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On the Dilation of Delaunay Triangulations of Points in Convex Position

Shiliang Cui∗ Iyad A. Kanj† Ge Xia‡

Abstract

Let S be a finite set of points in the Euclidean plane,
and let E be the complete graph whose point-set is S.
Chew, in 1986, proved a lower bound of π/2 on the
stretch factor of the Delaunay triangulation of S (with
respect to E), and conjectured that this bound is tight.
Dobkin, Friedman, and Supowit, in 1987, showed that
the stretch factor of the Delaunay triangulation of S
is at most π(

√
5 + 1)/2 ≈ 5.084. This upper bound

was later improved by Keil and Gutwin in 1989 to
2π/(3 cos (π/6)) ≈ 2.42. Since then (1989), Keil and
Gutwin’s bound has stood as the best upper bound
on the stretch factor of Delaunay triangulations, even
though Chew’s conjecture is now widely believed to be
true. Whether the stretch factor of Delaunay triangula-
tions is π/2 or not remains a challenging and intriguing
problem in computational geometry.

Bose, in an open-problem session at CCCG 2007, sug-
gested looking at the special case when the points in S
are in convex position.

In this paper we show that the stretch factor of the
Delaunay triangulation of a point-set in convex position
is at most ρ = 2.33.

1 Introduction

Let S be a finite set of points in the Euclidean plane,
and let E be the complete graph whose point-set is S. A
Delaunay triangulation of S is a triangulation in which
the circumscribed circle of every triangle contains no
point of S in its interior [8]. It is well known that if the
points in S are in general position (i.e., no four points
in S are cocircular) then the Delaunay triangulation of
S is unique [8]. To simplify the discussion, we shall
assume that the Delaunay triangulation is unique, even
though the results in this paper are not contingent on
this assumption.

The Delaunay graph of S is defined as the plane graph
whose point-set is S, and whose edges are the edges of
the Delaunay triangulation of S. An alternative equiv-
alent definition is:
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Definition 1 ([8]) An edge XY is in the Delaunay
graph of S if and only if there exists a circle through
points X and Y whose interior is devoid of points of S.

A subgraph G of E is said to have stretch factor or
dilation ρ with respect to E , if for every two points P
and Q in S, the shortest path from P to Q in G has
length at most ρ · |PQ|, where |PQ| is the Euclidean
distance between P and Q.

Chew [6] showed a lower bound of π/2 on the stretch
factor of the Delaunay graph.1 Dobkin, Friedman, and
Supowit [9, 10] in 1987 showed that the Delaunay graph
of a point-set S has stretch factor (1 +

√
5)π/2 ≈ 5.08

with respect to E . This ratio was improved by Keil and
Gutwin [12, 13] in 1989 to Cdel = 2π/(3 cos (π/6)) ≈
2.42, which currently stands as the best upper bound
on the stretch factor of the Delaunay graph. Many re-
searchers, however, believe, that the lower bound of π/2
established in [6] is also an upper bound on the stretch
factor of the Delaunay graph (for example, see page 470
in [17]). Whether this belief is true or not remains one
of the most challenging and intriguing open problems in
computational geometry.

In addition to its theoretical interest, improving the
current upper bound on the stretch factor of Delaunay
graphs has a huge and direct impact on the problem of
constructing geometric spanners of Euclidean graphs,
which has significant applications in the area of wireless
computing. A spanner of E is a spanning subgraph of
E that has a constant stretch factor. The problem of
constructing geometric spanners has been extensively
studied within computational geometry, and much of
the early work on spanners was done from that per-
spective (for example, see [1, 4, 7, 11, 13, 15, 17, 19]).
More recently, wireless network researchers have ap-
proached the problem as well. Emerging wireless dis-
tributed system technologies, such as wireless ad-hoc
and sensor networks, are often modeled as geomet-
ric graphs. Spanners are fundamental to wireless dis-
tributed systems because they represent topologies that
can be used for efficient unicasting, multicasting, and/or
broadcasting (see [4, 5, 11, 14, 16, 18], to name a few).
For these applications, spanners are typically required
to be planar because planarity is useful for efficient
routing [4, 5, 11, 14, 18]. Therefore, the Delaunay
graph, or spanning subgraphs of the Delaunay graph,

1In the same paper [6], Chew proved that the stretch factor of
the Delaunay graph under the L1 norm is at most

√

10.
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are ideal for such applications. As a matter of fact,
many spanner constructions in the literature rely on ex-
tracting subgraphs of the Delaunay graph (see for ex-
ample [4, 11, 15, 16, 18]). The stretch factors of these
constructed spanners are a constant times2 the stretch
factor of the Delaunay graph Cdel [4, 11, 15, 16, 18].
Therefore, improving the upper bound on the stretch
factor of Delaunay graphs (Cdel) will automatically im-
prove the stretch factors of all such spanners.

