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Abstract

We study the fixed-parameter tractability, subexponential time computability, and approx-
imability of the well-known NP-hard problems: independent set, vertex cover, and dom-
inating set. We derive tight results and show that the computational complexity of these
problems, with respect to the above complexity measures, is dependent on the genus of the
underlying graph. For instance, we show that, under the widely-believed complexity assump-
tion W [1] 6= FPT, independent set on graphs of genus bounded by g1(n) is fixed parameter
tractable if and only if g1(n) = o(n2), and dominating set on graphs of genus bounded by
g2(n) is fixed parameter tractable if and only if g2(n) = no(1). Under the assumption that
not all SNP problems are solvable in subexponential time, we show that the above three prob-
lems on graphs of genus bounded by g3(n) are solvable in subexponential time if and only if
g3(n) = o(n). We also show that the independent set, the kernelized vertex cover, and
the kernelized dominating set problems on graphs of genus bounded by g4(n) have PTAS if
g4(n) = o(n/ log n), and that, under the assumption P 6= NP, the independent set problem
on graphs of genus bounded by g5(n) has no PTAS if g5(n) = Ω(n), and the vertex cover and
dominating set problems on graphs of genus bounded by g6(n) have no PTAS if g6(n) = nΩ(1).

1 Introduction

NP-completeness theory [24] serves as a foundation for the study of intractable computational
problems. However, this theory does not obviate the need for solving these hard problems because of
their practical importance. Many approaches have been proposed to solve these problems, including
polynomial time approximation, fixed parameter tractable computation, and subexponential time
algorithms. The independent set, vertex cover, and dominating set problems are among
the celebrated examples of such problems. Unfortunately, these problems refuse to give in to most
of these approaches. It is known [5] that none of them has a polynomial time approximation
scheme unless P = NP. It is also unlikely that any of them is solvable in subexponential time [27].
In terms of fixed parameter tractability, independent set and dominating set do not seem to
have efficient algorithms even for small parameter values [19].
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Prob. FPT Subexp. Time Approximability
Our Results Previous Our Results Previous Our Results Previous

VC – FPT 2o(n) iff 2O(
√

n) if g=c PTAS¶ if g=o( n
log n

) PTAS if g=c

[19] g=o(n) [3, 30] APX-C if g=nΩ(1) [7, 30]

IS FPT iff g=o(n2) FPT if g=0 2o(n) iff 2O(
√

n) if g=c PTAS if g=o( n
log n

) PTAS if g=c

[3] g=o(n) [3, 30] APX-H if g=Ω(n) [7, 30]

DS FPT iff g=no(1) FPT if g=c 2o(n) iff 2O(
√

n) if g=c PTAS¶ if g=o( n
log n

) PTAS if g=c

[20] g=o(n) [3, 30] APX-H if g=nΩ(1) [7, 30]
¶Only true for kernelized graphs, see Theorem 4.5 and Theorem 4.6.

Table 1: Comparison between our results and the previous results

Variants of these problems were studied as well where the input graph is constrained to have
certain structural properties (e.g., bounded degree graphs and planar graphs) [1, 3, 6, 20, 24]. In
particular, the problems on the class of planar graphs (the problems remain NP-hard) become more
tractable in terms of the above three complexity measures. All of the three problems on planar
graphs have polynomial time approximation schemes [7, 30], and are solvable in subexponential
time [30]. Recent research in fixed parameter tractability shows that all the three problems admit
parameterized algorithms whose running time is subexponential in the parameter [3]. This line of
research has attracted considerable recent interests and the results have been extended to graphs
of bounded genus [16, 20, 23].

This raises an interesting question: What are the graph structures that determine the compu-
tational complexity of these important NP-hard problems?

In this paper, we demonstrate how the genus of the underlying graph plays an important role
in characterizing the parameterized complexity, the subexponential time computability, and the
approximability of the vertex cover, independent set, and dominating set problems. Our
research shows that in most cases, graph genus is the sole factor that determines the complexity of
the above problems. More precisely, in most cases, there is a precise genus threshold that determines
the computational complexity of the problems in terms of the three complexity measures. For
instance, we show that under the widely-believed complexity assumption W [2] 6= FPT, dominating
set is fixed parameter tractable if and only if the graph genus is no(1). This result significantly
extends both Alber et al. and Ellis et al.’s results for planar graphs and for constant genus graphs
[1, 20]. The proof is also simpler and more uniform. It is also shown that under the assumption
W [1] 6= FPT, independent set is fixed parameter tractable if and only if the graph genus is
o(n2). For the subexponential time computability, we show that under the assumption that not
all SNP problems are solvable in subexponential time, vertex cover, independent set, and
dominating set are solvable in subexponential time if and only if the genus of the graph is o(n). In
terms of approximability, we show that graph genus has a direct impact on whether independent
set, vertex cover, and dominating set have polynomial time approximation schemes. A
summary of our main results and the previous known results is given in Table 1.

We make two remarks on our results. First, all our tractability results are robust [21] in the sense
that our algorithms work correctly regardless of whether the input graphs satisfy the required genus
bound g(n). As long as the input graphs satisfy the required genus bound g(n), our algorithms
construct correct solutions for the problems; whereas when our algorithms fail in constructing a
solution, they correctly report that the genus of the input graph exceeds the required bound g(n).
Second, the techniques proposed in the current paper are not restricted to only the above three
problems, and can be extended to derive similar results for other NP-hard graph problems.
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We give a quick review on the related terminologies. Let G be a simple and undirected graph.
A set of vertices C is a vertex cover for G if every edge in G is incident to at least one vertex in
C. An independent set I in G is a subset of vertices such that no two vertices in I are adjacent. A
dominating set D in G is a set of vertices such that every vertex in G is either in D or adjacent to
a vertex in D. The vertex cover (resp. independent set, dominating set) problem is for a
given graph G to construct a vertex cover of minimum size (resp. an independent set of maximum
size, a dominating set of minimum size).

A surface of genus g is a sphere with g handles in the 3-space [25]. A graph G embedded in a
surface S is a continuous one-to-one mapping from the graph into the surface. The embedding is
cellular if each component of S − G, which is called a face, is homeomorphic to an open disk [25].
In this paper, we only consider cellular graph embeddings. The size of a face is the number of edge
sides along the boundary of the face. The (minimum) genus γmin(G) of a graph G is the smallest
integer g such that G has an embedding on a surface of genus g. For more detailed discussions on
data structures and algorithms for graph embedding on surfaces, the readers are referred to [9].

2 Genus and parameterized complexity

Parameterized complexity theory [19] was motivated by the observation that many important NP-
hard problems in practice are associated with a parameter whose value usually falls within a small or
a moderate range. Thus, taking the advantage of the small size of the parameter may significantly
speedup the computation. We briefly review the basic concepts and refer the readers to [19] for
more details.

