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Abstract

Let S be a set of n points in the plane, let E be the complete Euclidean graph whose point-set
is S, and let G be the Delauany triangulation of S. We present a very simple local algorithm
that constructs a subgraph of G of degree at most 11 that is a geometric spanner of G with
stretch factor 2.86. This algorithm gives an O(n lg n) time centralized algorithm for constructing
a subgraph of G that is a geometric spanner of E of degree at most 11 and stretch factor < 7.

The algorithm can be generalized to unit disk graphs to give a local algorithm for constructing
a plane spanner of a unit disk graph of degree at most 11 and stretch factor < 7.

1 Introduction

Let S be a set of points in the plane, and let E be the complete Euclidean graph whose point-set is
S. It is well known that the Delaunay triangulation G of S is a plane geometric (i.e., with respect
to the Euclidean distance) spanner of E with stretch factor Cdel < 2.42 [12].

In this paper we consider the problem of constructing a bounded-degree subgraph of G that is a
spanner of G under the local model of computation. The motivation behind such requirements on the
subgraph stems from applications in wireless ad-hoc and sensor networks. In such applications plane
spanners are used as the underlying topologies for efficient unicasting, multicasting, and broadcasting
(e.g., see [4, 5, 9, 13, 15, 16, 18]). The bounded degree requirement is important for minimizing inter-
ference among the wireless devices in the network. A suitable model of computation for such systems
is the local model, in which the computation performed by each device only depends on the informa-
tion available within its neighborhood. More formally, a local algorithm is a distributed algorithm
that can be simulated to run in a constant number of synchronous communication rounds [17].

Under the centralized model of computation, the problem of constructing a bounded-degree sub-
graph of G that is a spanner has received significant interest. Bose et al. [3, 4] were the first to show
how to extract a subgraph of G that is a spanner of E with degree at most 27 and stretch factor 10.02.
Bose et al. [6] then improved the aforementioned result and showed how to construct a subgraph of
G that is a spanner of E with degree at most 17 and stretch factor 23. This result was subsequently
improved by Kanj and Perković [10] who presented an algorithm that constructs a subgraph of G
with degree at most 14 and stretch factor 3.54 (w.r.t. E).1 Very recently (unpublished), Carmi and
Chaitman [7] were able to improve Kanj and Perković’s result further by presenting an algorithm
that computes a subgraph of G with degree at most 7 and stretch factor (1 +

√
2)2 · Cdel < 14.1.
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All the aforementioned algorithms run in O(n) time when G is given as input, and in time O(n lg n)
otherwise (n = |S|).2

Under the local model of computation, Kanj and Perković’s result [10] gives a local algorithm
that computes a subgraph of G of degree at most 14 and stretch factor 3.54. Carmi and Chaitman’s
result [7] can be extended to the distributed model to yield a distributed algorithm that computes
a subgraph of G of degree at most 7 and stretch factor 14.1; however, their algorithm is inherently
nonlocal.

In this paper we present a very simple local algorithm that constructs a subgraph of G of degree
at most 11 and stretch factor 2.86 with respect to G, and hence stretch factor 2.86 · Cdel < 7 with
respect to E . The algorithm can be implemented to run in 2 synchronous communication rounds (i.e.,
the locality is 2). To put the result of this paper in context, this result improves the local algorithm
of Kanj and Perković in terms of the minimum degree bound achieved (11 versus 14). Moreover, the
algorithm presented in paper is simpler than that in [10].

The local algorithm presented in this paper can be implemented to run in O(n) time under the
centralized model when G is given, and in O(n lg n) time otherwise.

We note that in wireless computing, the network is often (modeled as a unit disk graph (UDG)
rather than a complete Euclidean graph. Many of the algorithms mentioned above (among others)
can be modified to construct bounded-degree plane spanners of UDGs [3, 4, 10, 11] (see also [18]).
The results in this paper can be generalized to give a local algorithm for constructing a bounded-
degree plane spanner of a UDG with the same upper bounds described above on the degree and the
stretch factor.

2 Preliminaries

Given a set of points S in the 2-dimensional Euclidean plane, the complete Euclidean graph E on
S is defined to be the complete graph whose point-set is S. Each edge ab connecting points a and
b is assumed to be embedded in the plane as the straight line segment ab; the weight of ab is the
Euclidean distance |ab|.

Let H be a subgraph of E . The weight of a simple path a = m0,m1, ...,mr = b in H is∑r−1
j=0 |mjmj+1|. A subgraph H ′ of H is said to be a geometric spanner of H if there is a con-

stant ρ such that, for every two points a, b ∈ H, the weight of a shortest path from a to b in H ′ is
at most ρ times the weight of a shortest path from a to b in H. The constant ρ is called the stretch
factor of H ′ (with respect to H). The following is a well known—and obvious—fact:

Fact 2.1. A subgraph H ′ of graph H has stretch factor ρ with respect to H if and only if for every
edge xy ∈ H: the weight of a shortest path in H ′ from x to y is at most ρ · |xy|.

For three non-collinear points x, y, z in the plane we denote by ©xyz the circumscribed circle
of 4xyz. A Delaunay triangulation of S is a triangulation of S such that the circumscribed circle of
every triangle in this triangulation (i.e., every triangular face) contains no point of S in its interior [8].
It is well known that if the points in S are in general position (no four points in S are cocircular) then
the Delaunay triangulation of S is unique [8]. In this paper—as in most papers in the literature—
we shall assume that the points in S are in general position; otherwise, the input can be slightly
perturbed so that this condition is satisfied. The Delaunay graph of S is defined as the plane graph
whose point-set is S and whose edges are the edges of the Delaunay triangulation of S. An alternative
equivalent definition, usually referred to as the empty circle property, that we end up using is:

Definition 2.2 (The empty circle property). ([8]) An edge xy is in the Delaunay graph of S if
and only if there exists a circle through points x and y whose interior contains no point in S.