In an open-problem session of the 19th Cana-
dian Conference on Computational Geometry (CCCG
2007) [3], Bose suggested looking at the special case
when the points in S are in convex position. While
settling this particular case may not lead to improving
the upper bound for the general case, it may, however,
shed some light on the intrinsic difficulty of this prob-
lem. Moreover, convexity is a very natural assumption
in computational geometry that is interesting per se.

In this paper we progress towards this goal by showing
that the stretch factor of the Delaunay graph of a point-
set in convex position is at most ρ = 2.33. The precise
value of ρ is the root of the equation ρ3 − ρ − (π +

arctan ((1 − ρ2)/ρ))
√

ρ4 − ρ2 + 1 = 0, in the interval
[1,∞).

2 The Theorem

Let ρ = 2.33. In this section, we will prove the following
theorem:

Theorem 2 Let S be a finite set of points in convex
position in the plane. The stretch factor of the Delaunay
triangulation of S is at most ρ.

Proof. Let D be the Delaunay triangulation of S. Let
P, Q ∈ S be two arbitrary points, and denote by |PQ|
the Euclidean distance between P and Q. Denote by
p(P, Q) a shortest path between P and Q in D, and
by |p(P, Q)| the weight of p(P, Q), that is, the sum
of the Euclidean distances between every two consecu-
tive points on p(P, Q). We shall prove that |p(P, Q)| ≤
ρ|PQ|.

We proceed by induction on the rank of |PQ| among
all pairs of points in S. (We assume that ties are bro-
ken arbitrarily.) If the distance between P and Q is the
smallest among all pairs of points in S, then the circle
with diameter PQ contains no points of S in its inte-
rior. By Definition 1, PQ is an edge in D, and hence
|p(P, Q)| = |PQ| ≤ ρ|PQ|.

Now suppose that the statement is true for any pair
of points whose distance is less than |PQ|. Assume that
PQ is not an edge in D (otherwise we are done by the
same token as above).

2This constant is usually the stretch factor of the spanning
subgraph of the Delaunay graph with respect to the Delaunay
graph itself.

Since the point-set S is convex, there exist two par-
allel lines LP and LQ, passing through P and Q, re-
spectively, such that on one side of the horizontal line
PQ—either above or below it, all points of S lie between
LP and LQ. Without loss of generality, assume that all
points of S above the line PQ lie between LP and LQ.
Note that if this set of points is empty, then P and Q are
connected in D by a horizontal path (possibly a single
edge) of weight |PQ|, and the statement follows.

Let T ∈ S be a point above PQ that maximizes the
angle γ = ∠PTQ. By Lemma 1 of [13], there exists a
path below PQ whose length is at most (γ/ sinγ)|PQ|.
If γ ≤ 2.058, then γ/ sinγ ≤ ρ = 2.33, and we are
done. Therefore, we can assume that γ > 2.058 > π/2
in the rest of the proof. Consequently, |PT | < |PQ| and
|TQ| < |PQ|, and by the inductive hypothesis, we have
|p(P, T )| ≤ ρ|PT | and |p(T, Q)| ≤ ρ|TQ|.

Lemma 3 If |p(P, T )| = |PT | or |p(T, Q)| = |TQ|,
then |p(P, Q)| ≤ ρ|PQ|.