A parameterized problem consists of instances of the form (x, k), where x is the problem de-
scription and k is an integer called the parameter. For instance, the vertex cover problem can
be parameterized so that each instance of it is of the form (G, k), where G is a graph and k is the
parameter, asking whether the graph G has a vertex cover of k vertices. Similarly, we can define
the parameterized versions for independent set and dominating set. A parameterized problem
Q is fixed parameter tractable if it can be solved by an algorithm of running time f(k)nc, where
f is a function independent of n = |x| and c is a constant. Denote by FPT the class of all fixed
parameter tractable problems. An example of the FPT problems is the vertex cover problem
that can be solved in time O(1.285k + kn) [13]. On the other hand, a large class of computational
problems seems not to belong to the class FPT. A hierarchy of parameterized intractability, the
W -hierarchy, has been introduced [19]. The 0th level of the hierarchy is the class FPT, and the
ith level is denoted by W [i] for i > 0. A parameterized complexity preserving reduction (the
fpt-reduction) has been defined as follows: a parameterized problem Q is fpt-reducible to another
parameterized problem Q′ if there is an algorithm of running time f(k)|x|c that on an instance
(x, k) of Q produces an instance (x′, g(k)) of Q′, such that (x, k) is a yes-instance of Q if and only
if (x′, g(k)) is a yes-instance of Q′, where the functions f(k) and g(k) depend only on k, and c is a
constant. A parameterized problem Q is W [i]-hard if every problem in W [i] is fpt-reducible to Q,
and is W [i]-complete if in addition Q is in W [i]. In particular, if any W [i]-hard problem is in FPT,
then W [i] = FPT, which, to the common belief, is very unlikely.

2.1 Genus and independent set

The parameterized independent set problem (or simply independent set without any con-
fusion) is a representative of the W [1]-complete problems [19]. Thus, it is unlikely to be fixed
parameter tractable. Actually, very recent research has shown strong evidence that it is even un-
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likely that the problem is solvable in time no(k) [10, 11]. In this subsection, we discuss how graph
genus affects the parameterized complexity of independent set.

Theorem 2.1 The independent set problem on graphs of genus bounded by g(n) is fixed para-
meter tractable if g(n) = o(n2).

Proof. Since g(n) = o(n2), there is a nondecreasing and unbounded function r(n) such that
g(n) ≤ n2/r(n).1 Without loss of generality, we can assume that r(n) ≤ n2. Otherwise, g(n) = 0,
and the theorem follows from [3]. Let G be a graph of n vertices and genus g′ ≤ g(n). Recall that
the chromatic number χ(G) of G is the smallest integer p such that G can be colored with p colors
so that no two adjacent vertices are colored with the same color. By Heawood’s Theorem [25], the
chromatic number χ(G) of the graph G is bounded by (7 +

√
1 + 48g′)/2. From the definition, the

chromatic number χ(G) of G implies an independent set of at least n/χ(G) vertices in G. Thus,
the size α(G) of a maximum independent set in the graph G is at least 2n/(7 +

√
1 + 48g′). Since

g′ ≤ g(n) ≤ n2/r(n), we get (note that r(n) ≤ n2)

α(G) ≥ 2n

7 +
√

1 + 48n2/r(n)
=

2n
√

r(n)
7
√

r(n) +
√

r(n) + 48n2
≥ 2n

√
r(n)

7n +
√

n2 + 48n2
=
√

r(n)
7

(1)

Now we are ready for describing our parameterized algorithm. Note that one difficulty we must
overcome is estimating the genus of the input graph. The graph minimum genus problem is NP-
complete [32], and there is no known effective approximation algorithm for the problem. Therefore,
some special tricks have to be used for this purpose. Here we will make use of the approximation
algorithm for the graph minimum genus problem proposed in [12], which on an input graph G
constructs an embedding of G whose genus is bounded by max{4γmin(G), γmin(G) + 4n}. Consider
the algorithm given in Figure 1.

ALGORITHM. IS-FPT
Input: a graph G of n vertices and an integer k
Output: decide if G has an independent set of k vertices

1. let r1(n) = min{r(n)/4, nr(n)/(n + 4r(n))};
2. construct an embedding π(G) of G using the algorithm in [12];
3. if the genus of π(G) is larger than n2/r1(n) then Stop (“the genus of G is larger than g(n)”);

4. if k ≤
√

r1(n)/7 then Stop (“the graph G has an independent set of k vertices”)
else try all vertex subsets of k vertices to derive a conclusion.

Figure 1: A parameterized algorithm for independent set

We analyze the time complexity of the algorithm IS-FPT. First note that by our assumption on
the function r(n), the function r1(n) is also nondecreasing and unbounded. The embedding π(G)
of the graph G in step 2 can be constructed in linear time [12], and the genus of the embedding
π(G) can also be computed in linear time [9].

Since r1(n) = min{r(n)/4, nr(n)/(n + 4r(n))}, if the genus γ(π(G)) of the embedding π(G) is
larger than n2/r1(n), then γ(π(G)) is larger than both 4n2/r(n) and n2/r(n) + 4n. According to
[12], the genus γ(π(G)) of the embedding π(G) is bounded by max{4γmin(G), γmin(G)+4n}. Thus,
in case γ(π(G)) ≤ 4γmin(G), we have 4γmin(G) > 4n2/r(n), and in case γ(π(G)) ≤ γmin(G) + 4n,

1In this paper, we only consider “simple” complexity functions whose value can be feasibly computed. Thus, in
our discussion, the computational time for computing the values of complexity functions as such g(n) and r(n) will
be neglected.
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we have γmin(G) + 4n > n2/r(n) + 4n. Thus, in all cases, we will have γmin(G) > n2/r(n) ≥ g(n).
In consequence, the algorithm IS-FPT concludes correctly if it stops in step 3.

If the algorithm IS-FPT reaches step 4, we know that the minimum genus of the graph G is
bounded by n2/r1(n). By the above analysis and the relation in (1), the size of a maximum inde-
pendent set in G is at least

√
r1(n)/7. Thus, in case k ≤

√
r1(n)/7, there must be an independent

set in G with k vertices. On the other hand, if k >
√

r1(n)/7 then r1(49k2) ≥ n, where r1 is the
inverse function of the function r1(n) defined by r1(p) = min{ q | r1(q) ≥ p }. Since the function
r1(n) is nondecreasing and unbounded, it is not difficult to see that the inverse function r1(p) is
also nondecreasing and unbounded. Since enumerating all vertex subsets of k vertices in the graph
G can be done in O(2n) time, which is bounded by O(2r1(49k2)), we conclude that the total running
time of the algorithm IS-FPT is bounded by O(f(k) + n2), where f(k) = 2r1(49k2) is a function
dependent only on k and not on n.

Thus, the algorithm IS-FPT solves the independent set problem on graphs of genus bounded
by g(n) in time O(f(k) + n2), and the problem is fixed parameter tractable.

Remark. The algorithm IS-FPT does not have to know whether the input graph has its
minimum genus bounded by g(n). Moreover, the algorithm IS-FPT does not need to decide
precisely whether the input graph has a minimum genus bounded by g(n). In fact, on some graphs
whose minimum genus is larger than g(n), the algorithm IS-FPT may still be able to decide
correctly whether the graphs have an independent set of size k. The point is, if the input graph
has its minimum genus bounded by g(n), then the algorithm IS-FPT, without needing to know
this fact, will definitely and correctly decide whether it has an independent set of size k.

