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Abstract

In a recent article, Nakhleh, Ringe and Warnow introduced perfect phylogenetic networks—a
model of language evolution where languages do not evolve via clean speciation—and formulated
a set of problems for their accurate reconstruction. Their new methodology assumes networks,
rather than trees, as the correct model to capture the evolutionary history of natural languages.
They proved the NP-hardness of the problem of testing whether a network is a perfect phy-
logenetic one for characters exhibiting at least three states, leaving open the case of binary
characters, and gave a straightforward brute-force parameterized algorithm for the problem of
running time O(3kn), where k is the number of bidirectional edges in the network and n is its
size. In this paper, we first establish the NP-hardness of the binary case of the problem. Then
we provide a more efficient parameterized algorithm for this case running in time O(2kn2). The
presented algorithm is very simple, and utilizes some structural results and elegant operations
developed in this paper that can be useful on their own in the design of heuristic algorithms
for the problem. The analysis phase of the algorithm is very elegant using amortized tech-
niques to show that the upper bound on the running time of the algorithm is much tighter than
the upper bound obtained under a conservative worst-case scenario assumption. Our results
bear significant impact on reconstructing evolutionary histories of languages–particularly from
phonological and morphological character data, most of which exhibit at most two states (i.e.,
are binary), as well as on the design and analysis of parameterized algorithms.

1 Introduction

A phylogeny of a set of (natural) languages is a tree that models the “evolution” of these languages
through the processes of division (due to communities’ separation) and differentiation (languages
change differently in different communities). The leaves of such a tree represent the extant lan-
guages, while the internal nodes represent the ancestral languages.

Reconstructing language phylogenies of great interest not only to historical linguists, but also
to archaeologists and human geneticists, for example. Since these phylogenies are at best partially
known, mathematical optimization criteria and computational techniques have been devised for
their accurate reconstruction. One such criterion is perfect phylogeny, which is a reflection of the
observation that if communities are sufficiently separated after they diverge, then the inference of
the phylogeny for the languages can be inferred by comparing the characteristics of the languages [3,
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4, 7, 15]. Borrowing from the biology jargon, this criterion states that linguistic characters evolve
without back or parallel substitutions. The problem of determining if a perfect phylogeny exists,
and then computing it, is NP-hard [1], and several parameterized algorithms for it were devised;
see [6]). Beside the computational methods for addressing the problem, Don Ringe and Tandy
Warnow demonstrated the criterion’s appropriateness by using it to study the evolutionary history
of a family of Indo-European languages.

However, while the methodology seemed to model the evolutionary history of Indo-European
languages with high accuracy (e.g., see [16, 17, 18]), the model did not allow for borrowing be-
tween languages. Subsequently, Nakhleh et al. introduced the perfect phylogenetic networks (PPN)
model in which languages do not evolve via a clean speciation process [10, 11]. They proved
the NP-hardness of the problem of testing whether a network is a perfect phylogenetic one for
characters exhibiting at least three states, leaving open the case of binary characters, and gave a
straightforward O(3kn) time parameterized algorithm for the problem [10], where k is the number
of bidirectional edges in the network and n is its size.

In this paper we consider the binary case of the problem. This case is of prime interest on its
own since it models the problem of reconstructing evolutionary histories of languages, particularly
from phonological and morphological character data, most of which exhibit at most two states [8,
17, 18]. We first prove the NP-hardness of this problem. Then we present a branch-and-bound
parameterized algorithm that solves the problem in O(2kn2) time. The algorithm employs several
interesting structural (network) operations that are very useful in the design of heuristic algorithms
for the problem. When analyzed using the standard methods for analyzing parameterized branch-
and-bound algorithms, and which usually work under a worst-case scenario assumption, the upper
bound obtained on the size of the search tree of the algorithm is O(3k), matching the upper bound of
the trivial brute-force algorithm. This worst-case analysis for a branch-and-search process is usually
very conservative— the worst cases can appear very rarely in the entire process, while most other
cases permit much better branching and reductions. Instead, we use amortized analysis to show
that “expensive” operations can be balanced by efficient ones, and that the actual size of the search
tree can be upper bounded by O(2k). The running time of the algorithm becomes O(2kn2). The
analysis phase of the algorithm is very elegant illustrating once more (see [2]) that parameterized
algorithms perform much better than their claimed upper bounds, and suggesting that the standard
approaches used in analyzing the size of the search tree for parameterized algorithms are very
conservative.

2 Inferring evolutionary trees

An evolutionary tree, or phylogeny, for a set L of taxa (i.e., species or languages) describes the
evolution of the taxa in L from their most recent common ancestor. Each taxon in L corresponds
to a leaf in the evolutionary tree. Different types of data can be used as input to methods of tree
reconstruction; “qualitative character” data, which reflect specific observable discrete character-
istics of the taxa under study, are one such type of data. There are several ways of describing
qualitative characters: as partitions of the set of taxa into equivalence classes, or as functions that
map the taxa to the distinct states. Qualitative characters for languages are grammatical features,
unusual sound changes, and cognate classes for different meanings. The assumption of the historical
linguistic methodology is that these qualitative characters evolve in such a way that there is no
back-mutation (when characters exhibit parallel evolution we can find most of it and exclude those
characters). What this means is that when the state of the qualitative character changes in the
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evolutionary history of the set of languages, it changes to a state which does not exist anywhere else
on earth at that time, nor has it appeared earlier. We now formalize this concept mathematically.

Suppose that T is a rooted tree describing the evolution of a set L of languages. Therefore the
leaves in T are the languages in L. Suppose that a qualitative character α is defined for each of
the languages in L as a function α : L → Z, where Z denotes the set of integers (i.e. each integer
represents a possible state for α). That is, α is a labeling to the leaves in T . We say a qualitative
character α is compatible (or “convex”) on T if we can extend α to every internal node of the tree
T , thus defining a qualitative character α′, or a labeling to the internal nodes of T , so that for
every state, the nodes in T having that specific state induce a connected subgraph of T . (In other
words, ∀z ∈ Z, the set of nodes {v ∈ V (T ) : α′(v) = z} induces a connected subgraph of T .)

A different way of casting the above problem which is more intuitive is the following. Given
a rooted tree T whose leaves are labeled with integers, decide if the internal nodes in T can be
labeled so that each set of nodes in T with the same label induces a connected subgraph of T .

Ringe and Warnow postulated that all properly encoded qualitative characters for the Indo-
European data should be compatible on the true tree, if such a tree existed. Such a tree is called
a perfect phylogeny.

Definition 2.1 Let C be a set of qualitative characters defined on a set L of languages. A tree T
is a perfect phylogeny for C and L if every qualitative character in C is compatible on T .

We now review the linear-time algorithm devised by Nakhleh and Warnow for deciding whether
a character (not necessarily binary) is compatible with a given tree.

Theorem 2.2 (From [10]) Let T be a phylogenetic tree on a set L of n languages, and assume
that each language in L is assigned a state for α. Then we can test the compatibility of α on T in
O(n) time.

Proof. Assume the states of α on the set L are 1, 2, . . . , r, for some integer r. We preprocess
the input in order to compute the vector c[1...r] defined by c[i] = |{s ∈ L : α(s) = i}|. Obviously
we can compute this vector in O(n) time.

Now, for each i, 1 ≤ i ≤ r, and each node v in the tree T , we define Bi(v) to be

Bi(v) = {x : x is a leaf of T below v and α(x) = i}.
Note that if v is a node in T then 0 < |Bi(v)| < c[i] implies that in any labeling of the node v

for which α is compatible, we must have α(v) = i. Hence at each node v there is at most one state
i satisfying this condition.

At each node v we will therefore compute the set States(v) defined to be those state(s) i such
that 0 < |Bi(v)| < c[i], as well as the value |Bi(v)| for every i ∈ States(v). If for any node v we
have |States(v)| > 1, then we return “Incompatible”, and exit; else, we return “compatible”.

We now show how to compute this information. We do this from the bottom up, and it is trivial
to compute these values for the leaves. So suppose v is a node in T and we have computed these
values at its children, which are v1, · · · , vl. Note that the only candidates for elements of States(v)
must be drawn from States(v1)∪ · · · ∪States(vl). For each i ∈ States(v1)∪ · · · ∪States(vl), we set
|Bi(v)| = |Bi(v1)|+ · · ·+ |Bi(vl)|, and then compare this to c[i] to see if we include i in States(v).
Since |States(v1) ∪ · · · ∪ States(vl)| ≤ l, we can therefore compute States(v) in O(l) time, where l
is the number of children of v. Hence, we can determine the compatibility of α on T in linear time
in the number of nodes in T , that is, in O(n) time.
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The initial analysis of the Indo-European data done by Warnow and Ringe in [17] demonstrated
that the IE linguistic data is, nevertheless, “almost perfect”: they found a tree on which the
proportion of compatible characters to incompatible characters was enormous. (Even this was
quite surprising; the existence of a tree on which a large proportion of characters is compatible is
extremely unlikely in biological data analysis.) This suggested that the basic approach was a good
one, but that the model had to be extended.

Largely the problem seemed to be the Germanic subfamily, which seemed to have remained in
contact with other languages so that a tree was an inappropriate model of evolution. That is, the
IE family must have evolved other than through clean speciation. When the group of languages
contains some pairs of related dialects which have evolved in close contact with each other, the
ability of the linguist to detect borrowing is greatly reduced. More precisely, whereas borrowing
between clearly different speech forms is tightly constrained and clearly different from change in
normal genetic descent, borrowing between closely related dialects is largely unconstrained and
often indistinguishable from changes which could in principle be of very different types [9, 12, 14].
In this case, a tree model is inappropriate, and the evolutionary process is better represented as a
“network” [10].