2Very recently, a spanner of E of degree at most 6 and stretch factor 6 was given in [2]. This spanner, however, is
not a subgraph of G.
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It is well known that the Delaunay graph of S is a spanner of E with stretch factor Cdel ≤
4
√
3π/9 < 2.42 [12].
Given integer parameter k > 6, the Yao subgraph [19] of a plane graph H is constructed by

performing the following Yao step: For each point p in H partition the space (arbitrarily) into k
cones of equal measure/size whose apex is p, thus creating k closed cones of angle 2π/k each, and
choose the shortest edge in H out of p (if any) in each cone. The Yao subgraph consists of edges
in H chosen by either endpoint. Note that the degree of a point in the Yao subgraph of H may be
unbounded.

Let G be the Delaunay graph of S. Let ca and cb be edges in G such that ∠bca ≤ θ, for some
angle θ.3 If the interior of 4cab is devoid of points of G, then it can be easily shown using the empty
circle property (see Definition 2.2), that the interior of ©cab below chord ab contains no points of G
(for example, see Proposition 3.3 in [11]). In this case Keil and Gutwin [12] showed the following:

Lemma 2.3 (Lemma 1 in [12]). If the interior of ©abc below chord ab is devoid of points of S,
then there exists a path from a to b in G, in the region interior to ©abc above chord ab, whose weight

is at most the length of arc
_
ab.

Note that if ab ∈ G then the path described in Lemma 2.3 is simply the edge ab.
Let ca and cb be edges in G such that |ca| ≤ |cb|, and suppose that the interior of 4cab contains

no points of S. Let P : (a = m0,m1, . . . ,mk = b) be the path referred to in Lemma 2.3. The path
P was called the canonical path between a and b in [10, 11], and the following structural properties
about P were proved:

Lemma 2.4 ([10, 11]). Let ca and cb be edges in G such that ∠bca ≤ θ, and such that ca is the
shortest edge in the angular sector ∠bca. The canonical path P : (a = m0,m1, . . . ,mk = b) in G
satisfies:

(i) |ca|+∑k−1
i=0 |mimi+1| ≤ (1 + θ/ cos (θ2 ))|cb|.

(ii) There is an edge from c to mi, for i = 0, . . . , k. Hence, if ab /∈ G then there is no edge in G
between any pair mi and mj lying in the closed region enclosed by ca, cb and the edges of P,
for any i and j satisfying 0 ≤ i < j ≤ k.

(iii) ∠mi−1mimi+1 > π − ∠mi−1cmi+1 > π − θ, for i = 1, . . . , k − 1.

Two edges mx, my incident to a point m in a subgraph H of E are said to be consecutive if one of
the angular sectors determined by the two segments mx and my in the plane contains no neighbors
of m.

The statement of the following lemma is well known and can be easily verified by the reader:

Lemma 2.5. The function α/ sin(α) is an increasing function in the interval (0, π/2].

Lemma 2.6. Let
_
yz denote the arc facing angle ∠yxz in ©xyz, and suppose that ∠yxz ≤ θ, where

θ ∈ (0, π/2]. Then | _
yz |/|yz| = ∠yxz/ sin (∠yxz) ≤ θ/ sin θ.

Proof. The equality | _
yz |/|yz| = ∠yxz/ sin (∠yxz) is true by simple geometric arguments. The

inequality ∠yxz/ sin (∠yxz) ≤ θ/ sin θ follows from Lemma 2.5.

The unit disk graph (UDG) on point-set S is the subgraph of E consisting of all edges xy with
|xy| ≤ 1.

3All angles in this paper are measured in radians.
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Algorithm Spanner

1. for every wide sequence of edges around p, p selects the three edges in the sequence;

2. p partitions the remaining space around it (the space left after the sectors determined by the wide sequences
are removed) into cones of apex p, each of size π/5 (note that the boundary cones might be of smaller size);

3. p selects the shortest edge in every nonempty cone, breaking ties arbitrarily;

4. for every empty cone around p, let pr and ps be the two consecutive edges incident to p such that the empty
cone is contained within the sector ∠rps; if pr (resp. ps) has been already selected, then p selects ps (resp.
pr); otherwise, p selects the longer edge between pr and ps breaking ties arbitrarily;

5. p keeps an edge pq if and only if pq is selected by both p and q;

Figure 1: The algorithm Spanner.

3 The spanner

Let G be the Delaunay graph of S. The basic idea behind the local algorithm is that every point
selects at most 11 of its incident edges in G, and edges that are selected by both endpoints are kept;
this guarantees that the degree of the resulting subgraph of G is at most 11. To ensure that the
resulting subgraph is a spanner of G, we first guarantee that whenever an edge pq ∈ G is not kept
in the subgraph: (1) an edge pr is kept such that |pr| ≤ |pq| and ∠rpq ≤ π/5, and (2) all edges on
the canonical path from r to q, except possibly the first and the last edges are kept in the subgraph.
Second, we use an inductive proof to show that even when the first and last edges on a canonical
path are not kept, a “short” path between the endpoints of each of these two edges exists in the
subgraph, which then can be used to upper bound the length of a path from r to q in the subgraph.
Ensuring property (1) above requires an idea that seems counterintuitive at the surface: a longer
edge incident to a point is selected in favor of a shorter consecutive edge in certain cases (step 4 of
the algorithm Spanner, given in Figure 1). This favoritism also (implicitly) allows the inductive
proof to go through (induction is now applied to “shorter” edges).