Theorem 2.2 The independent set problem on graphs of genus bounded by g(n) is W [1]-
complete if g(n) = Ω(n2).

Proof. Since independent set on general graphs is W [1]-complete [19], it suffices to show
that independent set on general graphs is fpt-reducible to independent set on graphs of genus
bounded by g(n). Since g(n) = Ω(n2), we assume g(n) ≥ cn2, where c is a constant.

Let G1 be an arbitrary graph with n1 vertices. It is well-known that the genus g1 of G1 is always
bounded by (n1 − 3)(n1 − 4)/12 ≤ n2

1/12 [25]. Thus, if c ≥ 1/12 then G1 already has its genus
bounded by cn2

1. Otherwise, we construct a new graph G2 as follows. G2 contains h = d1/(12c)e > 1
copies of the graph G1. Partition the h copies of G1 arbitrarily into two nonempty groups A1 and
A2, and pick any pair of adjacent vertices u1 and v1 in G1. Now introduce a new edge [u2, v2],
where u2 and v2 are two new vertices. Connect u2 to the vertex u1 in each copy of G1 in the
group A1 and connect v2 to the vertex v1 in each copy of G1 in the group A2. This completes the
construction of the graph G2. It is not difficult to verify that the graph G1 has an independent set
of k1 vertices if and only if the graph G2 has an independent set of k2 = hk + 1 vertices. Thus, the
reduction from (G1, k1) to (G2, k2) is an fpt-reduction. Moreover, the graph G2 has n2 = hn1 + 2
vertices and we can verify [25] that the genus of G2 is g2 = hg1. Thus, we have

g2 = hg1 ≤
hn2

1

12
=

(hn1)2

12h
≤ n2

2

12/(12c)
= cn2

2 ≤ g(n2)

Thus, the genus of the graph G2 of n2 vertices is bounded by g(n2).
This completes the fpt-reduction that reduces an instance (G1, k1) of independent set on

general graphs to an instance (G2, k2) of independent set on graphs of genus bounded by g(n).
In consequence, independent set on graphs of genus bounded by g(n) is W [1]-complete.
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Combining Theorem 2.1 and Theorem 2.2, and noting that the genus of a graph of n vertices
is always bounded by (n− 3)(n− 4)/12 [25], we have the following tight result.

Corollary 2.3 Assuming FPT 6= W [1], the independent set problem on graphs of genus
bounded by g(n) is not fixed parameter tractable if and only if g(n) = Θ(n2).

2.2 Genus and dominating set

dominating set is the most well-known W [2]-complete problem [19]. Thus, it is even “harder”
than Independent Set in terms of its parameterized complexity. Recently, there has been con-
siderable interest in developing parameterized algorithms for dominating set on graphs of small
genus [1, 3, 16, 17, 20, 22, 23, 29]. In particular, it is known that dominating set on planar
graphs [1, 3] and on graphs of constant genus [16, 17, 20, 23] is fixed parameter tractable. We will
show a much stronger result in this subsection: dominating set on graphs of genus bounded by
g(n) is fixed-parameter tractable if and only if g(n) = no(1).

For a given instance (G, k) of dominating set, we apply a branch-and-bound process to
construct a dominating set D of k vertices in G. Initially, D = ∅. In a more general form during
the process, suppose we have correctly included certain vertices in the dominating set D, and
removed these vertices from the graph G. The vertices in the remaining graph G′ are colored either
“white” or “black”, where each white vertex is adjacent to a vertex in D (thus needs no further
domination) and each black vertex is adjacent to no vertex in D (thus still needs to be dominated
in the remaining graph G′). The graph G′ thus will be called a BW-graph. We call a set D′ of
vertices in the BW-graph G′ a B-dominating set if every black vertex in G′ is either in D′ or is
adjacent to a vertex in D′. Note that if the current set D has d vertices, then the graph G has
a dominating set of k vertices, including all vertices in D, if and only if the BW-graph G′ has a
B-dominating set of k − d vertices. Thus, our task is to construct a B-dominating set of k − d
vertices in the BW-graph G′.

Certain reduction rules can be applied to a BW-graph G′:

R1. Remove from G′ all edges between white vertices;
R2. Remove from G′ all white vertices of degree 1;
R3. If all neighbors of a white vertex u1 are neighbors of another white vertex u2,

remove u1 from G′.

Let G′′ be a BW-graph after applying any of the above rules on G′. It is known [1, 20] that there
is a B-dominating set of k vertices in G′ if and only if there is a B-dominating set of k vertices
in G′′. A BW-graph G is called reduced if none of the above rules can be applied. According to
rule R1, every edge in a reduced BW-graph either connects two black vertices or connects a black
vertex and a white vertex (the edge will be called a bb-edge or a bw-edge, respectively).

We will show that in a reduced BW-graph, the number of black vertices will not be very
small. For this purpose, we first need to give a brief discussion on certain basic facts about graph
embeddings. For more detailed and formal proofs of these facts, the readers are referred to [9].

Fact 1. A face of size 1 can only be made by a self-loop, and a face of size 2 must be made by
two multiple edges on the same pair of vertices.

Fact 2. Let F be a face of size d in a graph embedding with boundary vertices u1, u2, . . ., ud,
cyclically ordered along the face boundary. If we run a new edge from u1 to ui crossing the face F ,
1 ≤ i ≤ d, then the face F is split into two faces of sizes i and d − i + 2, respectively, both having
the new edge on their face boundaries. No other faces in the embedding are changed. Moreover,
the embedding genus is unchanged.
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Fact 3. In a given embedding of a graph G, the neighbors of every vertex u in G specify a
unique cyclic order [u1, u2, . . . , ud] so that the edges [u, u1], [u, u2], . . ., [u, ud] form a cyclic order
around the vertex u in a small region on the embedding. In particular, if every triple (u, ui, ui+1),
i = 1, 2, . . . , d (here we take ud+1 as u1), makes a triangle face on the embedding, then removing
the vertex u (and all edges incident on u) will merge all these triangle faces into a single face of
size d. The embedding genus and all other faces are unchanged.

Fact 4. Suppose there is a triangle face (u1, u2, u3) in an embedding, the vertex u1 has degree
2, and there are no multiple edges between u2 and u3, then removing the vertex u1 and the two
edges incident on u1 neither changes the embedding genus nor creates a face of size less than 3.

The following lemma can be easily derived from the famous Euler Polyhedral Equation [25].

Lemma 2.4 If G is a graph of n vertices and m edges (with possibly multiple edges and self-loops),
and G has an embedding on a surface of genus g such that all faces of the embedding have size at
least 3, then m ≤ 6g + 3n− 6.

Now we are ready to prove the following important lemma, which derives relations among the
numbers of black vertices, white vertices, edges, and the genus of a reduced BW-graph.

Lemma 2.5 Let G be a reduced BW-graph of minimum genus g, with m edges and n vertices, in
which nw are white and nb are black, and suppose that G has neither multiple edges nor self-loops,
then (a) m ≤ 9nb + 18g − 18; and (b) n ≤ 4nb + 6g − 6.