3 Phylogenetic networks compatibility: preliminaries and com-
plexity

Our model of how languages evolve on networks references an underlying rooted tree (modeling
“genetic descent”) to which we then add bidirectional edges (modeling how linguistic characters
can be transmitted through contact). Therefore, the underlying tree is rooted, and the edges
of that tree can be naturally oriented from parent to child, whereas the additional edges are by
design bidirectional, since contact between language communities can result in the flow of linguistic
characters in both directions. This model was formalized in [10] as follows.

Definition 3.1 A phylogenetic network on a set L of languages is a rooted directed graph N =
(V,E) with the following properties:

(i) V = L∪ I, where I denotes added nodes which represent ancestral languages, and L denotes
the set of leaves of T .

(ii) E can be partitioned between the edges of a tree T = (V, ET ), and the set of “non-tree” edges
or bidirectional edges E′ = E−ET . For more convenience in the notation, we will refer to a
bidirectional edge by a b-edge. The edges in T are oriented from parent to child, and hence
T is a directed rooted tree.

(iii) N is “weakly acyclic”, i.e., if N contains directed cycles, then those cycles contain only edges
from E′.

(iv) Every internal node in N has at least two children in T .

Properties (iii) and (iv) above will be referred to as the phylogenetic networks properties.

Assumption 3.2 We shall assume that the b-edges are only incident on internal nodes in the
network N (i.e., not on leaves). This assumption can be made with no loss of generality since
any network can be transformed into one satisfying this property as follows. For every leaf ∆ with
b-edges incident on it: replace ∆ with an internal node u having two leaf-children labeled as ∆.
Note that this operation can increase the network size by only a linear factor.
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We will now review the concept of character compatibility of a phylogenetic network. We assume
that the network N is given together with a set of characters C, where each character induces a
labeling of the leaves in the network. In the discussion below, we will fix a binary character c ∈ C
(i.e, c has only two states 0 and 1) and look at the network N whose leaves are labeled by the
character c. We denote by TN the underlying tree of N .

For a node u ∈ N , we denote by label(u) the label of node u (note that u might not be labeled),
and by π(u) the parent of u in TN . If e is a b-edge between two nodes u and v in the network N ,
then e has three possible statuses: (1) the edge e can be simply removed denoting that no transfer
took place between the two ancestral languages representing u and v, (2) e can be directed from
u towards v denoting that the transfer was from the ancestral language representing u to that
representing v, or (3) e can be directed from v towards u denoting that the transfer was from the
ancestral language representing v to that representing u. If e is directed from u towards v, then
the network is transformed as follows. Remove the edge (π(v), v) from N , and make u the new
parent of v in the resulting network (that is, add the edge (u, v) as a tree edge to the resulting
network). Similarly, if e is directed from v towards u, then the edge (π(u), u) is removed from N ,
and the edge (v, u) is added. Note that if there are t b-edges in N , then the t b-edges induce O(3t)
trees based on 3t different statuses of the t edges. We denote by Γ the set of the trees induced by
the t b-edges in N . Figure 1–(A) shows an example of a phylogenetic network with a single b-edge
e = (u, v) whose leaves are labeled by a single character. Figure 1–(B) shows the resulting network
when the b-edge e is removed, Figure 1–(C) shows the resulting network when e is directed into v,
and Figure 1–(D) shows the resulting network when e is directed into u.

If we specify a status for each b-edge in N we obtain an assignment to the statuses of the
b-edges in N , or simply an assignment to the b-edges in N . An assignment to the b-edges in N
is said to be successful if the character c is compatible with the tree induced by this assignment.
A successful labeling for a compatible tree is a labeling of the nodes of T in which all the nodes
with the same label induce a connected subgraph of T . Two assignments A and A′ agree on a
set of b-edges S in N if they assign the same status to each b-edge in the set S. Note that the
order in which the b-edges that are incident on a certain node are assigned can potentially make a
difference in the resulting tree. For example, if e = (v, u) and e′ = (w, u) are two b-edges incident
on u, then an assignment to e and e′ that directs e into u followed by directing e′ into u, induces
a tree (assuming e and e′ are the only two b-edges in N) in which u is a child of w, whereas an
assignment to e and e′ that directs e′ into u followed by directing e into u, induces a tree in which
u is a child of v. So when we say that two assignments agree on a set of b-edges we implicitly mean
that they also agree on the order in which these edges were assigned. The order of the assignment
will not be an issue for us because, as it will be shown in Fact 5.5, every assignment to the b-edges
in N has an equivalent one that, for any node in N , it directs at most one b-edge into that node,
and hence is not ambiguous.

Definition 3.3 Let N = (V,E) be a phylogenetic network on L and Γ be the set of trees induced
by all the assignments to the b-edges in N . Let C be a set of characters defined on L, and let
c : L → Z be a character in C. Then c is said to be compatible on N if c is compatible on at
least one of the trees in Γ. N is called a Perfect Phylogenetic Network if all characters in C are
compatible on N .

The Character Compatibility on Phylogenetic Networks problem, denoted hence-
forth by CCPN, was defined as follows [10].
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Figure 1: An example of a phylogenetic network whose leaves are labeled by a singly character,
and the networks resulting from the possible assignments to the b-edge e in the network.
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CCPN
Given a phylogenetic network N = (V,E) on a set L, and a set of characters C defined
on L, decide if N is a perfect phylogenetic network.

This problem was shown to be NP-hard [10] for the case where each character has at least three
states. We will consider the case of the CCPN problem in which each character has exactly two
states. We will call this problem the Binary Character Compatibility on Phylogenetic
Networks, denoted henceforth by BCCPN. This problem is of prime interest on its own in the
field of linguistics as was mentioned before (see [8, 12, 13, 15, 17, 18]).

BCCPN
Given a phylogenetic network N = (V,E) on a set L, and a set of characters C defined
on L such that each character in C has two states (i.e., binary) decide if N is a perfect
phylogenetic network.

Remark 3.4 Deciding if a network N is perfect phylogenetic on a set of characters C reduces to
deciding if every character c ∈ C is compatible on N . Therefore, without loss of generality, we will
denote by BCCPN the problem of deciding whether a given binary character c is compatible on
N . The mentioning of c becomes irrelevant in this case, and we will simply say N is compatible to
denote that the implicit (given) character c is compatible on N . Note that in this case the leaves of
N are labeled by the single character c only.

Going back to the phylogenetic network given in Figure 1, where the state of the character c
on every leaf is indicated by the label on the leaf, this network is compatible because if we direct
the b-edge e into v, we get the tree in Figure 1–(C) on which the character c is compatible. Note
that the character c is not compatible on the tree given in Figure 1–(B) resulting from removing
the b-edge e in the original network, nor on the tree Given in Figure 1–(D) resulting from directing
e into v in the original network.

In the next section we study the complexity of the BCCPN problem.

4 On the complexity of BCCPN

In this section we show that the BCCPN problem is NP-complete. This will imply that the CCPN
problem is NP-complete as well by specialization, giving an alternative proof to that in [10] for the
NP-completeness of the CCPN problem.

Theorem 4.1 BCCPN is NP-complete.

Proof. It is easy to see that BCCPN is in NP: a polynomial time nondeterministic Turing
machine can nondeterministically “guess” the status of every b-edge in the network, and verifies
the compatibility of the resulting tree in polynomial time.

We show that BCCPN is NP-hard by providing a polynomial time reduction from the 3-
SAT problem to BCCPN. Recall that the 3-SAT problem is: given a boolean formula F in the
conjunctive normal form (CNF) in which each clause contains exactly three literals, decide if F is
satisfiable.

Let F be an instance of 3-SAT on n variables {x1, · · · , xn}. Suppose that F = C1 ∧ · · · ∧ Cm,
where Ci = (l1i ∨ l2i ∨ l3i ), for i = 1, · · · , n. We describe next how to construct the corresponding
phylogenetic network N .
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The construction of N proceeds in three stages. We first construct the variable gadgets, then
we construct the clause gadgets, and finally we construct the partition gadget.

The variable gadgets

For every variable xi in F , we construct the following subnetwork. Associate two nodes xi and x̄i

in N . (We use the same name for the literal and its corresponding node.) Node xi has two children
a and b, x̄i has two children c and d, with two b-edges linking a and c, and b and d. Finally a has
two leaves labeled 0, b has two leaves labeled 1, c has two leaves labeled 0, and d has two leaves
labeled 1. See Figure 2 for an illustration of the V-Gadget for variable xi.

xi xi

0 0 1 1 1 1 0 0

l
1

i
l
2

i
l
3

i

1 1 1 1 1 1

a b d c a1
i a2

i a3
i

Figure 2: The V-Gadget (left) and the C-Gadget (right).

We refer to this subnetwork by V-Gadget(xi). Note that in any labeling of the nodes in V-
Gadget(xi) that makes the gadget compatible, a and c must be labeled 0, and b and d must be
labeled 1. If τ is a valid truth assignment to the variables in F , then τ assigns each variable and
its negation opposite truth values. This truth assignment induces a labeling on the nodes xi and
x̄i in N that makes the subnetwork of N V-Gadget(xi) compatible. For instance, if xi is assigned
truth value 1 by τ , then x̄i is assigned 0. If we label the node xi in N 1, and the node x̄i 0, direct
the b-edge between a and c from c towards a, and that between b and d from b towards d, then the
subtree induced by this assignment is compatible. The case is similar if xi is assigned 0 and x̄i 1.
Conversely, if there is a labeling to the nodes xi and x̄i in the network V-Gadget(xi) that induces
a compatible subtree, then it can be readily seen from the construction of V-Gadget(xi) that this
assignment must assign the nodes xi and x̄i opposite labels. This shows that a truth assignment τ
to F is valid if and only if each variable gadget in N is compatible. Note also that the subnetwork
V-Gadget(xi) is weakly acyclic, not containing any cycles with a tree edge.