Proof. Suppose that |p(P, T )| = |PT |, and let θ =

∠TPQ. Note that |PT |
|PQ| = sin(π−γ−θ)

sin γ
= sin(γ+θ)

sin γ
, and

|TQ|
|PQ| = sin θ

sin γ
. We have

|p(P, Q)|
|PQ| ≤ |p(P, T )| + |p(T, Q)|

|PQ|

≤ |PT |+ ρ|TQ|
|PQ|

=
sin(γ + θ) + ρ sin θ

sin γ

= cos θ +
sin θ(cos γ + ρ)

sin γ
. (1)

Define the function g(γ) of γ in the interval (2.058, π)
as follows: g(γ) = (cos γ + ρ)/ sinγ. Since ρ = 2.33 and
2.058 < γ < π, it is easy to verify that g′(γ) = (−1 −
ρ cosγ)/ sin2 γ > 0, and hence g(γ) is an increasing
function in the chosen interval. Since γ < π−θ, we have
g(γ) < g(π − θ). Therefore, g(γ) = (cos γ + ρ)/ sinγ <
(cos(π − θ) + ρ)/ sin(π − θ) = (− cos θ + ρ)/ sin θ.
The last inequality, together with Inequality (1), gives
|p(P, Q)|/|PQ| ≤ cos θ + g(γ) sin θ ≤ ρ.

The proof is analogous when |p(T, Q)| = |TQ|. �

By the above lemma, we may assume that T does not
lie on LP or on LQ because otherwise, |p(P, T )| = |PT |
or |p(T, Q)| = |TQ| and we are done.

Since the point-set S is convex, there exists a line
LT passing through T such that all other points in S
are below LT . If the line LT passes through P or Q,
then either |p(P, T )| = |PT | or |p(T, Q)| = |TQ|, and
by Lemma 3 we are done. So we can assume that LT

does not pass through P or Q in the rest of the proof.
Let M and N be the intersections of LT with LP and

LQ, respectively. By the above discussion, M and N
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are above the line PQ and the non-degenerate trian-
gles △PMT , △TPQ, and △TQN do not overlap. Let
α = ∠MPT , and β = ∠PMT . See Figure 1 for an illus-
tration. It is easy to see that 0 < α < γ, 0 < β < π−α,
and 0 < θ < π − γ. (Also note that 2.058 < γ < π.)

α

θ

β

γ

π − α − β
α + β − γ

π − β

γ − α

π − γ − θ
P Q

T

M

NLP

LQ
LT

Figure 1: An illustration of the structure above PQ.

Since TP /∈ D, and by convexity of S, there exists
a path from P to T that is convex-away from PT and
lies in the triangle △PMT . By convexity, the length
of this path is at most |PM | + |MT | (see [2, p. 42]).
Therefore, the length of the shortest path from P to T
is at most |PM | + |MT |. Similarly, the length of the
shortest path from T to Q is at most |TN |+ |NQ|. Let

ρ1 = |PM|+|MT |
|PT | and ρ2 = |TN |+|NQ|

|TQ| . Then |p(P, T )| ≤
ρ1|PT | and |p(T, Q)| ≤ ρ2|TQ|.

Lemma 4 ρ2 = sin(γ − α)
(

sin α
ρ1−cos α

)

+ cos(γ − α).

Proof. We have:

ρ1 =
|PM | + |MT |

|PT |

=
sin α + sin(π − α − β)

sin β

=
sin α + sin α cosβ + cosα sin β

sin β

= sin α

(

1 + cosβ

sin β

)

+ cosα. (2)

Equality (2) implies that 1+cos β
sin β

= ρ1−cos α
sin α

, and hence

1 − cosβ

sin β
=

sinβ

1 + cosβ
=

sin α

ρ1 − cosα
. (3)

On the other hand:

ρ2 =
|TN |+ |NQ|

|TQ|

=
sin(γ − α) + sin(α + β − γ)

sin(π − β)

=
sin(γ − α) + sin(α − γ) cosβ + cos(α − γ) sin β

sin β

= sin(γ − α)

(

1 − cosβ

sin β

)

+ cos(γ − α). (4)

Now plugging (3) into (4) we get ρ2 = sin(γ −
α)

(

sin α
ρ1−cos α

)

+ cos(γ − α). �

Lemma 5
|p(P,Q)|
|PQ| ≤ min(ρ1,ρ) sin(γ+θ)+min(ρ2,ρ) sin θ

sin γ
.

Proof. We have:

|p(P, Q)|
|PQ| ≤ |p(P, T )| + |p(T, Q)|

|PQ|

≤ min(ρ1, ρ)|PT |+ min(ρ2, ρ)|TQ|
|PQ| .

Since |PT |
|PQ| = sin(γ+θ)

sin γ
and |TQ|

|PQ| = sin θ
sin γ

, we have

|p(P, Q)|
|PQ| ≤ min(ρ1, ρ) sin(γ + θ) + min(ρ2, ρ) sin θ

sinγ
.