We start by presenting the local algorithm that constructs the subgraph of G and prove that it
has degree at most 11 in Subsection 3.1. Then we proceed to prove an upper bound on its stretch
factor in Subsection 3.2. Everything is then put together in Subsection 3.3.

3.1 The algorithm

The algorithm is presented in a way that emphasizes its locality: each point in G selects its candidate
edges independently based only on its coordinates and the coordinates of its neighbors, and only edges
that are selected by both their endpoints are kept in the spanner.

A sequence of three consecutive edges incident to a point p is said to be wide if the sum of the
two angles formed by the two pairs of consecutive edges in this sequence is at least 4π/5.

Every point p ∈ G executes the algorithm Spanner given in Figure 1.

Definition 3.1. Point p selects an edge pq when point p selects pq in steps 1-4 of the algorithm
Spanner. Point p keeps an edge pq when both p and q select pq.

Let G′ be the subgraph of G consisting of the edges that are kept after the points in G have
applied the algorithm Spanner.

Lemma 3.2. Point p selects every edge of a wide sequence of edges around it.

Proof. The statement directly follows form step 1 of the algorithm Spanner.

Theorem 3.3. The subgraph G′ of G has degree at most 11.
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Proof. Since an edge in G is in G′ if and only if the edge is selected by both its endpoints in the
algorithm Spanner, it suffices to show that every point p ∈ G selects at most 11 incident edges.
Assume first that no edge is selected by p in step 1. In this case p will partition the space around
it into exactly 10 cones of apex p, each of size π/5. For every nonempty cone C, p selects in step 2
exactly one edge in C—namely a shortest edge in C. For every empty cone C, p selects at most one
edge in step 3, which can be “charged to”, or associated with, the empty cone C. It follows that in
this case p selects at most 10 incident edges.

Suppose now that p selects some edges in step 1. We use a combinatorial argument to show that
the total number of edges selected by p in this case is at most 11. The following terminology will
be useful in the rest of the proof. Two wide sequences of edges around p are said to overlap if the
two sequences share two edges; the two sequences are said to be adjacent if they share exactly one
(boundary) edge, and the two sequences are said to be disjoint if they do not share any edges. We
distinguish the following cases.

If there is exactly one wide sequence around p, then p selects the three edges in this sequence by
Lemma 3.2, and partitions the remaining space around it, which measures at most 2π−4π/5 = 6π/5,
into at most 6 cones. Any edge selected by p other than the wide-sequence edges can be corresponded
in a one-to-one fashion with one of these 6 cones. It follows that p selects at most 9 edges.

If there are exactly two wide sequences around p, then the worst case happens when the angle of
each sequence measures exactly 4π/5, which is the smallest angle needed to form a wide sequence,
and the two sequences overlap at two edges that form an angle which is almost equal to 4π/5, thus
costing us the selection of an extra edge for nothing. In this case p selects the 4 edges forming these
two overlapping sequences in step 1 by Lemma 3.2. Then p partitions the remaining space into 6
cones, and selects at most 6 more edges in steps 2 and 3 that can be corresponded/charged in a
one-to-one fashion to these 6 cones. It follows that p selects at most 10 incident edges in total.

If there are exactly three wide sequences around p, then note in this case that at least two of
these sequences must overlap because the angle formed by each sequence is at least 4π/5. Note also
that it is impossible for each pair of these 3 sequences to overlap, and hence, at least two of these
three sequences must be nonoverlapping (i.e., either disjoint or adjacent). As in the previous case, it
is not difficult to verify that the worst case happens when each sequence measures exactly 4π/5 and
two sequences overlap at two edges that form an angle that is almost equal to 4π/5. In this case p
selects the 4 edges of the two overlapping sequences by Lemma 3.2, and the three edges of the third
sequence. The remaining space around p measures at most 2π−8π/5 = 2π/5, and is partitioned into
at most two parts. In the worst case, the two parts are nonempty and one part measures more than
π/5, thus forcing the selection of two edges from it, and the other part measures less than π/5. In
this case two cones will be placed in the larger part and one cone in the smaller part, and p selects
at most 3 edges in addition to the wide-sequence edges. It follows that p selects at most 10 edges.

If there are exactly 4 wide sequences around p, then by a similar token to the above, the worst
case happens when each sequence measures exactly 4π/5, two sequences overlap at two edges that
form an angle which is almost equal to 4π/5, and the other two sequences also overlap at two edges
that form an angle which is almost equal to 4π/5. In this case p ends up selecting the 8 edges of
the 4 sequences by Lemma 3.2, and the remaining area around p is partitioned into at most two
parts that together measure at most 2π/5. In the worst case the two parts are nonempty and one
of them measures more than π/5, thus forcing the selection of two edges from it, and the other part
measures less than π/5. In this case two cones will be placed in the larger part and one cone in the
smaller part, and p will select at most 3 edges in addition to the wide-sequence edges. It follows that
p selects at most 11 edges in this case. This scenario is depicted in Figure 2; this is the only case in
which point p ends up selecting 11 edges. This completes the proof of the proposition.
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Figure 2: Illustration of the scenario in which point p selects 11 edges in the proof of Theorem 3.3.
The two wide sequences px1, px2, px3 and px2, px3, px4 are overlapping, and p selects the 4 edges of
the two sequences. Similarly, p selects the 4 edges of the two overlapping wide sequences py1, py2, py3
and py2, py3, py4. The angle ∠x1py1 measures more than π/5, and hence the shaded region between
px1 and py1 will be partitioned into two cones, forcing p to select two edges, one from each cone,
when these cones are nonempty. Finally, p selects one edge from the shaded region between px4 and
py4 if this region is nonempty. Therefore, in this case p selects at most 11 edges.