The clause gadgets

For every clause Ci = (l1i ∨ l2i ∨ l3i ) in F , we construct the following subnetwork. Note that each of
the literals in Ci appears in some V-Gadget. As a matter of fact, each literal in Ci appears as a
node in exactly one V-Gadget. Construct three nodes a1

i , a2
i , and a3

i , each with two leaves labeled
1, and add the b-edges (a1

i , a
2
i ), (a2

i , a
3
i ), and (a1

i , a
3
i ). (Note that it is not necessary to add two

leaves to each of the three nodes. This is a technicality imposed by the constraint stating that each
internal node in a phylogenetic network must have at least two children in the underlying tree.)
Now add tree edges from the node in the V-Gadget corresponding to the literal l1i to a1

i , from the
node in the V-Gadget corresponding to l2i to a2

i , and from the node in the V-Gadget corresponding
to l3i to a3

i . This completes the construction of the subnetwork corresponding to the clause Ci. We
will refer to this subnetwork by C-Gadget(Ci). See Figure 2 for an illustration of the C-Gadget for
clause Ci = (l1i ∨ l2i ∨ l3i ).
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Note that each of the C-Gadget corresponding to a clause is linked to the V-Gadgets corre-
sponding to the variables that appear in the clause. It is easy to see that each C-Gadget is weakly
acyclic, and the whole subnetwork determined by the C-Gadgets and the V-Gadgets is weakly
acyclic as well. Since any truth assignment τ to F that satisfies F must satisfy each clause Ci in F ,
for every i, there exists a literal lji in Ci (j ∈ {1, 2, 3}), such that lji is assigned 1 by τ . Without loss
of generality, assume this literal is l1i . Now the node corresponding to the literal l1i in the V-Gadget
containing l1i will be labeled 1, and the subnetwork determined by C-Gadget(Ci) is compatible.
This can be seen by directing the b-edge between a1

i and a2
i from a1

i towards a2
i , and between a1

i

and a3
i from a1

i towards a3
i , and finally removing the b-edge between a2

i and a3
i . On the other hand,

if the subnetwork determined by C-Gadget(Ci) is compatible, then at least one of the three nodes
corresponding to the literals l1i , l2i , and l3i must be labeled 1, and hence the corresponding literal
is labeled 1 satisfying clause Ci. This shows that clause Ci in F is satisfiable by a valid truth
assignment if and only if C-Gadget(Ci) is compatible.

So far, the subnetwork constructed above and determined by the V-Gadgets and the C-Gadgets
ensures the following: The nodes in this subnetwork can be labeled, and the status of the b-edges
can be assigned, so that all the nodes in each resulting subtree rooted at a node corresponding
to a literal have the same labels if and only if there exists a valid truth assignment to F that
satisfies F (consequently, if and only if F is satisfiable). This captures the core of the reduction
from 3-SAT to BCCPN. What remain are only some technicalities to complete the construction
of the underlying rooted tree of N , and ensure that, upon an assignment to the b-edges of N in
the V-Gadgets and C-Gadgets, the remaining b-edges in the network N guarantee that N can be
partitioned so that all the nodes labeled 0 form a connected subtree, and all the nodes labeled 1
for a connected subtree, in the resulting tree induced by the assignment to the b-edges in N .

The partition gadget

The partition gadget is constructed as follows. Add a node r as the root of TN , and add two
children r0 and r1 of r. Add two leaves labeled 0 with parent r0, and one leaf labeled 1 with parent
r1. Add tree edges from r1 to every node in a V-Gadget corresponding to a literal (i.e, to every
node of the form xi or x̄i in a V-Gadget), thus making r1 the parent of all these nodes. Add b-edges
from r0 to every node in a V-Gadget corresponding to a literal. This completes the construction
of N . See Figure 3 for an illustration of the partition gadget and the whole network.

It is not difficult to verify that N as constructed above is a phylogenetic network. In particular,
the underlying structure of N (i.e., if we remove the b-edges from N) is a tree rooted at r, each
internal node in N has at least two children, and N is weakly acyclic since the partition gadget
does not create any cycles containing tree edges.

The above construction gives a polynomial-time reduction that takes an instance F of 3-SAT
and produces an instance N of BCCPN.

If F is satisfiable, then there exists a valid truth assignment τ to the variables in F that satisfies
every clause in F . Since τ is valid, we can label the nodes corresponding to the literals in F in every
V-Gadget by the truth values assigned by τ to their corresponding literals, and direct the b-edges
as described above so that to make each V-Gadget compatible. This also makes all the nodes of
label 1, and label 0 in each V-Gadget, form connected subtrees within each gadget satisfying that
all the nodes in each subtree have the same label. Since τ satisfies every clause in F , by the above
discussion, we can direct the b-edges in every C-Gadget so that to make the C-Gadget compatible.
After this step, all the nodes in any subtree rooted at a node corresponding to a literal have the
same label. Now to show that N is compatible, we need to show how the remaining b-edges in N
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r

r0 r1

· · · · · ·

· · ·

x1 x1
xn xn

C-Gadgets and V-Gadgets

b b b

0 0 1

Figure 3: The partition gadget and the whole network.

can be assigned so that the nodes labeled 0 form a connected subtree and the nodes labeled 1 form
a connected subtree. At this point each of the nodes except r, r0, and r1 has a label. In particular,
the nodes corresponding to the literals in the V-Gadgets are labeled. We label r with 1, r0 with
0, and r1 with 1 (note that r0 and r1 are forced to be labeled as such), and direct all the b-edges
between r0 and the nodes with label 0 in the V-Gadgets corresponding to literals, from r0 towards
these nodes. Note that by doing this, we are cutting off all the edges between these nodes and
their parent r1. This operation makes all the nodes of label 0 connected, and all those labeled 1
connected, which in turn, makes all the nodes of label 0 in N form a connected subtree, and so do
the nodes of label 1.

Conversely, suppose that N is compatible. Then each V-Gadget is compatible, and by the above
discussion, in every V-Gadget, the node corresponding to the variable and the node corresponding
to the negation of this variable are assigned different labels. Now if we assign the corresponding
variables the truth values determined by the labels of these nodes in the V-Gadgets we get a valid
truth assignment τ for F . Since each C-Gadget is compatible, by the above discussion, the clause
corresponding to the gadget must be satisfiable. This shows that F is satisfiable.

It follows that 3-SAT is reducible to BCCPN in polynomial time. Consequently, BCCPN is
NP-complete. This completes the proof.

5 A parameterized algorithm for BCCPN

A parameterized problem is a set of pairs of the form (x, k) where x is the input instance and k
is a positive integer called the parameter. A parameterized problem is said to be fixed-parameter
tractable, if the problem can be solved in time f(k)|x|c, where f is a computable function of the
parameter k, |x| is the input size, and c is a constant independent of k [5]. The area of parameterized
algorithms and complexity was introduced mainly in the work of Downey and Fellows [5], and is
based on the core observation that for many practical occurrences of intractable problems some
parameters remain small, even if the problem instances are large. Therefore, if we have an algorithm
for a problem which runs in time f(k)|x|c for some fixed c, then the exponential growth in the
running time no longer depends on the input size, but just the parameter (via the function f(k)).
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If we assume that k is fixed (or small), we have a polynomial time solution whose exponent does
not depend on k.

Taking the advantage of the fact the the number of b-edges in the phylogenetic network is
small [11], the BCCPN problem can be naturally parameterized by the number of b-edges, k,
in the phylogenetic network. We call this problem the Parameterized BCCPN problem. It is
easy to see that the Parameterized BCCPN problem can be solved in O(3kn) time, where n
is the number of nodes in the phylogenetic network, by enumerating the status of every b-edge in
the network, then checking whether the resulting induced tree is compatible. We will significantly
improve on this upper bound next. The algorithm we present is a decision algorithm deciding if the
network is compatible or not. The algorithm can be easily modified so that, during this processes,
the status of every edge is kept track of and returned as a witness to the solution when the decision
is positive. We present the algorithm and prove its correctness in this section and we analyze its
running time in the next section. We start by presenting some definitions, facts, and operations.

Assumption 5.1 Let (N, k) be an instance of Parameterized BCCPN. If there is at most one
leaf in N of label 0 (resp. 1), then N is compatible. This is true since if we label all the internal
nodes in N with 1 (resp. 0), then every assignment to the b-edges in N is a successful assignment.
Since these particular cases can be identified and resolved in O(n) time, we will assume henceforth
that at any stage of the algorithm, there are at least two leaves of label 0 and at least two leaves of
label 1 in the network.

Definition 5.2 Let N be a phylogenetic network. An internal node s in N is said to be a splitting
node, if there exists a successful assignment to the b-edges in N that results in a compatible tree
T , such that there is a valid labeling for the nodes in T with all the nodes in the subtree rooted at
s labeled with the same label, and all the other nodes in the tree labeled with the other (different)
label. If s is any splitting node in N and A is any successful assignment to the b-edges in N with
an induced tree T , then A is said to respect the splitting node s if there is a valid labeling for the
nodes in T with all the nodes in the subtree rooted at s labeled with the same label, and all the
other nodes in the tree labeled with the other (different) label.

Remark 5.3 Observe that, if we assume the statements in Assumption 5.1, then for any compatible
phylogenetic network N there is at least one splitting node in N .

Definition 5.4 Two assignments to the b-edges in N are said to be equivalent if their induced
trees are the same.

Fact 5.5 If A′ is an assignment to the b-edges in N , then there exists an equivalent assignment A
to the b-edges in N such that for any node u in N , A directs at most one b-edge into u. In particular,
if N is compatible and s is a splitting node in N , then there exists a successful assignment A to
the b-edges in N that respects s, and such that for every node u in N , A directs at most one b-edge
into u.