Proof. Let π(G) be an embedding of genus g for the graph G. By rules R1 and R2, the degree
of a white vertex u in G is at least 2 and all neighbors of u are black. We perform the following
operations on each white vertex u.

If the white vertex u has degree 2 with two black neighbors u1 and u2, and there is no edge
between u1 and u2, then we add a new edge [u1, u2] crossing a face in the embedding to make a
triangle face with u (note that since u has degree 2, this is always possible). Adding the new edge
[u1, u2] does not create a face of size less than 3, because it does not introduce new self-loops or
new multiple edges. Moreover, the embedding genus is unchanged.

If u has degree d > 2 and u1, u2, . . ., ud are the d black neighbors of u, ordered in clockwise
order around u in the embedding, then for each pair of vertices ui and ui+1, i = 1, 2, . . . , d (here
we take ud+1 as u1), if the vertices u, ui, ui+1 do not form a triangle face in the embedding π(G),
then we add a new edge [ui, ui+1], crossing a face in the embedding π(G), to make a triangle face
(u, ui, ui+1) (again, this is always possible). This does not change the embedding genus. Note that
adding this new edge may create multiple edges between ui and ui+1. However, the new edge does
not create any faces of size less than 3. This can be proved as follows. First this does not create
faces of size 1 because it does not create self-loops. Second, if it created a face of size 2, then the
two sides of the new edge [ui, ui+1] are on the face boundaries of a face of size 2 and a face of size
3 (i.e., the triangle face (u, ui, ui+1)). This, according to Fact 2, would imply that before adding
the new edge [ui, ui+1], the vertices u, ui, ui+1 had already made a triangle face. This proves
that adding the new edge [ui, ui+1] does not create faces of size less than 3. Finally, note that the
vertices ui and ui+1 cannot be the neighbors of a white vertex of degree 2 – otherwise by rule R3,
the white vertex of degree 2 would have been removed. Thus, processing white vertices of degree
larger than 2 does not create multiple edges for white vertices of degree 2.

Since the graph G has neither self-loops nor multiple edges, by Fact 1, the embedding π(G) has
all its faces of size at least 3. Let G′ be the graph and π(G′) be the embedding of G′ after applying
the above process on all white vertices in G. By the above discussion, the embedding π(G′) has
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genus g and all faces in π(G′) have size at least 3. We estimate the number mbb of bb-edges in the
graph G′. For each white vertex u of degree 2 with neighbors u1 and u2 in G′, we associate the
bb-edge [u1, u2] with the two bw-edges [u, u1] and [u, u2]. For each white vertex u of degree d > 2
with neighbors u1, u2, . . ., ud in G′, for each i = 1, 2, . . . , d (here we take ud+1 = u1), we associate
the bb-edge [ui, ui+1] that is on the boundary of the triangle face (u, ui, ui+1) with the bw-edge
[u, ui]. Note that each such bb-edge [ui, ui+1] can be associated with at most two bw-edges because
each edge can be on the boundaries of at most two faces. Moreover, the bb-edge [ui, ui+1] cannot
be associated with the two bw-edges incident on any degree-2 white vertex since ui and ui+1 cannot
be the neighbors of a degree-2 white vertex in G′ (see the discussion in the last paragraph). Since
every bw-edge must be incident on a white vertex, the above association shows that the number
mbw of bw-edges is at most twice of the number mbb of bb-edges in G′: mbw ≤ 2mbb. Since the
bw-edges in the graph G′ are the same as those in the graph G, and the number of bb-edges in G
is no more than that in G′, we obtain

m ≤ mbw + mbb ≤ 3mbb (2)

Moreover, since each white vertex in G has degree at least 2, it is easy to see that the number nw

of white vertices in G is at most half the number mbw of bw-edges in G. Thus,

nw ≤ mbw/2 ≤ mbb (3)

Recall that the embedding π(G′) has genus g and all faces in π(G′) have size at least 3. Now we
remove all white vertices from the graph G′ and from the embedding π(G′). Let the resulting graph
and embedding be G′′ and π(G′′), respectively. By Fact 3 and Fact 4, removing a white vertex
neither changes the embedding genus nor creates faces of size less than 3. Thus, the embedding
π(G′′) has genus g and all faces in π(G′′) have size at least 3. Note that the number of edges in
G′′ is equal to the number mbb of bb-edges in G′, and the number of vertices in G′′ is equal to the
number nb of black vertices in G. Applying Lemma 2.4 to the graph G′′, we get

mbb ≤ 6g + 3nb − 6

Replacing mbb by 6g + 3nb − 6 in relations (2) and (3), and noting that n = nw + nb complete the
proof of the lemma.

Now we are ready to prove the following theorem.

Theorem 2.6 The dominating set problem on graphs of genus bounded by g(n) is fixed parameter
tractable if g(n) = no(1).

Proof. Since g(n) = no(1), we can write g(n) ≤ n1/r(n) for some nondecreasing and unbounded
function r(n). For an instance (G, k) of the dominating set problem, where the graph G has n
vertices and genus g′, we apply the algorithm DS-FPT in Figure 2.

Let r be the inverse function of the function r(n) defined by r(p) = min{ q | r(q) ≥ p }. Then
the function r is also nondecreasing and unbounded. In case k ≥ r(n), we have r(k) ≥ n. Thus,
step 1 of the algorithm DS-FPT takes time O(2n) = O(2r(k)).

Now suppose k < r(n), step 3 repeatedly branches at a black vertex of degree bounded by 19 in
the reduced BW-graph G0. The search tree size T (k) of step 3 thus satisfies the recurrence relation

T (k) ≤ 20 · T (k − 1)
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ALGORITHM. DS-FPT
Input: a graph G of n vertices and an integer k
Output: decide if G has a dominating set of k vertices

1. if k ≥ r(n) then solve the problem by enumerating all subsets of k vertices in G; Stop;
2. k0 = k; D = ∅; G0 = G; color all vertices of G0 black;
3. while there is a black vertex u of degree d ≤ 19 in G0 do
3.1. make a (d + 1)-way branch, each includes either u or a neighbor of u in D;
3.2. remove the new vertex in D from G0, and color its neighbors in G0 white;
3.3. apply rules R1-R3 to make G0 a reduced BW-graph;
3.4. k0 = k0 − 1;
4. if the graph G0 has at most 78n1/k vertices
4.1. then find a B-dominating set of k0 vertices in G0 by enumerating all vertex subsets

of k0 vertices in G0

4.2. else Stop (“the graph G has genus larger than g(n)”);

Figure 2: A parameterized algorithm for dominating set

which has a solution T (k) = O(20k).
At the end of step 3, all black vertices in the reduced BW-graph G0 have degree at least 20.