3.2 The stretch factor

We start with the following lemmas:

Lemma 3.4. Let xy and xz be two consecutive edges such that |xy| > |xz| and ∠yxz ≥ 2π/5. Then
point x selects xy in the algorithm Spanner.

Proof. If xy is not selected by x in step 1 of the algorithm, then when x partitions the space around
it into cones of apex x in step 2, at least one empty cone will be contained in the sector ∠yxz. This
is true because each cone has size at most π/5 and ∠yxz ≥ 2π/5. Since |xy| > |xz|, x is guaranteed
to select xy in step 4 of the algorithm.

Lemma 3.5. Let xy and xz be two consecutive edges such that ∠yxz ≥ 3π/5. Then point x selects
both xy and xz in the algorithm Spanner.

Proof. If xy and xz are not edges of a wide sequence around x, then since ∠yxz ≥ 3π/5, two empty
cones defined in step 2 of the algorithm must fall within ∠yxz. When x considers these two empty
cones in step 4, it will end up selecting both xy and xz.

Lemma 3.6. Let pq be an edge in G. If point p does not select pq in the algorithm Spanner, then
p selects an edge pr such that |pr| ≤ |pq| and ∠rpq ≤ π/5. Moreover, edge pr is kept in G′.

Proof. Suppose that p does not select pq. Since p does not select pq in step 1 of the algorithm, pq
belongs to a cone C of apex p defined in step 2. Since p does not select pq in step 3, p must have
selected an edge pr in C such that |pr| ≤ |pq|. Since the size of C is at most π/5, ∠rpq ≤ π/5.

To show that pr ∈ G′, since p selects pr, it suffices to show that pr is selected by point r in the
algorithm Spanner. Let ps be the edge consecutive to pr in C (note that ps might be pq). Consider
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4rps, and note that since G is a triangulation and pr and ps are consecutive edges, all edges of
4rps are edges in G. In particular, rp and rs are consecutive edges in G. If ∠prs ≥ 3π/5, then
by Lemma 3.5 applied to rp and rs, r selects rp and we are done. Assume now that ∠prs < 3π/5.
Since ∠rps ≤ ∠rpq ≤ π/5, it follows that ∠psr = π − ∠prs − ∠rpq > π/5, and hence |pr| > |rs|.
Since pr is a shortest edge in C, |pr| ≤ |ps|, which together with ∠rps ≤ π/5, implies that ∠prs ≥
(π − π/5)/2 = 2π/5. Now since |rp| > |rs| and ∠prs ≥ 2π/5, r selects rp by Lemma 3.4 applied to
rp and rs. It follows that pr is kept in G′.

For any two points p, q in S, denote by dG′(p, q) the weight of a shortest path between p and q inG′.

To prove that the stretch factor ofG′, with respect to G, is at most ρ = 2 sin(2π/5) cos(π/5)
(2 sin(2π/5) cos(π/5)−1) < 2.86, by

Fact 2.1, it suffices to show that for every edge pq in G such that pq is not kept in G′, dG′(p, q) ≤ ρ|pq|.
(The choice of ρ will be justified in Proposition 3.12.) The proof is by induction on the rank of pq
among all edges in G. The base case is when pq is the shortest edge in G. In this case if point p does
not select edge pq in step 1 of the algorithm, edge pq will end up being the shortest edge in its cone,
and hence will be selected in step 3 of the algorithm. Similarly, point q will also select edge pq, and
hence pq is kept in G′. Therefore, dG′(p, q) = |pq| ≤ ρ|pq|. Now let pq be an edge in G, and assume
by the inductive hypothesis that for every edge xy ∈ G such that the rank of xy is strictly smaller
than that of pq, there exists a path from x to y in G′ of weight at most ρ|xy|. We will show that
there exists a path from p to q in G′ of weight at most ρ|pq|.

If pq is kept in G′, then dG′(p, q) = |pq| ≤ ρ|pq|, and we are done. Therefore, we can assume in
the rest of the proof that pq is not kept in G′. From step 5 in the algorithm Spanner, it follows that
at least one of the points p, q does not select pq. Assume, without loss of generality, that p does not
select pq. By Lemma 3.6, p selects an edge pr such that: |pr| ≤ |pq|, ∠rpq ≤ π/5, and pr is kept in
G′. We will exhibit a path from r to q in G′, which, together with edge pr, gives a path from p to
q of weight at most ρ|pq|. We first consider the case when rq ∈ G. In this case we can induct on
rq. We first need the following technical lemma whose proof is relegated to the appendix for lack of
space:

Lemma 3.7 (Lemma 5.1, Appendix). Let pr and pq be edges in G such that ∠rpq ≤ π/5 and
|pr| ≤ |pq|. If pr ∈ G′ and dG′(r, q) ≤ ρ|rq| then dG′(p, q) ≤ ρ|pq|.