Proof. Let A′ be an assignment to the b-edges in N . Let u be a node in N . If A′ directs more
than one b-edge towards u, let (a, u) and (b, u) be the first two such b-edges in the order given by
the assignment. Suppose, without loss of generality, that A′ directs the b-edge (a, u) first. Then A′

can be replaced by another assignment A′′ that removes the b-edge (a, u), directs (b, u) towards u,
and agrees with A′ on the assignment to the other b-edges and their respective assignment order.
Moreover, the resulting network structure is unaffected by this change. Applying this argument
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Figure 4: An illustration for Fact 5.5.

repeatedly, we end up with an assignment that directs at most one b-edge towards u. Now we
apply this argument repeatedly to the nodes in the resulting network with respect to the resulting
assignment. We eventually obtain an assignment A, and that for every node u in N , directs at
most one b-edge into u, and that is equivalent to A′. In particular, since the resulting structure is
unaffected by this change, if N is compatible and A′ is a successful assignment to the b-edges in
N that respects the splitting node s, then there exists a successful assignment A to the b-edges in
N that respects s, and such that for every node u in N , A directs at most one b-edge into u.

Figure 4–(A) shows an example of a network with two b-edges incident on u: e1 and e2.
Suppose that an assignment A directs both e1 and e2 into u with e1 being directed first. The
network resulting from directing e1 into u is shown in Figure 4–(B). The network/tree resulting
from directing e2 into u in the network in Figure 4–(B) is shown in Figure 4–(C). The network/tree
resulting from Figure 4–(A) by an assignment A′ that removes e1 and directs e2 into u is shown in
Figure 4–(D). Note that the two networks/trees in Figure 4–(C) and Figure 4–(D) are equivalent,
and hence these two assignments A and A′ are equivalent.

In the discussion below we will be introducing some operations that can be applied to the
network N . These operations may end up removing or directing b-edges in N , and labeling some
of its internal nodes. Therefore, in addition to the fact that the leaves in N are labeled by a single
binary character (being an instance of the BCCPN problem), the network N can be partially
labeled.

Fact 5.6 Let u and u′ be two nodes in a network N such that label(u) 6= label(u′), and suppose
that (u, u′) is a b-edge in N . If N is compatible and s is a splitting node in N , then there exists a
successful assignment to the b-edges in N that respects s and in which the b-edge (u, u′) is removed.

12



Proof. Let A be a successful assignment that respects s. By Fact 5.5, we can assume that A
directs at most one b-edge towards any node in N . In particular, we can assume that at most one
b-edge is directed into u, and at most one b-edge is directed into u′ by A. If A removes the b-edge
(u, u′) then A is the desired assignment and we are done. Suppose now that A does not remove
(u, u′), and hence A either directs this b-edge into u or into u′. Assume, without loss of generality,
that A directs the b-edge (u, u′) into u′. Since at most one edge is directed into u′ by A, and since
label(u′) 6= label(u), u′ must be the splitting node s. (This is true because all the nodes labeled
with the same label as u′ have to end up being descendants of u′ in the resulting tree. Notice that
since (u, u′) is the only b-edge directed into u′, the position of u′ in the tree induced by A has been
fixed as a child of u which has a different label from u′.) But then if we change the status of the
b-edge (u, u′) in A to be removed, we still have a successful assignment that respects the splitting
node s = u′.

Fact 5.7 Let u and u′ be two nodes in a network N such that label(u) = label(u′). Suppose that
(u, u′) is a b-edge in N . If N is compatible and s is a splitting node in N , then there exists a
successful assignment to the b-edges in N that respects s and in which (u, u′) is not removed, i.e.,
in which (u, u′) is either directed towards u or towards u′.

Proof. Let A be a successful assignment to N that respects s. If A does not remove (u, u′) then
A is the desired assignment and we are done. Suppose now that A removes (u, u′). If u = s (resp.
u′ = s) is the splitting node, then let A′ be the assignment that agrees with A on its assignment
to all the b-edges except to (u, u′), where A′ directs (u, u′) into u′ (resp. into u). If neither of u
or u′ is the splitting node s, then let A′ be the assignment that agrees with A on its assignment
to all the b-edges except to (u, u′), where A′ either directs (u, u′) towards u (or towards u′). It
is straightforward to verify that A′ is a successful assignment that respects s in each of the above
cases.

Fact 5.8 Let u and u′ be two nodes in a network N such that label(u) = label(u′) = label(π(u)) =
label(π(u′)). Suppose that (u, u′) is a b-edge in N . If N is compatible and s is a splitting node in
N , then there exists a successful assignment to the b-edges in N that respects s and in which (u, u′)
is removed.

Proof. Let A be a successful assignment to N that respects s. Observe first that since N is
weakly acyclic (N satisfies the phylogenetic networks properties), none of u or u′ can be a splitting
node in the induced tree; otherwise, the parent of that node has to become its descendant, which
is only possible if the network is not weakly acyclic. If A does not remove (u, u′), let A′ be the
assignment that agrees with A on its assignment to all b-edges except to (u, u′), where A′ removes
(u, u′). It is straightforward to verify that A′ is a successful assignment that respects s. This follows
from the fact that the parents of u and u′ have the same labels as u and u′ and they all have to end
up being descendants of the same splitting node, which is different from u and u′, in the induced
tree.

The main algorithm, Phylogenetic Compatibility, which solves the Parameterized BC-
CPN problem is given in Figure 8. The algorithm Phylogenetic Compatibility tries every node
in N as the splitting node. For each node selected as the splitting node, it calls the subroutine
Is Compatible to check whether there exists a successful assignment to N that respects the se-
lected splitting node. Thus, the subroutine Is Compatible works under the assumption that the
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splitting node is given. The subroutine Is Compatible utilizes the subroutines Clean, Reduce,
and Merge, given in Figure 5, Figure 6, and Figure 7, respectively. These subroutines apply some
operations to reduce the network N , and also work under the assumption that the splitting node
has been selected. We first prove that the modifications performed by the subroutines Clean,
Reduce, and Merge to the network are correct.

Definition 5.9 An operation applied to a phylogenetic network N to obtain a network N ′ is said
to be valid if: (1) N ′ satisfies the phylogenetic networks properties, and (2) there exists a successful
assignment to the b-edges in N that respects the splitting node if and only if there exists a successful
assignment to the b-edges in N ′ that respects the splitting node.

Proposition 5.10 The operation performed by the subroutine Clean given in Figure 5 is valid.

Proof. Let u and u′ be two nodes in N such that label(u) 6= label(u′) and such that (u, u′) is a
b-edge. Let N ′ be the network resulting from applying the subroutine Clean to N and removing
the b-edge (u, u′) as described by the subroutine. First observe that when Clean is applied to N
it removes a b-edge from N , and clearly this does not affect the phylogenetic networks properties.
Therefore N ′ satisfies the phylogenetic networks properties. By Fact 5.6, if N is compatible and s
is a splitting node in N , then there exists a successful assignment to the b-edges in N that respects
s and in which the b-edge (u, u′) is removed. Therefore, N is compatible and s is a splitting node
in N if and only if N ′ is compatible and s is a splitting node in N ′. This shows that the operation
performed by Clean is a valid operation.

Clean((u, u′))
Precondition: label(u) 6= label(u′) and (u, u′) is a b-edge

1. remove the b-edge (u, u′) from N ;

Figure 5: The subroutine Clean.

Proposition 5.11 The operations performed by the subroutine Reduce given in Figure 6 are
valid.

Proof. We will show that each step in Reduce is valid.

Step 1 of Reduce. If Reduce rejects in step 1 then obviously N is not compatible. This can be
seen as follows. Suppose that step 1 in Reduce applies to a node u and let A be any successful
assignment to the edges in N . Let T be the tree induced by the assignment A. Since T is
compatible, there exists a successful labeling to the nodes of T in which all nodes with label 0
induce a connected subgraph of T , and all nodes of label 1 induce a connected subgraph of T .
Suppose that u is labeled 0 in this labeling. The argument is analogous if u is labeled 1. Since u
has a leaf-child of label 1, this is only possible if the leaf-child of u of label 1 is the only leaf with
label 1 in N , contradicting Assumption 5.1.
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Step 2 of Reduce. Suppose that step 2 of Reduce applies to a node u. Note that by step 1 of
Reduce, all the children of u must be of the same label. Note also that in any successful labeling
to the nodes of an induced compatible tree of N , the label of u must be the same as the label of its
children. This can be seen as follows. If u is labeled differently than its children in a compatible
tree T , since all children of u are leaves and there is no b-edge incident on u, then it must be the
case that u has exactly one child and it is the single leaf in N with that specific label (otherwise
the nodes of the same label as that leaf-child of u do not induce a connected subgraph of T ),
contradicting Assumption 5.1. Therefore, u can be labeled with the same label as its children.

Now if u is the splitting node and there is a leaf l′ in N with the same label as u (and its children)
that is not a child of u, then since all the children of u are leaves (and hence has no b-edges incident
on them) and there is no b-edge incident on u, there is no assignment to the b-edges that would
result in l′ being a descendant of u in the induced tree, contradicting the working hypothesis that
u is the splitting node. Consequently, the subroutine rejects the instance in this case. If u is the
splitting node and all the leaves in N with the same label as u are children of u, then clearly if we
label all other internal nodes in N with the label (1 − label(u)) and remove the b-edges from N ,
we obtain a compatible tree and the algorithm can accept the instance in this case.