Suppose at this point, the number of edges, the number of vertices, and the number of black vertices
in G0 are m0, n0 and nb, respectively. Since 2m0 is equal to the sum of total vertex degrees in G0,
we have 2m0 ≥ 20nb. By Lemma 2.5(a), we also have m0 ≤ 9nb + 18g′− 18 (note that the genus of
the reduced BW-graph G0 cannot be larger than the genus g′ of the original graph G). Combining
these two relations, we get nb ≤ 18g′ − 18. By Lemma 2.5(b), we have n0 ≤ 4nb + 6g′ − 6. Thus

n0 ≤ 4nb + 6g′ − 6 ≤ 78g′ − 78 < 78g′

Thus, if g′ ≤ g(n) ≤ n1/r(n) < n1/k (note k < r(n)), then the number n0 of vertices in the
graph G0 must be bounded by 78n1/k. In this case, step 4.1 solves the problem in time O(nk0+1

0 ) =
O((n1/k)k) = O(n). On the other hand, if G0 has more than 78n1/k vertices, then step 4.2 concludes
correctly that the genus of the input graph G is larger than g(n).

In conclusion, the algorithm DS-FPT solves the dominating set problem on graphs of genus
bounded by g(n) in time O(2r(k) + 20k + n), and the problem is fixed parameter tractable.

We point out that the techniques used in Theorem 2.6 are simpler, more uniform, and derive
much stronger results compared to the previous research, which was only valid for graphs of genus
bounded by a constant [20]. Also, similarly to the algorithm IS-FPT, the algorithm DS-FPT
does not have to know whether the input graph has minimum genus bounded by g(n). For any
graph of minimum genus bounded by g(n), the algorithm will definitely derive a correct conclusion.

Theorem 2.7 The dominating set problem on graphs of genus bounded by g(n) is W [2]-complete
if g(n) = nΩ(1).

Proof. Since dominating set is W [2]-complete [19], it will suffice to show that dominating
set on general graphs is fpt-reducible to the problem on graphs of genus bounded by g(n). Since
g(n) = nΩ(1), we can assume that g(n) ≥ nc, where c is a fixed constant.

Let G1 be an arbitrary graph of n1 vertices and genus g1. As we indicated in the proof of
Theorem 2.2, g1 ≤ n2

1. We construct a new graph G2, which is the graph G1, plus n
2/c
1 − n1 new

vertices u, v, and vi, i = 1, 2, . . . , n
2/c
1 − n1 − 2, where u has degree 2 and is connected to the

vertex v and to an arbitrary vertex in the graph G1, and [v, vi], i = 1, 2, . . . , n
2/c
1 − n1 − 2, make
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a star centered at v. It is fairly easy to verify that the graph G2 has n2 = n
2/c
1 vertices and genus

g2 = g1, and that the graph G1 has a dominating set of k1 vertices if and only if the graph G2

has a dominating set of k2 = k1 + 1 vertices. Since c is a constant, the reduction from (G1, k1) to
(G2, k2) is an fpt-reduction. Moreover, since g2 = g1 ≤ n2

1, we have g2 ≤ nc
2 ≤ g(n2). Therefore,

(G2, k2) is an instance for dominating set on graphs of genus bounded by g(n). This reduction
proves that dominating set on graphs of genus bounded by g(n) is W [2]-complete.

Combining Theorem 2.6 and Theorem 2.7, we derive the following tight result.

Corollary 2.8 Assuming FPT 6= W [2], the dominating set problem on graphs of genus bounded
by g(n) is fixed parameter tractable if and only if g(n) = no(1).

3 Genus and subexponential time complexity

We say that a graph problem is solvable in sublinear exponential time (or shortly subexponential
time) if it can be solved in time 2o(n) on graphs of n vertices. Very few NP-hard graph problems
are known to be solvable in subexponential time. Lipton and Tarjan used their planar graph
separator theorem to show that a class of NP-hard planar graph problems, including vertex
cover, independent set, and dominating set, are solvable in subexponential time [30]. They
also described how their results can be extended to graphs of constant genus [30]. Recently, deriving
lower bounds on the precise complexity of NP-hard problems has been attracting more and more
attention [8, 27, 10, 11]. In particular, Impagliazzo, Paturi, and Zane [27] introduced the concept
of SERF-reduction and showed that many well-known NP-hard problems are SERF-complete for
the class SNP [27, 31]. This implies that if any of these problems is solvable in subexponential
time, then so are all problems in the class SNP, a consequence that seems quite unlikely.

In this section, we demonstrate how graph genus affects the subexponential time computability
for vertex cover, independent set, and dominating set. Our algorithmic results in this
section extend Lipton and Tarjan’s results on planar graphs and graphs of constant genus [30], and
our lower bound results refine Impagliazzo, Paturi, and Zane’s results on general graphs [27].

Proposition 3.1 ([18]) Let G be a graph of n vertices and genus g. There is a linear time algo-
rithm that partitions the vertices of G into three sets A, B, C, such that no edge joins a vertex in
A with a vertex in B, |A|, |B| ≤ n/2, and |C| ≤ c0

√
(g + 1)n, where c0 is a fixed constant.

Theorem 3.2 The problems vertex cover, independent set, and dominating set on graphs
of genus bounded g(n) are solvable in subexponential time if g(n) = o(n).

Proof. We first give a detailed description of our proof for dominating set. The idea is quite
simple: we use Proposition 3.1 to partition the vertices of a given graph G into the three sets A,
B, and C, and enumerate all possible situations for the set C. Each fixed situation for the set C
splits the graph G into two separated subgraphs, induced essentially by the vertex sets A and B,
respectively. Thus, we can recursively work on the two subgraphs independently. However, this
must be done with care. In particular, in a given situation for the set C, if a vertex u in C is
assigned to be not in the dominating set and u is not adjacent to any vertex in C that is assigned
to be in the dominating set, then the vertex u must remain in the graph and a vertex in A or B
and adjacent to u must be included in the dominating set in a later stage.

Thus, assuming recursively that a partial dominating set D has been constructed, our recursive
algorithm classifies the vertices in the remaining graph G into five groups:
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(1) dominating vertices, which are already included in the current D;
(2) dominated vertices, which should not be in D and are adjacent to vertices in

the current D;
(3) white vertices, which are adjacent to vertices in the current D but are not yet

decided whether to be in D;
(4) black vertices, which are not adjacent to any vertices in the current D and are

also not yet decided whether to be in D;
(5) red vertices, which should not be in D but are not yet adjacent to any vertices

in the current D.

The dominating vertices and dominated vertices will be removed from the graph. Thus, the re-
maining graph G consists of only black, red, and white vertices (initially, D = ∅ and all vertices
in G are black). Such a graph G will be called a BWR-graph. A BW-dominating set D′ in the
BWR-graph G is a set of black and white vertices in G such that every vertex in G is either in D′

or adjacent to a vertex in D′ (thus, a minimum BW-dominating set for the initial graph will be
a regular minimum dominating set for the graph). To construct a minimum BW-dominating set
for the BWR-graph G, we use Proposition 3.1 to partition the vertices of G into the three vertex
subsets A, B, and C. Then we consider all possible assignments on the vertices in the set C. Each
vertex u in C has the following possible assignments:

• u is a white vertex. Then either u is in D or u is not in D;
• u is a red vertex. Then u must be dominated by a vertex in either C, or A, or B;
• u is a black vertex. Then either u is in D, or u is not in D, and hence must be

dominated by a vertex in either C, or A, or B.

