(n) nodes/edges, the total time spent by the procedure on a root-leaf
path of T is proportional to the size of the network, which is O(n). It follows that
the running time of the algorithm is O(2k/2n).

Corollary 4.1. The ISPN problem can be solved in time O(2k/2n2), where n is
the number of nodes and k is the number of recombination nodes, respectively, in
the phylogenetic network.

5. The Cluster Containment Problem

Let T be phylogenetic tree on set X of taxa and rooted at node r. Each edge
e = (u, v) induces a cluster ce of taxa, which is the set of leaves reachable from
root r only through v. It is easy to see that the leaves in ce are exactly the leaves
of the subtree rooted at v. A cluster ce is contained in a network N if it is a cluster
in a tree induced from N .

We can easily determine if a cluster c is in a tree by finding the least common
ancestor lca(c) of leaves in c, and then comparing the leaf set under lca(c) and c.
The CC problem is hard because there are many different trees that can be induced
from the network N . The NP-hardness of CC is a byproduct of the following
theorem.

Theorem 5.1. The problems CC and ISPN are polynomially equivalent.

Corollary 5.1. The problem CC is NP-hard.

Corollary 5.2. The CC problem when parameterized by the number of recom-
bination nodes k in the network is solvable in time O(2k/2n2), where n is the
number of nodes in the network.

References
1. D. Bryant and V. Moulton. NeighborNet: An agglomerative method for the construc-

tion of planar phylogenetic networks. In R. Guigo and D. Gusfield, editors, Proc. 2nd
Workshop Algorithms in Bioinformatics (WABI’02), volume 2452 of Lecture Notes in
Computer Science, pages 375–391. Springer Verlag, 2002.

2. R. Downey and M. Fellows. Parameterized Complexity. Springer, New York, 1999.
3. M.T. Hallett and J. Lagergren. Efficient algorithms for lateral gene transfer problems.

In Proc. 5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB01), pages 149–156, New
York, 2001. ACM Press.



June 8, 2007 11:58 WSPC - Proceedings Trim Size: 9in x 6in ws-draft˙finalsubmission

12

4. D.H. Huson. SplitsTree: A program for analyzing and visualizing evolutionary data.
Bioinformatics, 14(1):68–73, 1998.

5. G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Maximum likelihood of phylogenetic net-
works. Bioinformatics, 22(21):2604–2611, 2006.

6. G. Jin, L. Nakhleh, S. Snir, and T. Tuller. Inferring phylogenetic networks by the max-
imum parsimony criterion: a case study. Molecular Biology and Evolution, 24(1):324–
337, 2007.

7. I. Kanj, L. Nakhleh, and G. Xia. Reconstructing evolution of natural languages: Com-
plexity and parameterized algorithms. In 12th Annual International Computing and
Combinatorics Conference, volume 4112 of Lecture Notes in Computer Science, pages
299–308. Springer, 2006.

8. C.R. Linder, B.M.E. Moret, L. Nakhleh, and T. Warnow. Network (reticulate) evolu-
tion: biology, models, and algorithms. In The Ninth Pacific Symposium on Biocomput-
ing (PSB), 2004. A tutorial.

9. W.P. Maddison. Gene trees in species trees. Systematic Biology, 46(3):523–536, 1997.
10. V. Makarenkov, D. Kevorkov, and P. Legendre. Phylogenetic network reconstruction

approaches. Genes, Genomics, and Bioinformatics, 6, 2005.
11. L. Nakhleh. Phylogenetic Networks. PhD thesis, The University of Texas at Austin,

2004.
12. L. Nakhleh, D. Ringe, and T. Warnow. Perfect phylogenetic networks: A new method-

ology for reconstructing the evolutionary history of natural languages. LANGUAGE,
2005. In press.

13. L. Nakhleh, D. Ruths, and L.S. Wang. RIATA-HGT: A fast and accurate heuristic for
reconstrucing horizontal gene transfer. In L. Wang, editor, Proceedings of the Eleventh
International Computing and Combinatorics Conference (COCOON 05), pages 84–
93, 2005. LNCS #3595.

14. L. Nakhleh and L.S. Wang. Phylogenetic networks, trees, and clusters. In Proceedings
of the 2005 International Workshop on Bioinformatics Research and Applications (IW-
BRA 05), pages 919–926, 2005. LNCS #3515.