Proposition 3.8. If rq is an edge in G then dG′(p, q) ≤ ρ|pq|.

Proof. From |pr| ≤ |pq| and ∠rpq ≤ π/5, it follows that |rq| < |pq|. Since rq ∈ G and |rq| < |pq|, by
the inductive hypothesis, we have dG′(r, q) ≤ ρ|rq|. Now pr ∈ G′, ∠rpq ≤ π/5, and dG′(r, q) ≤ ρ|rq|,
it follows from Lemma 3.7 that dG′(p, q) ≤ ρ|pq|.

Suppose now that rq /∈ G. We distinguish two cases based on whether or not the interior of 4prq
contains points of S. We need the following lemma:

Lemma 3.9 (Lemma 5.2, Appendix). Let x, y, z be three points in S. Let α = ∠xyz, β = ∠yxz,
and γ = α+ β. If γ ≤ π/5, dG′(y, z) ≤ π

5 sin (π/5) |yz|, and dG′(x, z) ≤ ρ|xz|, then dG′(x, y) ≤ ρ|xy|.

Suppose that the interior of 4prq contains no points of S. Consider the canonical path P : 〈m0 =
r,m1, . . . ,mk = q〉 from r to q in G, defined in Section 2. Observe the following:

Observation 1. Every internal point on P selects both edges incident to it on P. Therefore, every
edge on P, except possibly the first and the last edges, are kept in G′.

Proof. For any internal point mi on P (0 < i < k), ∠mi−1mimi+1 ≥ π − π/5 ≥ 4π/5 by part (iii) of
Lemma 2.4. Therefore, both edges mi−1mi and mimi+1 are edges of a wide sequence of edges around
mi (note that pmi ∈ G, for i = 0, . . . , k, by part (ii) of Lemma 2.4). By Lemma 3.2, mi selects both
edges mimi−1 and mimi+1.
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Now for every edge on P other than the first and last edges, both its endpoints are internal points
on P. Therefore, both endpoints of this edge select the edge, and the edge is kept in G′.

By Observation 1, at most two edges on P are not kept in G′. We first consider the following two
cases: exactly one edge of P is not kept in G′, and exactly two edges of P are not kept in G′.

Lemma 3.10. If exactly one edge of P is not kept in G′ then dG′(r, q) ≤ ρ|rq|.

Proof. If exactly one edge of P is not kept in G′, then by Observation 1, this edge is either the first
edge rm1 or the last edgemk−1q. Suppose that the edge that is not kept in G′ is edge rm1; the analysis
of the other case is very similar. Let P ′ be the subpath of P from m1 to mk, that is, P minus edge
rm1, and note that all edges of P ′ are in G′. By Lemma 2.3, wt(P ′) is at most the length of arc

_
m1q

facing angle ∠m1pq in ©pm1q. Since ∠m1pq ≤ π/5, by Lemma 2.6, | _
m1q | ≤ (π/(5 sin (π/5)))|m1q|.

Therefore, dG′(m1, q) ≤ (π/(5 sin (π/5)))|m1q|. On the other hand, since m1 is in the region of ©prq
subtended by chord rq and facing ∠rpq, we have |rm1| < |rq| < |pq|. Since rm1 ∈ G and |rm1| < |pq|,
by the inductive hypothesis, we have dG′(r,m1) ≤ ρ|rm1|. Now consider 4rm1q, and let α = ∠rqm1,
β = ∠qrm1, and γ = α + β. Since m1 is in the region of ©prq subtended by chord rq, we have
γ = α+ β ≤ ∠rpq ≤ π/5. Now consider the three points r, m1, and q. Noting the previous facts, we
can apply Lemma 3.9 with x = r, y = q, and z = m1 to conclude that dG′(r, q) ≤ ρ|rq|.

Lemma 3.11. If exactly two edges of P are not kept in G′ then dG′(r, q) ≤ ρ|rq|/(sin(2π/5)).

Proof. If two edges of P are not kept in G′, then by Observation 1 those edges are the first and last
edges rm1 and qmk−1, respectively. We refer the reader to Figure 3 for illustration. Consider the
subpath P ′′ of P from m1 to mk−1, and note that all edges of P ′′ are kept in G′. By Lemma 2.3,
wt(P ′′) is at most the length of arc

_
m1mk−1 facing angle ∠m1pmk−1 in ©pm1mk−1 (note that

pm1, pmk−1 ∈ G by part (ii) of Lemma 2.4). Since ∠m1pmk−1 ≤ π/5, by Lemma 2.6, | _
m1mk−1 | ≤

(π/(5 sin (π/5)))|m1mk−1|, and wt(P ′′) ≤ (π/(5 sin (π/5)))|m1mk−1|.
Since |rm1| < |pq|, by the inductive hypothesis, dG′(r,m1) ≤ ρ|rm1|. We can now apply

Lemma 3.9 to points r, m1 and mk−1 to conclude that dG′(r,mk−1) ≤ ρ|rmk−1| (it can be easily ver-
ified that the preconditions of the lemma are satisfied). On the other hand, since |mk−1q| < |pq|, by
the inductive hypothesis, we have dG′(mk−1, q) ≤ ρ|mk−1q|. Now consider 4rmk−1q and observe that
since pmk−1 is an edge in G (part (ii) in Lemma 2.4), we have ∠rmk−1q ≥ π − π/5 = 4π/5. Under
the condition that ∠rmk−1q ≥ 4π/5 in 4rmk−1q, it is not difficult to verify that |rmk−1|+ |mk−1q| is
maximum when ∠rmk−1q = 4π/5 and |rmk−1| = |mk−1q|. In this case we have |rmk−1|+ |mk−1q| ≤
|rq|/(sin(2π/5)). It follows that in this case we have dG′(r, q) ≤ dG′(r,mk−1) + dG′(q,mk−1) ≤
ρ(|rmk−1|+ |mk−1q|) ≤ ρ|rq|/(sin(2π/5)).