An assignment to the vertices in C can be as follows: each white vertex is assigned either “in-
D” or “not-in-D”, each red vertex is assigned either “in-A” or “in-B”, and each black vertex is
assigned either “in-D”, “in-A”, or “in-B”. After this assignment, a white vertex will become either
a dominating vertex (if it is “in-D”) or a dominated vertex (if it is “not-in-D”); a red vertex
adjacent to an “in-D” vertex in C will become a dominated vertex (in this case, the assignment
to the red vertex is ignored); a red vertex not adjacent to any “in-D” vertex in C will become a
red vertex and will be added to the set A or B (depending on whether it is an “in-A” or “in-B”
vertex); an “in-D” black vertex will become a dominating vertex; a black vertex whose status is
either “in-A” or “in-B” and is adjacent to an “in-D” vertex in C will become a dominated vertex;
finally, an “in-A” black vertex (resp. an “in-B” black vertex) not adjacent to any “in-D” vertex in
C will become a red vertex and will be added to the set A (resp. B).

Let the subgraphs induced by the updated vertex sets A and B be GA and GB, respectively
(note that now A and B may contain some vertices that were originally in C). We then recursively
work on the subgraphs GA and GB. The algorithm is formally presented in Figure 3.

We analyze the algorithm. Suppose the original input graph G0 has n0 vertices. Set b0 =
c0

√
g(n0) + 1, where c0 is the constant given in Proposition 3.1 (the bound b0 is fixed for all

recursive calls to the algorithm DS-Solver). Suppose that the input to the algorithm DS-Solver
is a BWR-graph G of n vertices. If

√
n < 6b0, then n < 36c2

0(g(n0) + 1) = O(g(n0)), and a brute
force method can construct a minimum BR-dominating set for G in time O(3n) = O(3O(g(n0)). If
|C| > b0

√
n, then C would contain more than c0

√
(g(n0) + 1)n vertices. By Proposition 3.1, the

graph G would have genus larger than g(n0), which implies that the original input graph G0 has
genus larger than g(n0) (since G is a subgraph of G0). Thus, the algorithm stops correctly.
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ALGORITHM. DS-solver
Input: a BWR-graph G of n vertices, and a bound b0

Output: a minimum BR-dominating set D of G

1. if
√

n < 6b0 then solve the problem by a brute force method; Stop;
2. partition the vertices of G into the subsets A, B, C, as described in Proposition 3.1;
3. if |C| > b0

√
n then Stop(“the genus exceeds the bound”);

4. for each assignment to the vertices in C do
let D be the set of vertices in C that are assigned “in-D”;
update the graph G and the sets A and B;
construct the subgraphs GA and GB ;
recursively construct the minimum BR-dominating sets DA for GA and DB for GB ;
D = D ∪DA ∪DB ;

5. output the smallest BR-dominating set constructed in step 4.

Figure 3: An algorithm solving dominating set

Thus, we have
√

n ≥ 6b0 and |C| ≤ b0
√

n. Since each vertex in C can get at most 3 different
assignments, the total number of different assignments to the set C is bounded by 3|C| ≤ 3b0

√
n.

Since originally, |A|, |B| ≤ n/2, and the updated sets A and B are the original sets A and B plus
some vertices in C, each of the subgraphs GA and GB contains at most n/2+b0

√
n ≤ 2n/3 vertices

(note that b0 ≤
√

n/6). This gives the following recurrence relation for the time complexity T (n)
of the algorithm DS-Solver:

T (n) ≤ 3b0
√

n · 2T (2n/3) ≤ 3b0
√

n+1T (2n/3) if
√

n ≥ 6b0

T (n) = O(3O(g(n0))) if
√

n < 6b0

Solving this recurrence relation, we get T (n) = O(3O(b0
√

n+g(n0))). In particular, if we let n = n0

and replace b0 by c0

√
g(n0) + 1, we get

T (n0) = O(3O(c0
√

g(n0)+1·√n0+g(n0))) = 3O(
√

n0g(n0)+g(n0)) (4)

Thus, if g(n0) = o(n0), then T (n0) = 2o(n0), and the algorithm DS-Solver solves the dominating
set problem in subexponential time.

The subexponential time algorithms for vertex cover and independent set are similar, and
actually simpler. For example, for vertex cover, once we partition the input graph into three
parts A, B, and C, each vertex u in C has only two possibilities: either in or not in the minimum
vertex cover W . In case u is in W , we simply remove u from the graph; while in case u is not in W ,
all neighbors of u are forced to be in W , thus all neighbors of u, as well as u itself, can be removed
from the graph. Therefore, no vertices in C will be added to the sets A and B, and each of the
induced subgraphs GA and GB will have at most n/2 vertices. This fact will simplify the analysis
of the algorithm to derive the subexponential time bound. We leave the detailed verification to the
interested readers.

Again we point out that our subexponential time algorithms for dominating set, vertex
cover, and independent set work correctly without needing to know the precise genus value of
the input graph. The algorithms either report correctly that the genus of the input graph exceeds
the designated bound g(n), or construct an optimal solution to the input graph.

Remark. After the publication of a preliminary version [14] of the current paper in 2003, there
has been some further progress in this direction. Demaine et al. [16] developed an algorithm of
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running time 2O(g
√

k+g2)nO(1) for the parameterized dominating set problem on graphs of genus
bounded by g, which was further improved by Fomin and Thilikos [23] who presented an algorithm
of running time 2O(

√
kg+g)+nO(1). Compared to the algorithm in [16], our algorithm in Theorem 3.2

is faster when the graph genus g is Ω(
√

n). Compared to the algorithm in [23], the running time of
our algorithm (see Equality (4)) is of the same order as that of the algorithm in [23] for the general
version (i.e., the non-parameterized version) of the dominating set problem (since the parameter
k can be of order Θ(n)). Moreover, our algorithm seems much simpler (the algorithm in [23] uses
the techniques of graph representativity and graph branch decomposition).

Theorem 3.3 For any function g(n) = Ω(n), if any of vertex cover, independent set, and
dominating set on graphs of genus bounded by g(n) can be solved in subexponential time, then
all problems in the class SNP can be solved in subexponential time.

Proof. Since g(n) = Ω(n), we assume g(n) ≥ cn, where c is a fixed constant. Johnson
and Szegedy [28] have shown that if independent set on graphs of degree bounded by 3 is
solvable in subexponential time then so is independent set on general graphs, which, according
to Impagliazzo, Paturi, and Zane [27], would imply that all problems in the class SNP are solvable
in subexponential time. Therefore, for independent set, it suffices to show that the problem on
graphs of degree bounded by 3 is reducible to the problem on graphs of genus bounded by g(n) via
a reduction that preserves the order of the number of vertices.