Suppose now that u is not a splitting node, and let N ′ be the network resulting from applying
step 2 in Reduce, which basically shrinks the subtree rooted at u to a single leaf with the same
label as u. Then N ′ satisfies the phylogenetic networks properties since N ′ results from N by
removing the subtree rooted at u and adding a leaf-child with the same label as u. Clearly, such
an operation does not affect the weak acyclicity of N , nor does it destroy the property that each
internal node has at least two children (the parent of u still satisfies this property by virtue of
adding another leaf-child to it after cutting u off). Again note that by step 1 of Reduce, all
the children of u must be of the same label and that in any successful labeling of the nodes of
an induced compatible tree of N , the label of u must be the same as the label of its children.
Moreover, since there is no b-edge incident on u, in any assignment A to the b-edges in N ,
u will remain a child of its current parent. It is straightforward to see now that a successful
assignment to the b-edges in N that respects the splitting node in N is also a successful assign-
ment to the b-edges in N ′ that respects the splitting node (which is still a node in N ′) and vice versa.

Step 3 of Reduce. Consider step 3 of Reduce. Let u be an unlabeled node with a labeled child w
such that there is no b-edge incident on w.

Suppose first that w is marked as the splitting node. Since there is no b-edge incident on w, any
assignment to the b-edges in N leaves w a child of u. Since w is a splitting node under the working
hypothesis, and it remains a child of u in any successful assignment, the label of u and w will
be different in any successful labeling of a compatible tree resulting from a successful assignment
to the b-edges in N . Therefore, under the working hypothesis that w is the splitting node, the
labeling operation in step 3 of Reduce is correct in this case, and any successful assignment to
N that respects the splitting node will also be a successful assignment to the resulting network
that respects the splitting node, and vice versa. Moreover, since the only change to the network
performed in this case is the labeling of u, the resulting network still satisfies the phylogenetic
networks properties.

Suppose now that w is not marked as the splitting node. By the same observation as above, w
will always remain a child of u in any assignment to the b-edges if N . Since w is not the splitting
node under the working hypothesis, and w is a child of u, the label of u must be the same as the
label of w in any successful assignment to the b-edges in N . This can be seen as follows. Let T be
a compatible tree and consider a successful labeling of T . If label(w) 6= label(u) in this successful
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labeling, then since u is the parent of w in T , all nodes with the same label as w must belong to the
subtree rooted at w, and hence w would be a splitting node, contradicting our working hypothesis.
Therefore, under the working hypothesis that w is not the splitting node, the labeling operation
in step 3 of Reduce is correct in this case, and any successful assignment to N that respects
the splitting node will also be a successful assignment to the resulting network that respects the
splitting node, and vice versa. Moreover, since the only change to the network performed in this
case is the labeling of u, the resulting network still satisfies the phylogenetic networks properties.

Step 4 of Reduce. The correctness of step 4 follows by a similar argument to that of step 3.

Step 5 of Reduce. The validity of step 5 can be easily seen since adding more leaves to u of the
same label will not affect any successful assignment nor will it affect the splitting node or destroy
the phylogenetic networks properties.

Step 6 of Reduce. If u has two leaves with a certain label, then any other leaf with the same label
can be removed without affecting any successful assignment. This can be seen as follows. Since
u has two leaves of the same label, any successful labeling must label u with the same label as
these two leaves. Therefore, having more leaves with the same label will not affect any successful
labeling. Consequently, any successful assignment to N that respects the splitting node will also
be a successful assignment to the resulting network that respects the splitting node, and vice versa.
Moreover, since the only change to the network performed in this case is the removal of some leaves
of u, and since u in the resulting network has two leaves, the resulting network still satisfies the
phylogenetic networks properties, and step 6 of Reduce is valid.

Reduce(u)

1. if u has two leaf-children with different labels then reject;
2. if all the children of u are leaves and there is no b-edge incident on u then

if u is marked as the splitting node then
if there is a leaf in N that is not a child of u

and of the same label as the children of u then reject;
else accept;

else
remove u and its children and replace them with a leaf l;
label l with the same label as the children of u;
add the tree edge (π(u), l);

3. if u is unlabeled and has a labeled child w (w could be a leaf) with no b-edge incident on w then
if w is marked as the splitting node then set label(u) = 1− label(w);
else set label(u) = label(w);

4. if u is labeled and has an unlabeled child w with no b-edge incident on w then
if w is marked as the splitting node then set label(w) = 1− label(u);
else set label(w) = label(u);

5. if u is labeled and has at most one leaf-child then
add two leaves as children to u of the same label as u;

6. if u has more than two leaves with the same label then remove all of them except two;

Figure 6: The subroutine Reduce.
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Proposition 5.12 Let N be a phylogenetic network and suppose that the subroutine Reduce is
not applicable to any node in N . Then the operations performed by the subroutine Merge given in
Figure 7 are valid.

Proof. Let u and u′ be two nodes in a phylogenetic network N such that label(π(u)) 6= label(u) =
label(u′), and such that (u, u′) is a b-edge in N . Suppose further that the operation Reduce is not
applicable to any node in N . The subroutine Merge cuts u off its parent, merges the two nodes u
and u′ to form a new node w with π(w) = π(u′), and makes all the b-edges that were incident on
u and u′, incident on the new node w. Let N ′ be the network resulting from this operation.

The fact that the operation preserves the phylogenetic networks properties is not difficult to see.
The operation clearly preserves the weak acyclicity of the network: if N ′ is not weakly acyclic then
N would not be. Since the only internal node that some of its children are cut off by this operation
is π(u), and since π(u) is labeled and step 5 of Reduce is not applicable to π(u), it follows that
π(u) has two leaves of the same label that remain after the application of the operation. Therefore,
N ′ satisfies the phylogenetic networks properties.

Suppose now that there exists a successful assignment A to N that respects the splitting node.
Since label(u) = label(u′), by Fact 5.7, we can assume that A either directs (u, u′) towards u or
towards u′. It is not difficult to verify that the assignment A′ to N ′ that assigns to a b-edge (c, w)
the same value assigned by A to its corresponding b-edge (c, u) or (c, u′) in N , disregards the
assignment of A to the b-edge (u, u′), and agrees with A on its assignment to all the other b-edges,
is a successful assignment that respects the splitting node in N ′. The converse is also true.

Merge(〈u, u′〉)
Precondition: label(π(u)) 6= label(u) = label(u′) and (u, u′) is a b-edge

1. cut off the tree edge (π(u), u) from N ;
2. remove the b-edge (u, u′);
3. identify the two nodes u and u′ (i.e., merge the two nodes into one new node);
4. let the new node be w; set label(w) = label(u′) and π(w) = π(u′) (add the tree edge (π(u′), w));
5. make the children of both u and u′ children of w;
6. shift all the b-edges that are incident on u and u′ to make them incident on w without changing

the other endpoints of the b-edges;
7. if u or u′ is marked as the splitting node then mark the new node w as the splitting node;

Figure 7: The subroutine Merge.

Fact 5.13 Let N be a phylogenetic network and suppose that the subroutine Reduce is not ap-
plicable to any node in N . If v is an unlabeled node in N , then there exists at least one b-edge
incident on a node in the subtree of TN rooted at v.

Proof. This follows from step 2 and 3 in Reduce, and the fact that each non-leaf node in a
phylogenetic network has at least two children (and hence the subtree rooted at v has leaves). If
there is no b-edge incident on any node in the subtree of TN rooted at v, then v would be labeled
by the repeated application of step 2 in Reduce (starting at the leaf-nodes in the subtree rooted
at v and going bottom-up to v), followed by the application of step 3 in Reduce.
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Proposition 5.14 Let N be a phylogenetic network such that none of the operations Reduce,
Clean, or Merge is applicable to N . Then there exist two nodes u and u′ in N such that: (1)
label(u) = label(u′), (2) (u, u′) is a b-edge in N , and (3) all children of u and u′ are leaves.

Proof. Define an internal node w in N to be a deepest node if all its children are leaves. Note
that since step 3 of Reduce is not applicable to any node in N , every deepest node in N must be
labeled, and by step 2 of Reduce and the fact that all the children of a deepest node are leaves,
every deepest node must have at least one b-edge incident on it.

The idea of the proof is the following. Start at a deepest node w1 and look at an incident b-edge
(w1, w2). If w2 is a deepest node, then w1 and w2 is our desired pair of vertices. Otherwise, starting
at w2, we go down the tree TN until we reach a deepest node w3. We look at an incident b-edge
(w3, w4). If w4 is a deepest node, then we are done. Otherwise, we repeat the same process. Since
N is weakly acyclic, this process will have to stop, and at that point we have found our desired
pair of vertices. We formalize this argument below.

Let w1 be a deepest node in N , and let (w1, w2) be a b-edge incident on w1. If w2 is a deepest
node, set u = w1 and u′ = w2, and u and u′ are the desired vertices (note that label(u) = label(u′)
since Clean is not applicable).

Now suppose that w2 is not a deepest node. Let Tw2 be the subtree of TN rooted at w2. Since
w2 is an internal node and N is a phylogenetic network, w2 has descendants, and Tw2 contains
leaves. Since step 2 of Reduce is not applicable, there must exist a deepest node in the subtree
Tw2 . Let w3 be such a deepest node, and let (w3, w4) be a b-edge incident on w3. Now repeat the
same process. We claim that this process must halt with the desired u and u′. This can be easily
seen as follows. Suppose this process does not halt. Define the following walk W in N . Add every
edge of the form (wi, wi+1) to W . Add to W every path that is traced in this process from a node
wi to a deepest descendant node in Twi . By the assumption that the process does not halt, W is
an infinite walk on N . Since N has finitely many nodes, W must contain a simple closed path P .
By the weak acyclicity of N , the path P cannot contain any tree edges, and hence all the edges on
P are b-edges. By looking at W , one readily sees that every b-edge of the form (wi, wi+1) in W
is followed by a tree path from wi+1 to one of its deepest descendants (unless the process halts).
Since P does not contain any tree edges, P must consist of a single b-edge of the form (wi, wi+1), a
contradiction. It follows that this process halts with the desired vertices u and u′. This completes
the proof.