Now we are ready to prove that dG′(p, q) ≤ ρ|pq|.

Proposition 3.12. If the interior of 4pqr contains no points of S then dG′(p, q) ≤ ρ|pq|.

Proof. Consider the canonical path P from r to q. By Observation 1, at most two edges on P are not
kept in G′. If all edges of P are kept in G′, then since pr is kept in G′, the path pr followed by P is a
path from p to q in G′ of weight |pr|+wt(P) ≤ (1 + (π/5) cos (π/10))|pq| by part (i) of Lemma 2.4,
which is at most ρ|pq| for the chosen value of ρ. Therefore, in this case we have dG′(p, q) ≤ ρ|pq|.

If exactly one edge of P is not kept in G′, then by Lemma 3.10, we have dG′(r, q) ≤ ρ|rq|.
Now pr ∈ G′, |pr| ≤ |pq|, ∠prq ≤ π/5, and dG′(r, q) ≤ ρ|rq|, it follows from Lemma 3.7 that
dG′(p, q) ≤ ρ|pq|.

If exactly two edges of P are not kept in G′, then by Observation 1 those edges must be rm1 and
qmk−1. By Lemma 3.11, we have dG′(r, q) ≤ ρ|rq|/(sin(2π/5)). Since rm1 and qmk−1 were not kept
in G′, and since rm1 was selected by m1 and qmk−1 was selected by mk−1 (Observation 1), it follows

8



r

p q

mk−1

m1

≤ π/5

≤ 3π/5

Figure 3: Illustration for the case when both edges rm1 and mk−1q are not kept in G′ in the proof
of Lemma 3.11. Dashed lines indicate edges in G and solid lines indicate spanner edges.

that rm1 was not selected by r and qmk−1 was not selected by q, in the algorithm Spanner. Since
rp and rm1 are consecutive edges at r, and pq and qmk−1 are consecutive edges at q (implied from
part (ii) of Lemma 2.4 and the fact that G is a triangulation), by Lemma 3.5, it follows that each of
∠prm1 and ∠pqmk−1 is less than 3π/5, which, in turn, implies that each of ∠prq and ∠pqr is less than
3π/5. Consider 4prq. Since |pr| ≤ |pq|, ∠rpq ≤ π/5, and ∠prq < 3π/5, we conclude that 2π/5 ≤
∠prq ≤ 3π/5, and consequently, sin(∠prq) ≥ sin(2π/5). Now |rq| = (sin(∠rpq)/ sin(∠prq))|pq| ≤
(sin(π/5)/ sin(2π/5))|pq| = |pq|/(2 cos(π/5)). Since dG′(r, q) ≤ ρ|rq|/(sin(2π/5)), it follows from the
previous statement that dG′(r, q) ≤ ρ|pq|/(2 sin(2π/5) cos(π/5)), and dG′(p, q) ≤ |pr| + dG′(r, q) ≤
|pq|+ dG′(r, q) ≤ (1 + ρ/(2 sin(2π/5) cos(π/5))|pq| ≤ ρ|pq|. The last inequality is true if and only if

ρ ≥ 2 sin(2π/5) cos(π/5)
(2 sin(2π/5) cos(π/5)−1) , which is satisfied by the chosen value of ρ.

Proposition 3.13. If the interior of 4pqr contains points of S then dG′(p, q) ≤ ρ|pq|.

Proof. Let S′ be the set of points consisting of points r and q plus all points interior to 4pqr (note
that p /∈ S′). Let CH(S′) be the set of points on the convex hull of S. Then CH(S′) consists of
points n0 = r and ns = q, and points n1, . . . , ns−1 of G interior to 4pqr. Note that, by convexity,
and because G is a triangulation, pni ∈ G, for i = 0, . . . , s.

For i = 0, . . . , s − 1, the interior of 4pnini+1 contains no points of G. Since pni, pni+1 ∈ G, by
Lemma 2.3 there exists a canonical path Pi from ni to ni+1 in G. We argue next that at most one
edge of Pi is not kept in G′.

Because ni and ni+1 (i = 0, . . . , s−1) are two consecutive points on CH(S), and since the interior
of 4pqr is not empty, at least one of the two points ni, ni+1 must be interior to 4pqr. Assume that
ni is interior to 4pqr; the proof is similar if ni+1 was interior (and ni was not). If Pi consists of
a single edge, then the statement that at most one edge of Pi is not kept in G′ is vacuously true.
Suppose now that Pi does not consist of a single edge, and consider the first point, x, after ni on Pi.
By Observation 1, at most two edges on the canonical path Pi, namely the first and the last edges
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(note that ∠nipni+1 ≤ π/5), are possibly not kept in G′. Therefore, to show that at most one edge
on Pi is not kept in G′, it suffices to show that the first edge nix on Pi is kept in G′. Since x is
an internal point on Pi, by Observation 1, x selects edge xni. On the other hand, ni is a point on
CH(S) that is interior to 4pqr. Therefore, the angle formed by the last edge yni on Pi−1 and nix
is > π. Consequently, the edges niy, nip, nix are edges of a wide sequence around ni, and ni selects
nix by Lemma 3.2. Therefore, nix ∈ G′ and at most one edge on Pi is not kept in G′.