Let n1, m1, and g1 be the number of vertices, the number of edges, and the genus of a graph
G1 of degree bounded by 3. Then m1 ≤ 3n1/2, and by the Euler Polyhedral Equation [25],
g1 ≤ (m1 − n1 + 1)/2 ≤ (n1 + 2)/4 ≤ n1/3 for n1 ≥ 6. If c ≥ 1/3, then G1 is already a graph of
genus bounded by cn1 ≤ g(n1). Thus, we assume c < 1/3. We perform the following operation on
the graph G1. Pick any edge in G1, and subdivide the edge by two degree-2 vertices. The resulting
graph G′ has n1 + 2 vertices and the same genus g1. Moreover, it can be proved [13, 15] that from
any maximum independent set of G′, a maximum independent set of G1 can be constructed in linear
time. Therefore, if we apply this edge subdivision operation dn1/(6c) − n1/2e times on the graph
G1, we get a graph G2 of n2 vertices and genus g2 = g1, where n1/(3c) ≤ n2 ≤ (3c + 1)n1/(3c).
Now since g2 = g1 ≤ n1/3 ≤ cn2, the graph G2 of n2 vertices has genus bounded by g(n2). The
reduction is completed by observing that n2 = O(n1).

The theorem also holds for vertex cover since independent set can be reduced to vertex
cover using the same graph [24]. For dominating set, the theorem follows from the following
facts: (1) vertex cover on graphs of degree bounded by 3 can be reduced to dominating set
on graphs of degree bounded by 6 [24]; and (2) subdividing an edge by three degree-2 vertices
increases the minimum dominating set size by 1 [15] and does not change the graph genus. With
these facts, the proof proceeds in a similar fashion to that for independent set. We leave the
details to interested readers.

The class SNP [31] contains many well-known NP-hard problems, including k-SAT, k-
Colorability, k-Set Cover, vertex cover, and independent set [27]. It is commonly
believed that it is unlikely that all problems in SNP are solvable in subexponential time. Based on
this, and combining Theorem 3.2 and Theorem 3.3, we have the following tight results.

Corollary 3.4 Assuming that not all the problems in SNP are solvable in subexponential time, the
vertex cover, independent set, and dominating set problems on graphs of genus bounded
by g(n) are solvable in subexponential time if and only if g(n) = o(n).
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4 Genus and approximability

We briefly review the related concepts and refer the readers to [6, 24] for more details. An op-
timization problem Q is either a maximization or a minimization problem. Each instance x of Q
is associated with a set of solutions and each solution y for x is associated with a value f(x, y).
For a given instance x in Q, the objective is to find a solution with the maximum value max(x)
(if Q is a maximization problem) or the minimum value min(x) (if Q is a minimization problem).
An approximation algorithm A for Q is an algorithm that for each instance x of Q constructs a
solution A(x) for x. We say that the approximation ratio of the algorithm A is bounded by r
if for all instances x of Q, we have max(x)/f(x,A(x)) ≤ r (if Q is a maximization problem) or
f(x,A(x))/ min(x) ≤ r (if Q is a minimization problem). We say that an optimization problem Q
has a polynomial time approximation scheme, shortly PTAS, if for any constant ε > 0, the problem
Q has a polynomial time approximation algorithm whose approximation ratio is bounded by 1 + ε.
It is well-known that vertex cover, independent set, and dominating set on planar graphs
have PTAS [7, 30].

Proposition 4.1 ([18]) There is an O(n log g) time algorithm that for a given graph G of n ver-
tices and genus g constructs a subset Z of at most c

√
gn log g vertices, where c is a fixed constant,

such that removing the vertices in Z from G results in a planar graph.

The algorithm in Proposition 4.1 does not need to know the genus of the input graph [18].

Theorem 4.2 The independent set problem on graphs of genus bounded by g(n) has a PTAS
if g(n) = o(n/ log n).

Proof. Let g(n) ≤ n/(r(n) log n), where r(n) is a nondecreasing and unbounded function.
Our PTAS for independent set works as follows: for a given graph G of n vertices, we use the
algorithm in Proposition 4.1 to construct the vertex subset Z (this can be done in time O(n log n)
even when the genus of G is larger than g(n)). If the number z0 of vertices in Z is larger than
c
√

g(n)n log g(n)), then we know that the input graph G has genus larger than g(n) and we stop.
Otherwise, the graph G1 obtained by deleting the vertices in Z from the graph G is a planar graph.
We apply any known PTAS algorithm (e.g., those given in [7, 30]) to construct an independent set
I1 for the graph G1. We simply output I1 as a solution to the original graph G.

It is obvious that this is a polynomial time approximation algorithm for independent set on
graphs of genus bounded by g(n). What left is to analyze the approximation ratio of the algorithm.
Because g(n) ≤ n/(r(n) log n)), the number of vertices z0 in Z is such that z0 ≤ c

√
g(n)n log g(n)) ≤

cn/
√

r(n). Let n1 = n − z0 be the number of vertices in the graph G1. Let α and α1 be the sizes
of a maximum independent set in the graphs G and G1, respectively. Then α1 ≤ α ≤ α1 + z0.
Because G1 is a planar graph, by the Four-Color theorem [25], α1 ≥ n1/4.

Let α′
1 = |I1|. Since the independent set I1 is constructed by a PTAS on the planar graph G1,

α1/α′
1 ≤ 1 + ε, where ε is the given error bound. Since the function r(n) is nondecreasing and

unbounded, there is a constant N0 such that when n ≥ N0, we have

c

4
√

r(n)
≤ 1

8
and

8c(1 + ε)√
r(n)

≤ ε (5)

From the first inequality, we get

α′
1 ≥ α1

1 + ε
≥ n1

4(1 + ε)
=

n− z0

4(1 + ε)
≥ n− cn/

√
r(n)

4(1 + ε)
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= n ·
(

1
4(1 + ε)

− c

4(1 + ε)
√

r(n)

)
≥ n

8(1 + ε)
(6)

Since α ≤ α1 + z0 ≤ (1 + ε)α′
1 + cn/

√
r(n), combining this with (5) and (6), we get

α

α′
1

≤ 1 + ε +
cn

α′
1

√
r(n)

≤ 1 + ε +
8cn(1 + ε)
n
√

r(n)
≤ 1 + 2ε

Thus, the algorithm is a PTAS for independent set on graphs of genus bounded by g(n).

Again our PTAS for independent set does not need to know whether the input graph meets
the given genus bound.

Theorem 4.3 Assuming P 6= NP, then independent set on graphs of genus bounded by g(n)
has no PTAS if g(n) = Ω(n).

Proof. The proof uses techniques similar to those in Theorem 3.3, so we only give an outline of
it. It is known that independent set on graphs of bounded degree is APX-complete [6], which
means that a PTAS for it would imply P = NP [5]. Now a graph G1 of n1 vertices and of bounded
degree has its genus bounded by O(n1). We can increase the number of vertices in G1 without
changing the graph genus by subdividing the edges in G1 by degree-2 vertices (see the proof of
Theorem 3.3). This will give a graph G2 of n2 vertices whose genus is bounded by g(n2) (note that
g(n) ≥ cn for some constant c), and a PTAS for the graph G2 would imply a PTAS for the graph
G1. In consequence, a PTAS for independent set on graphs of genus bounded by g(n) would
imply a PTAS for the same problem on graphs of bounded degree, which would imply that P =
NP.