We call a pair of nodes {u, u′} satisfying the three conditions in Proposition 5.14 a nice pair.
Proposition 5.14 establishes the existence of a nice pair in any phylogenetic network N to which none
of the operations Reduce, Clean, or Merge is applicable. Now we are ready to present the main
algorithm Phylogenetic Compatibility which solves the Parameterized BCCPN problem.
The algorithm is a branch-and-search process. Each stage of the algorithm starts with an instance
(N, k) of the problem, and tries to reduce the parameter k by identifying and eliminating some
b-edges. If a branch directs a b-edge in such a way that the resulting network is not weakly acyclic
(i.e., no longer satisfies the phylogenetic networks properties), then this branch is not considered.
After each branch, the algorithm recursively works on the reduced instances. During the process of
branching, some nodes in N get labeled. We implicitly assume that after each step, the network N
and the parameter k are updated accordingly. Furthermore, we will assume that Assumption 5.1 is
valid before each operation performed by the algorithm and its subroutines. The algorithm is given
in Figure 8. Note that the subroutines Clean, Reduce, and Merge do not perform any branching
and can be very useful in the design of heuristic algorithms for the problem. The algorithm itself
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performs exactly two different branches, which are the ones given in Case 2 and Case 3 of step 4.

Is Compatible (N , k)

Implicit Assumptions. After each step, the network N and the parameter k are updated ac-
cordingly. Assumption 5.1 is valid before each operation performed by the algorithm and its subroutines.

1. if k = 0 and N is not compatible then reject;
2. while Reduce is applicable to a node in N apply it;
3. if any of Clean or Merge is applicable then apply it and go to step 1;
4. let {u, u′} be a nice pair in N ; {∗ assume without loss of generality that label(u) = label(u′) = 1 ∗}

Case 1. Both π(u) and π(u′) are labeled
remove the b-edge (u, u′);

Case 2. Exactly one of π(u) and π(u′) is labeled, say π(u). Branch as follows
first side of the branch: set label(π(u′)) = 1 and remove the b-edge (u, u′);
second side of the branch: set label(π(u′)) = 0;

Case 3. (Both π(u) and π(u′) are unlabeled.) Branch as follows
first side of the branch: set label(π(u)) = 0;
second side of the branch: set label(π(u′)) = 0;
third side of the branch: set label(π(u)) = label(π(u′)) = 1 and remove the b-edge (u, u′);

Phylogenetic Compatibility

Input: an instance (N, k) of Parameterized BCCPN where N is a phylogenetic network and
k is a positive integer

Output: yes/no decision based on whether N is compatible or not

1. for every node s in N do
1.1. N ′ = N ;
1.2. mark s as the splitting node in N ′;
1.3. call Is Compatible on (N ′, k);
1.4. if Is Compatible returns yes then return yes;

2. return (no);

Figure 8: The subroutine Is Compatible and the algorithm Phylogenetic Compatibility.

Theorem 5.15 The algorithm Phylogenetic Compatibility is correct.

Proof. The algorithm Phylogenetic Compatibility tries every node as the splitting node
and then calls the subroutine Is Compatible. If N is compatible, then there exists a successful
assignment to the b-edges in N and a successful labeling to the induced compatible tree. By
Remark 5.3, there exists a node in N which is a splitting node in this case. Therefore, if we show
that the subroutine Is Compatible which works under the assumption that the splitting node is
given, is correct, then it will follow that the algorithm Phylogenetic Compatibility is correct.

We look now at the subroutine Is Compatible. Step 1 of the subroutine is correct because
if k = 0 then N must be a phylogenetic tree, and the compatibility of N can be checked using
Theorem 2.2. The correctness of steps 2 and 3 follows from Proposition 5.10, Proposition 5.11,
and Proposition 5.12. Note that, by the way the statements in the subroutine Is Compatible are
ordered, when Merge is executed, Reduce is not applicable, and hence the assumptions in the
statement of Proposition 5.12 hold true. Therefore, we only need to verify step 4. First we need
to justify the existence of a nice pair at this point of the algorithm. By Proposition 5.14, we only
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need to show that the network N satisfies the phylogenetic networks properties whenever we are
at step 4 of the algorithm. Note first that, by the way the algorithm is designed, when any of the
operations Clean or Merge is invoked, the operation Reduce is not applicable. It has been shown
that the operations in Clean, Reduce, and Merge preserve the phylogenetic networks properties.
Moreover, step 4 of Is Compatible preserves the phylogenetic networks properties (since it only
labels the nodes and possibly removes some b-edges). It follows, by an inductive argument, that
the phylogenetic networks properties are preserved each time step 4 of the algorithm is about to
be executed, given that the network passed to the algorithm originally is a phylogenetic network.
The correctness of the branches in step 4 can be seen as follows. First notice that each of u and u′

should have a parent. Otherwise, one of the them is the root and is a deepest node. This means
that all the other nodes in N including u′ are leaves, a contradiction (since N could not contain
any b-edges and step 1 should conclude the algorithm). Since {u, u′} is a nice pair, both nodes u
and u′ are labeled. The algorithm only describes the case when both u and u′ are labeled 1. The
other case is exactly the same with 0s replaced by 1s and 1s by 0s in the branches. Note that none
of π(u) or π(u′) can be labeled 0, otherwise, since both u and u′ are labeled 1, Merge would be
applicable. The three cases given in step 4 clearly cover all possible scenarios since: (1) either both
π(u) and π(u′) are labeled, or (2) exactly one of them is labeled, or (3) none of them is labeled.
Now we justify the correctness of the branch (if any) in each of the three cases.

In Case 1 no branching is needed, and the correctness of this step follows from Fact 5.8. In
Case 2, we note that since Merge(〈u, u′〉) is not applicable and label(u) = 1, label(π(u)) must
be 1. Now either label(π(u′)) = 1 or label(π(u′)) = 0. In the first side of the branch where we set
label(π(u′)) = 1, the removal of the b-edge (u, u′) is again correct by Fact 5.8. In Case 3, we know
that either one of π(u), π(u′) is labeled 0, or none of them is, an hence, both of them are labeled 1.
In the latter case the b-edge (u, u′) can be removed by Fact 5.8. Therefore the case accounts for
all possible scenarios. This proves the correctness of the branch in step 4. Now how do we know
that the algorithm terminates?

Observe first that each time step 4 of the algorithm is executed, at least one b-edge will be
removed. This can be seen as follows. If Case 1 is executed then the b-edge (u, u′) is removed. If
Case 2 is executed, then in the first side of the branch the b-edge (u, u′) is removed. In the second
side of the branch, label(π(u′)) is set to 0, and when Merge(〈u′, u〉) is called next, the b-edge
(u, u′) will be removed. If Case 3 is executed, then in the first and second sides of the branch, the
b-edge (u, u′) will be removed when Merge(〈u, u′〉) or Merge(〈u′, u〉) is called next. In the third
side of the branch the b-edge (u, u′) is removed by Fact 5.8.

Each execution of Clean removes at least one b-edge from N . Each execution of Merge
removes one b-edge. An execution of Reduce may end up adding two leaves to an internal node,
but once two leaves have been added to an internal node no more leaves will be added to this
internal node. Therefore, the total number of leaves that can be added by Reduce is bounded by
twice the number of nodes in N . Any other execution of Reduce either ends up labeling some
nodes or removing nodes and edges from N . This proves the correctness of the whole algorithm.
Therefore, if the instance has a solution then a solution will be found by the algorithm, otherwise,
a negative answer will be reported by the algorithm.

In the next section we will analyze the running time of the algorithm Phyloge-
netic Compatibility. Since the algorithm Phylogenetic Compatibility ends up calling the
subroutine Is Compatible O(n) times, it suffices to analyze the running time of Is Compatible
and multiply it by O(n). We will refer to the subroutine Is Compatible by the algorithm
Is Compatible in the remainder of the paper.
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6 Analysis of the algorithm Is Compatible

In this section we analyze the running time of the algorithm Is Compatible. Since the algorithm
is a branch-and-bound process, its execution can be depicted by a search tree. The running time
of the algorithm is proportional to the number of root-to-leaf paths, or equivalently the number of
leaves in the search tree, multiplied by the time spent along each such path. Therefore, the main
step in the analysis of the algorithm is deriving an upper bound on the number of leaves in the
search tree.

Most proposed branch-and-search algorithms for NP-hard problems were analyzed based on a
worst-case scenario, which assumes the worst local structure occurring during the whole search
process. This worst-case analysis for a branch-and-search process is very conservative — the worst
cases can appear very rarely in the entire process, while most other cases permit much better
branching and reductions.

In the current paper we use an amortized analysis approach. This allows us to capture the
following notion: an operation by itself may be very costly in terms of the size of the search tree
that it corresponds to; however, this operation might be very beneficial in terms of introducing
many efficient branches and reductions in the entire process. Therefore, the expensive operation
can be well balanced by the induced efficient operations. We show how this technique can be applied
to the Parameterized BCCPN problem. First we start with some preliminaries on search trees.