Now pni, pni+1 ∈ G, ∠nipni+1 ≤ π/5, and at most one edge of Pi is not in G′, by Lemma 3.10
applied to ni and ni+1, we obtain dG′(ni, ni+1) ≤ ρ|nini+1|. It follows that dG′(r, q) = dG′(n0, ns) ≤∑s−1

i=0 dG′(ni, ni+1) ≤ ρ
∑s−1

i=0 |nini+1|.
Extend rn1 and qns−1; by convexity, rn1 and qns−1 meet at a point t inside 4rpq (note that if

n1 = ns, and hence there is exactly one point inside 4pqr, then t = n1 = ns−1). By convexity [1],
we have

∑s−1
i=0 |nini+1| ≤ |rt|+ |tq|. We will now upper bound |rt|+ |tq|. Please refer to Figure 4 for

illustration.
Since |pr| ≤ |pn1| and t is on the extension of rn1, we have |pt| ≥ |pr|. If t′ is the intersection

point of rt and pq, then by the triangular inequality we have |rt|+ |tq| ≤ |rt′|+ |t′q|. Therefore, we
may assume that t is on pq. Moreover, since |pt| ≥ |pr|, |rt| + |tq| is largest when |pr| = |pt| (this
corresponds to t = t′′ in Figure 4). In this case we have |rt|+ |tq| ≤ 2|pr| sin(π/10)+ |pq|− |pr| (since
|rt| ≤ 2|pr| sin(π/10)). Now dG′(p, q) ≤ |pr|+dG′(r, q) ≤ |pr|+ρ

∑s−1
i=0 |nini+1| ≤ |pr|+ρ(|rt|+|tq|) ≤

|pr|+ρ(2|pr| sin(π/10)+|pq|−|pr|) ≤ ρ|pq|. The last inequality is true because ρ ≥ 1/(1−2 sin(π/10))
(after simplification).

r

p q

ns−1

n1

t

t′t′′

≤ π/5

Figure 4: Illustration for the proof of Proposition 3.13.

Combining Proposition 3.8, Proposition 3.12, and Proposition 3.13, we conclude:

Theorem 3.14. The subgraph G′ is a spanner of G with stretch factor (w.r.t. G)

ρ = 2 sin(2π/5) cos(π/5)
(2 sin(2π/5) cos(π/5)−1) < 2.86.
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3.3 Putting it together

Combining the results in Subsection 3.1 and Subsection 3.2, we have:

Theorem 3.15. The algorithm Spanner is a 2-local algorithm that, given the Delaunay triangulation
G of a point-set S, computes a subgraph of G of degree at most 11 that is a spanner of G with stretch
factor ρ = 2 sin(2π/5) cos(π/5)

2 sin(2π/5) cos(π/5)−1 < 2.86. The processing time for each p ∈ S in the algorithm is linear
in the degree of p.

Proof. Let G′ be the subgraph of G consisting of the set of edges that are selected by both endpoints
after the application of the algorithm Spanner. By Theorem 3.3, the degree of G′ is at most 11. By
Theorem 3.14, G′ is a spanner of G with stretch factor (w.r.t. G) ρ = 2 sin(2π/5) cos(π/5)

(2 sin(2π/5) cos(π/5)−1) < 2.86.
Now to see that the algorithm is a 2-local algorithm, observe that the algorithm can be imple-

mented in 2 synchronous communication rounds. In the first round, each point sends its coordinates
to its neighbors. In the second round, each point p selects some edges incident on it according to
steps 1-4 in the algorithm Spanner; then p informs each neighbor q whether it has selected edge
pq or not. A point p keeps an edge pq if p has selected pq and it has received a message from its
neighbor q (in the second round) indicating that q has selected pq as well. Finally, to see that the
processing time at a point p is linear in the degree δp of p in G, observe first that p can determine
the edges in its wide sequences as follows. Point p partitions the space around it into 10 cones of
apex p, each of size π/5. Since the number of cones is constant, in linear time in δp, p can determine
those cones that are empty. Since the total angle of a wide sequence of edges is at leat 4π/5, for
any wide sequence around p, an empty cone must fall within two consecutive edges in this sequence.
Therefore, p can use the empty cones to determine the edges of the wide sequences around it. After
determining the edges of the wide sequences, p partitions the reaming space around it into at most
10 cones, and for each cone, determines the set of its incident edges that fall in the cone. Then, the
shortest edge in every cone can be found in time O(δp). Finally, since the number of empty cones
around p is a constant, step 4 can be performed in time O(δp). The proof follows.

Corollary 3.16. Given a set S of n points in the plane, there exists an O(n lg n) time (centralized)
algorithm that computes a spanner G′ of the complete Euclidean graph E on point-set S, such that
G′ is a subgraph of the Delaunay triangulation of S, G′ has degree at most 11, and G′ has stretch
factor ρ ·Cdel < 7 with respect to E, where Cdel is the stretch factor of the Delaunay triangulation of
S with respect to E.

Proof. The algorithm starts by computing the Delaunay triangulation G of S in time O(n lg n)
(see [8]), and then feeds G to the algorithm Spanner. Noting that the stretch factor of G (with
respect to E) is Cdel < 2.42, the statement of the theorem then follows from Theorem 3.15.