Theorem 4.2 seems unlikely to hold for vertex cover and dominating set. In fact, we can
prove the following theorem.

Theorem 4.4 Unless P = NP, vertex cover and dominating set on graphs of genus bounded
by g(n) have no PTAS if g(n) = nΩ(1).

Proof. It is known that vertex cover and dominating set on general graphs have no PTAS
unless P = NP [5, 31]. Thus, it suffices to show how these problems on general graphs can be
reduced to the ones on graphs of genus bounded by g(n) = nΩ(1). The proof is very similar to that
for Theorem 2.7, thus we only give an outline of it. Consider the dominating set problem. For a
given general graph G1 of n1 vertices, by attaching to G1 a very large star, we can construct a new
graph G2 of n2 vertices, without changing the graph genus, such that the genus of the graph G2 is
bounded by g(n2), and that the domination numbers of the graphs G1 and G2 differ by exactly 1.
Now a PTAS for the graph G2 would imply a PTAS for the graph G1. The theorem for vertex
cover can be proved using a similar construction.

On the other hand, we can derive results similar to Theorem 4.2 for vertex cover and
dominating set on “kernelized” graphs. Polynomial time kernelization algorithms have become
an interesting topic in the recent research on NP-hard problems [2, 13, 23]. It has been demonstrated
[26] that improvement on approximating vertex cover and dominating set on kernelized graphs
will directly imply the same improvement on approximating the problems on general graphs. In
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the following, we discuss the impact of graph genus on the approximability of vertex cover and
dominating set on kernelized graphs.

We say that a graph G of n vertices is kernelized for the vertex cover problem if the number of
vertices in a minimum vertex cover for G is at least n/2. Polynomial time kernelization algorithms
have been developed [13, 26]. For an arbitrary graph G, the algorithms construct a kernelized
graph G′, where a vertex cover C ′ for the graph G′ gives directly a vertex cover C for the graph G
that preserves the approximation ratio (that is, the ratio of C to an optimal solution of G is not
worse than the ratio of C ′ to an optimal solution of G′).

Theorem 4.5 The vertex cover problem on kernelized graphs of genus bounded by g1(n) has a
PTAS if g1(n) = o(n/ log n). On the other hand, unless P = NP, the vertex cover problem on
kernelized graphs of genus bounded by g2(n) has no PTAS if g2(n) = Ω(n).

Proof. The development of a PTAS for vertex cover on graphs of genus bounded by
g1(n) = o(n/ log n) is very similar to that for the PTAS for independent set given in Theorem 4.2,
except that for independent set in Theorem 4.2, we used Four-Color theorem to derive a linear
lower bound on the size of maximum independent sets for planar graphs, while for vertex cover
on kernelized graphs, the linear lower bound on the size of minimum vertex covers comes directly
from the fact that the input graph is kernelized. To prove that vertex cover has no PTAS on
kernelized graphs of genus bounded by g2(n) = Ω(n), we use the techniques given in the proof of
Theorem 4.3, by observing that a graph obtained by applying the operations given in Theorem 3.3
(i.e., subdividing an edge by two degree-2 vertices [15]) on a kernelized graph is also kernelized.
We leave the detailed verification to the interested readers.

Very recently, a kernelization algorithm for dominating set has been proposed. For a given
graph G, let δ(G) be the size of a minimum dominating set in the graph G and recall that γmin(G)
denotes the minimum genus of the graph G. Formin and Thilikos [23] proposed a polynomial time
algorithm that reduces a given graph G to a graph G′ such that δ(G) = δ(G′), and such that the
number of vertices of G′ is bounded by c0(δ(G′) + γmin(G′)), where c0 > 4 is a constant. Based on
this result, we can introduce the following definition: we say that a graph G is kernelized for the
dominating set problem if the number of vertices in G is bounded by c0(δ(G) + γmin(G)), where
c0 is the constant given in [23].

Theorem 4.6 The dominating set problem on kernelized graphs of genus bounded by g1(n) has
a PTAS if g1(n) = o(n/ log n). On the other hand, unless P = NP, the dominating set problem
on kernelized graphs of genus bounded by g2(n) has no PTAS if g2(n) = Ω(n).

Proof. We only sketch the proof, which is similar to that for Theorem 4.5. We leave the detailed
verification to the interested reader.

The PTAS for dominating set on kernelized graphs of genus bounded by g1(n) = o(n/ log n)
is obtained in a similar way to the PTAS for vertex cover given in Theorem 4.5, with the
lower bound on the size of minimum dominating sets coming from the kernelization. To prove
that dominating set has no PTAS on kernelized graphs of genus bounded by g2(n) = Ω(n), we
note that graphs of degree bounded by 3 are necessarily kernelized since the size of a minimum
dominating set in such a graph is at least n/4 – each vertex can dominate at most 3 other vertices
in the graph. Moreover, the genus of such a graph is bounded by O(n) [25]. Therefore, the
assumed PTAS for dominating set on graphs of genus bounded by g2(n) would imply a PTAS
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for dominating set on graphs of degree bounded by 3, which is APX-complete [6]. This, in
consequence, would imply P = NP.

5 Final remarks

We have demonstrated how graph genus affects the computational complexity of the well-known NP-
hard problems vertex cover, independent set, and dominating set in terms of the following
complexity measures: the fixed parameter tractability, the subexponential time computability, and
the polynomial time approximability. In most cases, we were able to derive a precise genus threshold
that uniquely determines the computational complexity of the problems in terms of the complexity
measures. Our algorithmic results significantly extend the previous research on the problems on
planar graphs and on graphs of constant genus, while our complexity results refine the previous
results on the problems and identify the “hardest graph instances” for the problems. It should be
easy to see that our techniques and results can be extended to other NP-hard graph problems.

It is NP-hard to determine the minimum genus of a given graph [32]. However, it is interesting
to point out that all the algorithms developed in this paper work correctly without needing to
know whether the input graph exceeds the designated genus bound. Our algorithms either report
correctly that the input graph exceeds the designated genus bound, or solve the problems correctly
for the given graph. Our techniques seem to be useful for the study of other computational problems
related to graph genus.

Our results on the fixed parameter tractability and on the subexponential time computability
(sections 2 and 3) are tight. Our results on the polynomial time approximation schemes (section
4), however, have a gap between o(n/ log n) and Ω(n) on the genus bound. According to [18], when
the graph genus is o(n), there is a set of o(n) vertices whose removal results in a planar graph.
However, no algorithm is known that efficiently constructs such a set. It should be interesting and
seems to be possible to close the genus gap in section 4.

Our results show that a class of NP-hard graph problems, including some very well-known
ones, becomes more tractable on lower genus graphs while becomes more intractable on higher
genus graphs. It is interesting to compare our results to the results in [4], which shows that certain
other NP-hard problems become more tractable on dense graphs, for which the graph genus is
necessarily high. We notice that the problems studied in [4] are most graph cutting problems, such
as Max-Cut, and Graph-Bisection, while problems studied in the current paper are vertex
subset problems. A systematical study of the difference between these two kinds of NP-hard
problems looks rather appealing.
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