Let T be the search tree for the algorithm Is Compatible on an input instance (N, k). The
nodes in T correspond to the operations of the algorithm. Let α be a node in the search tree with
an associated parameter k′. If we perform an r-sided branch at α (r > 1) by reducing the parameter
k′ in each branch by the values a1, · · · , ar, respectively, then such a branch is called an (a1, · · · , ar)-
branch. In such case the node α in T has r children α1, · · ·αr, and the associated parameter with αi

is k′−ai, i = 1, · · · r. If the operation at α is a non-branching operation that reduces the parameter
k′ by a value q, then α has a single child in T with an associated parameter equals to k′ − q.
Let T (k′) be the number of leaves in the subtree rooted at α. If the operation at α is a branching
operation (a1, · · · , ar), then T (k′) satisfies the recurrence T (k′) ≤ T (k′−a1)+ · · ·+T (k′−ar); if the
operation at α is a non-branching operation that reduces the parameter k′ by a value q, then T (k′)
satisfies the recurrence T (k′) ≤ T (k′ − q). To solve these recurrences, we can associate with each
branch (a1, · · · , ar) a characteristic polynomial of the form p(x) = x−ar + x−ar−1 + · · ·+ x−a1 − 1.
The unique root x0 of p(x) in the interval (0,∞) gives an upper bound of O(xk

0) on the number
of leaves in the search tree of an algorithm whose branches are all of the form (a1, · · · , ar). If the
branches of the algorithm cannot be classified within a single form, then we can look at all the
branches performed by the algorithm, and upper bound the number of leaves in T by O(xk

max),
where xmax is the largest root among all roots of the characteristic polynomials corresponding to
the branches performed by the algorithm. This is a well-known method for analyzing the size of
the search tree, which has been commonly used in the literature.

In this section we will show that the number of leaves in the search tree of the algorithm
Is Compatible is O(2k). At this point an explanation of a subtlety is in order. This upper bound
may look trivial at a first glance. By Proposition 5.14, we know that a nice pair {u, u′} exists
before each branch. By Fact 5.7, there exists a successful assignment that either directs the b-edge
(u, u′) towards u or towards u′. So it looks like we can always branch with a (1, 1)-branch resulting
from directing the b-edge (u, u′) towards u and reducing the parameter by 1 in the first side of
the branch, and directing it towards u′ and reducing the parameter by 1 in the second side of the
branch. This would give us an O(2k) upper bound on the size of the search tree. However, there
is a subtle point here that could be easily overlooked. When we branch along any of the two sides,
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say by directing the b-edge towards u′, we end up cutting the node u′ from its parent. This reduces
the number of children of π(u′), and the resulting network may no longer satisfy the phylogenetic
network property stating that each internal node has at least two children, which is very essential
to proving the existence of a nice pair in the network (see Proposition 5.14). The case is similar
when the b-edge is directed towards u. To overcome this problem, whenever we branch by cutting
a certain node from its parent, we ensure at this point that the parent has been assigned a label,
and hence, when Reduce is applied in the next step (before any subsequent branch takes place)
the phylogenetic networks properties will be restored by step 5 of Reduce. Therefore, we now
branch by assigning the nodes labels rather than branching at the edges. This is no longer a trivial
matter, and the analysis now takes a new turn.

As we will discuss below, the branches in the algorithm can be classified into two branches:
(1, 1)-branches and (1, 1, 1)-branches. The latter branch corresponds to a characteristic polynomial
of root 3, and a worst-case analysis gives an O(3k) upper bound on the size of the search tree,
matching the bound of a trivial brute-force algorithm that enumerates each of the three statuses
of every b-edge. Differing from the common analysis techniques based on the worst-case scenario,
we present next a novel way for analyzing the size of the search tree using amortized techniques.
We will show that the (1, 1, 1)-branches give some “credit” along each path of the subtree of T
rooted at this operation. We first classify the operations performed by the algorithm that affect
the parameter k into the following three categories.

1. Non-branching operations. These include the following operations.

(a) Operations performed by Clean. Each such operation removes a b-edge from N and
decreases the parameter k by 1.

(b) Operations performed by Merge. Each such operation removes a b-edge from N and
decreases the parameter k by 1.

(c) Operations performed in Case 1 of the algorithm. Each such operation removes a b-
edge and reduces the parameter by 1. Note also that these operations do not involve
any branching.

2. (1, 1)-branches: these are the operations performed in Case 2 of the algorithm. Note that
each such operation is a 2-sided branch which reduces the parameter by 1 on each side.

3. (1, 1, 1)-branches: these are the operations performed in Case 3 of the algorithm. Each such
operation is a 3-sided branch that reduces the parameter by 1 along each side.

We would like to show that the number of leaves in T is bounded by O(2k). The (1, 1)-branches
give us this bound. However, the (1, 1, 1)-branches are worse, and give an upper bound of O(3k)
on the number of leaves of T . We will show next that the (1, 1, 1)-branches can be balanced by the
non-branching operations. We start with the following definitions.

Definition 6.1 A node in N is said to possess a credit of value 1/2 if it is labeled and there is
a b-edge incident on one of its children. A node in N is said to give a credit of value 1/2 after
a certain operation if the node did not possess any credit before the operation, and it possesses a
credit of value 1/2 after the operation.

Ultimately, the value of a credit will correspond to a reduction in the parameter of the same
value.

Fact 6.2 Let v be an unlabeled node in a phylogenetic network N , and suppose that Reduce is not
applicable to any node in N . Let Tv be the subtree of TN rooted at v. Let P = (v1 = v, v2, · · · , vr = l)
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be a path from v to any leaf l in Tv. Then there exists a node vi 6= v on P such that vi has a b-edge
incident on it, and all the nodes {vj : 1 < j < i} are unlabeled and have no b-edges incident on
them. (Note that such a set of nodes might be empty and in which case the latter condition is
vacuously satisfied.)

Proof. Let i be the smallest index in {2, · · · , r − 1} such that vi has a b-edge incident on it.
Since v is unlabeled, and Reduce is not applicable to any node in N , such i must exist, otherwise
v would be labeled by step 3 in Reduce. By the choice of i, all the nodes in {vj : 1 < j < i} have
no b-edges incident on them. Moreover, the nodes in {vj : 1 < j < i} are unlabeled, otherwise, by
step 3 of Reduce, v would be labeled since there are no b-edges incident on any of these nodes.

Proposition 6.3 Let N be a phylogenetic network and let v be an unlabeled node in N . Suppose
that a side of a branch in the algorithm is assigning a label to v. Then there exists a node in the
subtree Tv of TN rooted at v that will give a credit of value 1/2.

Proof. First observe that whenever the algorithm branches, the subroutine Reduce is not
applicable to N . If we look at a side of a branch of the algorithm that assigns a label to a node
in N , then this side of the branch is assigning a label to a parent v = π(u) of a node u in a
nice pair. This side of the branch might end up cutting u from v = π(u). Since N satisfies the
phylogenetic networks properties, v must have a child w different from u. Moreover, before this
branch v was unlabeled, and hence w cannot be a leaf and must be an internal node (otherwise v
would be labeled by step 3 of Reduce). If w has a b-edge incident on it, then by the definition,
v can give a credit of value 1/2. Now suppose that w does not have a b-edge incident on it. Let
P = (v = v1, v2 = w, · · · , l) be a path from v to a leaf in Tv that passes through w. By the way
the algorithm works, before this side of the branch Reduce is not applicable. By Fact 6.2, there
is a node vi 6= v on P such that v′ has a b-edge incident on it, and such that all the nodes in the
set S={w = v2, · · · , vi−1} between v and vi are unlabeled and have no b-edges incident on them.
Notice that the set S contains w and hence is not empty. When Reduce is next called (note that
Reduce will be called repeatedly before the next branch by the algorithm) v will be labeled. Step
4 of Reduce will label all the nodes in the set S, and in particular node vi−1. Now at that time
the algorithm will assign label to node vi−1 which has a child vi with a b-edge incident on it. It
follows that node vi−1 will give a credit of value 1/2. We note that this credit is given before the
next branch by the algorithm and hence can be associated with the previous (side of the) branch.
This completes the proof.

The idea of an operation giving a credit is an intuitive way of looking at the whole set of
operations in the algorithm as an interleaved set in which some operations balance the others.
When a node gives a credit of a certain value, this credit will correspond to a reduction in the
parameter. When a node gives a credit of value 1/2, we can associate this credit with a b-edge
incident on one of its children. Note that a b-edge (u, v) can have at most two credits associated
with it, each of value 1/2, resulting from the possible credits given by the nodes π(u) and π(v).
Therefore, if the b-edge is removed, its removal may cause at most two nodes to lose their possessed
credits since no b-edge will be incident on a child of theirs anymore. Ultimately, the value of a
credit will correspond to a reduction in the parameter of the same value. Before we show the
latter statement, let us assume it for the time being and look at the operations performed by the
algorithm to gain an intuition on how this method works.
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Non-branching operations: A Clean operation removes a b-edge e between two labeled
nodes u and v where label(u) 6= label(v). The b-edge contributes to a reduction in the parameter
of value 1. If π(u) is labeled and π(v) is labeled, then π(u) and π(v) might possess a total credit of
value 1 (1/2 each), and this credit may have been associated with the b-edge e. When e is removed,
e might cause these two nodes to lose their credits. Consequently, an edge removed by Clean can
compensate for the loss of credit it incurs. Similarly for the other non-branching operations: each
will result in a reduction of the parameter of value 1, which is in the worst case not smaller than
the value of the possibly lost credit caused by the removal of the b-edge.

(1, 1)-branches: Suppose the algorithm executes the branch in Case 2. On the first side of
the operation π(u′) is labeled and a b-edge e = (u, u′) is removed. By proposition 6.3, labeling
π(u′) will give a credit of value 1/2. Since π(u′) was unlabeled before this operation, no credit was
possessed by π(u′). Hence, only a credit of value 1/2 could have been associated with the edge e
due to the credit of value 1/2 that could have been given by π(u) (which is labeled). Therefore,
the credit gained by labeling π(u′) can serve to pay for the credit possibly lost by the removal of e,
thus canceling each other out, and the total reduction in the parameter in this side of the branch
is equal to 1. The other side of the branch is similar yielding a reduction of value 1. Therefore,
this branch is effectively a (1, 1)-branch.