4 Unit Disk Graphs

Unit disk graphs (UDGs) are very important in wireless computing since they have been widely used
as a theoretical model for wireless networks. In particular, the problem of constructing bounded-
degree plane spanners of UDGs has received a lot of interest [6, 11, 14, 15]. In such applications the
local model of computation is a suitable working model because the wireless devices have limited
energy, and lack the centralized coordination.

The results in Section 3 do not directly give a local algorithm for constructing a bounded-degree
plane spanner of a UDG U for two reasons. The first reason is that the Delaunay triangulation of
the point-set of U cannot be computed locally, and the second reason is that not every edge in the
Delaunay triangulation of the point-set of U is an edge in U (i.e., has length at most 1 unit).
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To overcome the above-mentioned obstacles, Wang et al. [14, 15] introduced a plane subgraph
of U , called LDel(2)(U), that can be computed by a 3-local algorithm [11], and that contains all
Delaunay edges of length at most 1, in addition to (possibly) some other edges. Moreover, they
proved that the stretch factor of LDel(2)(U) is at most Cdel < 2.42. Subsequently, LDel(2)(U) has
been used as the underlying subgraph in several local and distributed algorithms that construct
bounded-degree plane spanners of UDGs (see [11, 14, 15], to name a few).

We can use LDel(2)(U) as the underlying subgraph G in the algorithm Spanner to obtain the
following result:

Theorem 4.1. There exists a 3-local algorithm that, given a connected UDG U on n points, computes
a plane subgraph of U of degree at most 11 that is a spanner of the complete Euclidean graph on the
point-set of U , and that has stretch factor ρ · Cdel =

2 sin(2π/5) cos(π/5)
2 sin(2π/5) cos(π/5)−1 · Cdel < 7. The processing

time for each p ∈ U in the algorithm is O(δp lg δp), where δp is the degree of p in U .
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5 Appendix

Lemma 5.1. Let pr and pq be edges in G such that ∠rpq ≤ π/5 and |pr| ≤ |pq|. If pr ∈ G′ and
dG′(r, q) ≤ ρ|rq| then dG′(p, q) ≤ ρ|pq|.
Proof. Let α = ∠qpr and β = ∠rqp. Since pr ∈ G′ and dG′(r, q) ≤ ρ|rq|, we have dG′(p, q) ≤
|pr|+ ρ|rq|. Therefore, it suffices to show that |pr|+ ρ|rq| ≤ ρ|pq|. We have:

|pr|+ ρ|rq| ≤ ρ|pq|
⇔ sin β + ρ sinα ≤ ρ sin(α+ β)

⇔ sin β ≤ ρ(sin(α+ β)− sinα)

⇔ sinβ

sin(α+ β)− sinα
≤ ρ.

The last inequality is true because α ≤ π/5 and |pq| ≥ |pr|, which together imply that β ≤ π/2−α/2,
and hence sin(α+ β) > sinα. Using trigonometric identities we can derive that:

sin β

sin(α+ β)− sinα
=

1

cosα− tan(β/2) sinα
.

Since α ≤ π/5, β/2 ≤ π/4−α/4, cosα is decreasing in [0, π/5], sinα is increasing in [0, π/5], and
tan(β/2) is increasing in [0, π/2), we have:

1

cosα− tan(β/2) sin α
≤ 1

cos(α)− tan(π/4 − α/4) sin α

=
cos(π/4− α/4)

cos(π/4 + 3α/4)
≤ cos (π/5)/ cos (2π/5) ≤ ρ.

The inequality before the last follows from the facts that α ≤ π/5 and the cosine function is
decreasing in [0, π/2].

Lemma 5.2. Let x, y, z be three points in S. Let α = ∠xyz, β = ∠yxz, and γ = α+ β. If γ ≤ π/5,
dG′(y, z) ≤ π

5 sin (π/5) |yz|, and dG′(x, z) ≤ ρ|xz|, then dG′(x, y) ≤ ρ|xy|.
Proof. Since dG′(x, y) ≤ dG′(x, z) + dG′(z, y), from the statement of the lemma it follows that
dG′(x, y) ≤ π

5 sin(π/5) |yz| + ρ|xz|. Therefore, it suffices to show that π
5 sin (π/5) |yz| + ρ|xz| ≤ ρ|xy|.

We have:
π

5 sin (π/5)
|yz|+ ρ|xz| ≤ ρ|xy|

⇔ π

5 sin (π/5)
sin β + ρ sinα ≤ ρ sin γ (using trigonometric relations in 4xyz)

⇔ π

5 sin (π/5)
sin β ≤ ρ(sin γ − sinα)

⇔
π

5 sin (π/5) sin β

sin γ − sinα
≤ ρ (because sin γ > sinα)

⇔
π

5 sin (π/5)

sinγ−sin(γ−β)
sinβ

≤ ρ

⇔
π

5 sin (π/5)

sin γ(1−cos β
sinβ ) + cos γ

≤ ρ

⇔
π

5 sin (π/5)

sin γ tan β
2 + cos γ

≤ ρ.
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Since sin γ tan β
2 ≥ 0 (both β, γ ∈ [0, π/5]), and since the function cos x is a decreasing function

in (0, π/2], we have
π

5 sin (π/5)

sinγ tan β
2
+cos γ

≤ π
5 sin (π/5) cos (π/5) ≤ ρ, as required.
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