�

Lemma 6 If ρ1 ≥ ρ or ρ2 ≥ ρ, then |p(P,Q)|
|PQ| ≤ ρ.

Proof. Suppose that ρ1 ≥ ρ. By Lemma 4 we have:

ρ2 = sin(γ − α)

(

sin α

ρ1 − cosα

)

+ cos(γ − α)

≤ sin(γ − a)

(

sinα

ρ − cosα

)

+ cos(γ − α)

=
sin(γ − α) sin α + ρ cos(γ − α) − cos(γ − α) cosα

ρ − cosα

=
ρ cos γ cosα + ρ sin γ sin α − cos γ

ρ − cosα

= −ρ cos γ +
cos γ(ρ2 − 1) + ρ sinγ sinα

ρ − cosα

≤ −ρ cos γ +
cos γ(ρ2 − 1) + ρ sinγ

ρ − cosα
.

The above inequalities are true because 1 > sin α > 0,
sinγ > 0, sin(γ − α) > 0, and ρ − cosα > 0.

Since ρ = 2.33 and 2.058 < γ < π, it is easy to verify
that cos γ(ρ2 − 1)+ ρ sinγ is a decreasing function of γ.
Therefore cos γ(ρ2−1)+ρ sinγ ≤ (2.332−1) cos(2.058)+
2.33 sin(2.058) ≤ 0. Also note that ρ − cosα > 2.33 −
1 > 0, and hence ρ2 ≤ −ρ cos γ + cos γ(ρ2−1)+ρ sin γ

ρ−cos α
≤

−ρ cosγ. Applying the last inequality to Lemma 5, we
have:

|p(P, Q)|
|PQ| ≤ min(ρ1, ρ) sin(γ + θ) + min(ρ2, ρ) sin θ

sin γ

≤ ρ sin(γ + θ) + ρ2 sin θ

sin γ

≤ ρ sin(γ + θ) − ρ cosγ sin θ

sinγ

=
ρ sinγ cos θ + ρ cos γ sin θ − ρ cos γ sin θ

sinγ

= ρ cos θ

≤ ρ. (5)
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By symmetry, the same holds true if ρ2 ≥ ρ. This com-
pletes the proof of Lemma 6. �

Lemma 7 If 1 ≤ ρ1, ρ2 ≤ ρ, then |p(P,Q)|
|PQ| ≤ ρ.

Proof. Since ρ1, ρ2 ≤ ρ, by Lemma 5 we have:

|p(P, Q)|
|PQ| ≤ min(ρ1, ρ) sin(γ + θ) + min(ρ2, ρ) sin θ

sin γ

=
ρ1 sin(γ + θ) + ρ2 sin θ

sin γ
.

By Lemma 4, we have:

|p(P, Q)|

|PQ|
≤

ρ1 sin(γ + θ) + sin(γ−α) sin α sin θ

ρ1−cos α
+ cos(γ − α) sin θ

sin γ
.

For any fixed values of α, γ, θ, define the function
h(ρ1) of ρ1 in the interval [1, ρ] as follows:

h(ρ1) = ρ1 sin(γ + θ) +
sin(γ − α) sin α sin θ

ρ1 − cosα
.

Let C1 = sin(γ + θ), C2 = sin(γ−α) sin α sin θ

sin(γ+θ) , and C3 =

sin(γ + θ) cos α. Then

h(ρ1) = C1(ρ1 − cosα +
C2

ρ1 − cosα
) + C3,

and its derivative is h′(ρ1) = C1

(

1 − C2

(ρ1−cos α)2

)

. Since

C1, C2, C3 > 0 are fixed and ρ1 − cosα > 0, h′(ρ1) is a
monotonically increasing function in the interval [1, ρ].
Thus by the first derivative test in calculus, the maxi-

mum value of the function h(ρ1) (and hence |p(P,Q)|
|PQ| ) in

the interval [1, ρ] occurs on the boundary. When ρ1 = 1,
we have |p(P, T )| = |PT | and by Lemma 3 we have
|p(P,Q)|
|PQ| ≤ ρ; and when ρ1 = ρ, by Lemma 6 we have

|p(P,Q)|
|PQ| ≤ ρ. This completes the proof of Lemma 7. �

Since ρ1, ρ2 ≥ 1, combining Lemma 6 and Lemma 7,
we conclude the proof of Theorem 2. �
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