(1, 1, 1)-branches: Suppose the algorithm executes Case 3. On the first side of the branch π(u)
is labeled with a label different from label(u). When Merge is called next, the b-edge e = (u, u′)
will be removed, and the two nodes u and u′ will be merged. Since before this operation was
executed both π(u) and π(u′) were unlabeled, the b-edge e does not cause any credit loss. Labeling
π(u) gives a credit of value 1/2 by Proposition 6.3. Therefore, the total “effective” reduction in
the parameter along this side of the branch is 3/2. Similarly, in the second side of the branch we
get an effective reduction in the parameter of value 3/2. Now in the third side of the branch both
π(u) and π(u′) will be labeled with the same label and the edge e is removed. Labeling π(u) gives
a credit of value 1/2, and similarly for π(u′), and the edge e does not cause any credit loss since
both nodes π(u) and π(u′) were unlabeled before this operation, and thus could not have given any
credit before. The total reduction in the parameter along this side of the branch has an effective
value of 2. Therefore, the algorithm in this case effectively branches with a (3/2, 3/2, 2)-branch.

The worst branch in the above branches is the (1, 1)-branch giving an upper bound of O(2k) on
the size of the search tree. That was an intuitive look at the amortized analysis of the algorithm.
We formally prove this statement below.

Lemma 6.4 Let T be the search corresponding to the algorithm Is Compatible on an instance
(N, k). The number of leaves of T is O(2k).

Proof. We first prove the following statement.

Statement. Let α be a node in the search tree T corresponding to the algorithm Is Compatible
on an instance (N, k) and let Tα be the subtree of T rooted at α. Let (Nα, kα) be the resulting
network at α, and assume that there are ` nodes in Nα that possess credit, where 0 ≤ ` ≤ 2kα.
Then the number of leaves in Tα is bounded by 2kα−`/2.

We proceed by induction on kα. If kα = 0 then ` = 0. There are no b-edges in the network
Nα in this case, and the algorithm Is Compatible decides the compatibility of Nα in step 0 using
Theorem 2.2 and without performing any branches. Therefore the number of leaves in Tα is 1,
which is bounded by 2k−`/2 as claimed.
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If kα = 1 then there is exactly one b-edge (u, v) in Nα. Since there are no b-edges in Tu and Tv

in Nα, the nodes u and v must be labeled by Fact 5.13. Since Nα is a phylogenetic network, each
internal node in Nα must have at least two children, and in particular, the nodes π(u) and π(v).
By Fact 5.13, and since Nα contains only the b-edge (u, v), these two children must be labeled (the
subtrees rooted at these nodes in Nα contain no b-edges). By step 3 of Reduce, π(u) and π(v) must
be labeled as well. Now If label(u) 6= label(v) then the b-edge (u, v) will be removed by Clean. If
label(u) = label(v) and the label of π(u) or the label of π(v) is different from the label of u and v,
then the b-edge (u, v) will be removed by Merge. If the labels of u, v, π(u), and π(v) are all equal,
then the b-edge (u, v) will be removed by Case 1 in step 4 of the algorithm Is Compatible. It
follows that in all cases the b-edge (u, v) will be removed by the algorithm without any branching.
Since (u, v) is the only b-edge in Nα, after removing this b-edge, the algorithm Is Compatible
will proceed to solve the resulting instance in step 0. All in all, no branches will be performed by
the algorithm when solving the instance (Nα, kα) and the number of leaves in Tα is 1, which is
bounded by 2kα−`/2.

Suppose now that the above statement is true for any value of k′ satisfying 0 ≤ k′ < kα. The
operation performed by the algorithm at α can be classified into one the three categories above.

If this operation is a non-branching operation that results in the removal of a b-edge e, then
since α is a non-branching operation, α has a single child β in T . Let Tβ be the subtree of T rooted
at β. The number of leaves in Tα is equal to that in Tβ. By the above discussion, the removal of
e will decrease the parameter kα by at least 1, and causes at most two nodes in Nα to lose their
possessed credit. Let (Nβ, kβ) be the resulting instance at node β, and let `′ be the number of
nodes possessing credit in Nβ. Then kβ ≤ kα − 1 and `′ ≥ ` − 2. By induction, the number of
leaves in Tβ is bounded by 2kβ−`′/2 ≤ 2kα−1−(`−2)/2 = 2kα−`/2. Therefore the number of leaves in
Tα is bounded by 2kα−`/2 as claimed.

If the operation performed at α is a (1, 1)-branch, let β and γ be the two children of α in T .
Let Tβ and Tγ be the subtrees of T rooted at β and γ, respectively. Let (Nβ, kβ) and (Nγ , kγ) be
the resulting instances at β and γ, and `′ and `′′ be the numbers of nodes that possess credit in Nβ

and Nγ , respectively. From the above discussion, each side of the (1, 1)-branch causes the removal
of one b-edge from Nα. Also, the operation in each side of the branch causes at least one node to
give a credit and at most one node to lose its possessed credit. Therefore, kβ ≤ kα−1, kγ ≤ kα−1,
`′ ≥ `, and `′′ ≥ `. By induction, the number of leaves in Tβ is bounded by 2kβ−`′/2 ≤ 2k−1−`/2 and
the number of leaves in Tγ is bounded by 2kγ−`′′/2 ≤ 2k−1−`/2. It follows that the number of leaves
in Tα is bounded by the number of leaves in Tβ plus the number of leaves in Tγ , which is bounded
by 2k−`/2 as claimed.

If the operation performed by the algorithm is a (1, 1, 1)-branch, let β, γ, and θ be the children
of α in T . Let Tβ, Tγ , and Tθ be the subtrees of T rooted at β, γ, and θ, respectively. Let (Nβ, kβ),
(Nγ , kγ), and (Nθ, kθ) be the resulting instances at β, γ, and θ, respectively, and let `′, `′′, `′′′ be the
numbers of nodes that possess credit in Nβ, Nγ , and Nθ, respectively. From the above discussion, in
the first and second sides of the branch in Case 3 (step 4 in the algorithm), we will end up labeling
one node and removing one b-edge (u, u′). The removal of the b-edge decreases the parameter by
at least 1. Moreover, the removal of the b-edge (u, u′) does not cause any node to lose its possessed
credit, because this removal can only cause the nodes π(u) and π(u′) to lose credit, and these two
nodes were unlabeled before the operation, and hence possessed no credit. On the other hand, the
labeling in each of the first two sides of the operation causes at least one node to give a credit.
Therefore, we have kβ ≤ kα − 1, kγ ≤ kα − 1, `′ ≥ ` + 1, and `′′ ≥ ` + 1. In the third side of the
branch, we remove at least one b-edge causing the decrease of the parameter by at least 1, and
we label two nodes that were unlabeled before. By a similar argument, the removal of the b-edge
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does not cause the loss of any credit due to the fact that the nodes that could lose credit were
unlabeled and never possessed any credit. Now the labeling of the nodes π(u) and π(u′) will cause
at least two nodes to give credit. These two nodes that will give credit are distinct because the
subtrees rooted at π(u) and π(u′) are disjoint. Therefore, kγ ≤ kα− 1 and `′′′ ≥ ` + 2. Inductively,
the number of leaves in Tβ is bounded by 2kβ−`′/2 ≤ 2kα−1−(`+1)/2 = 2kα−`/2−3/2, the number of
leaves in Tγ is bounded by 2kγ−`′′/2 ≤ 2kα−1−(`+1)/2 = 2kα−`/2−3/2, and the number of leaves in Tθ

is bounded by 2kθ−`′′′/2 ≤ 2kα−1−(`+2)/2 = 2kα−`/2−2. It follows that the number of leaves in Tα is
bounded by 2kα−`/2−3/2 + 2kα−`/2−3/2 + 2kα−`/2−2 ≤ 2kα−`/2, as claimed.

Since any operation performed by the algorithm belongs to one of the above three categories,
the number of leaves in Tα is bounded by 2kα−`/2 and the above statement follows.

Now if we apply the statement to α with α being the root of the tree T , then kα = k and l = 0,
and we get that the number of leaves in T is O(2k). This completes the proof.

Theorem 6.5 The Parameterized BCCPN problem can be solved in time O(2kn2) where n is
the number of nodes in the network.

Proof. By Theorem 5.15, the algorithm Is Compatible solves the Parameterized BCCPN
problem correctly. Let T be the search tree of the algorithm on an instance (N, k) of the problem.
The running time of the algorithm is the number of leaves in the search multiplied by the time
spent on any root-leaf path. By Lemma 6.4, the number of leaves in T is O(2k). Let P be a
root-leaf path in T . On every node on P the algorithm might need to call the subroutines Clean,
Reduce, and Merge on every node in N , which could take O(n + k) time since the size of N
is O(n + k) (note that N has n nodes and hence n − 1 tree edges, and k b-edges). However this
need not be the case with a careful implementation of each of these subroutines. Instead of calling
Clean at each node of the tree, we only call it on the nodes on which the operation is applicable.
This can be done as follows. For every node in N , we partition its neighbors defined by the b-edges
into three lists: those that are unlabeled, those labeled with 0, and those labeled with 1. We call
Clean whenever a node u is labeled. When Clean is called on a node u that has just been labeled,
we look at the list of its neighbors defined by the b-edges that have opposite labels. This labeling
of u results in the removal of the b-edges from u to all these neighbors. The time spent by Clean
in each such call is proportional to the number of b-edges removed in the call. We also need to
update the adjacency lists of the nodes that are adjacent (via b-edges) to u. This also takes time
proportional to the number of b-edges incident on u. This update is only done once when the node
is labeled (a node never gets re-labeled in the whole algorithm). Therefore, we can say that the
total time spent by Clean on a root-leaf path is proportional to the size of the network, which is
O(n + k).

A similar analysis shows that the time taken by Reduce and Merge along P is also O(n + k).
An additional multiplicative factor of O(n) results from trying every node in N as the splitting
node. It follows that the running time of the algorithm is O(2k(n + k)n) = O(2kn2).
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