Indexing and Hashing

Cost estimation

Basic Concepts

B+ - Tree Index Files

Hashing

Comparison of Ordered Indexing and Hashing

by Paul L. Bergstein @ UMass Dartmouth

Estimating Costs

« For simplicity we estimate the cost of
an operation by counting the number of
blocks that are read or written to disk.

» We ignore the possibility of blocked
access which could significantly lower
the cost of I/0.

» We assume that each relation is stored
in a separate file with B blocks and R
records per block.

Basic Concepts

Indexing is used to speed up access to desired data.

» E.g. author catalog in library
A search key is an attribute or set of attributes used
to look up records in a file. Unrelated to keys in the
db schema.
An index file consists of records called index entries.
An index entry for key & may consist of

» An actual data record (with search key value k)

» A pair (k, rid) where rid is a pointer to the actual data record

» A pair (k, bid) where bid is a pointer to a bucket of record pointers
Index files are typically much smaller than the
original file if the actual data records are in a
separate file.
If the index contains the data records, there is a
single file with a special organization.

Index Evaluation Metrics

e Access time for:

» Equality searches — records with a specified
value in an attribute

» Range searches — records with an attribute
value falling within a specified range.

¢ Insertion time
¢ Deletion time
¢ Space overhead

Types of Indices

The records in a file may be unordered or ordered
sequentially by some search key.

A file whose records are unordered is called a heap
file.

If an index contains the actual data records or the
records are sorted by search key in a separate file,
the index is called clustering (otherwise non-
clustering).

In an ordered index, index entries are sorted on the
search key value. Other index structures include trees
and hash tables.

A primary index is an index on a set of fields that
includes the primary key. Any other index is a
secondary index.

B-Trees

» B-Trees are balanced search trees
» They are designed to be stored on external
storage, e.g., magnetic disks
» They are designed to minimize disk
accesses
» They are widely used in database systems
e B*-Tree is a popular variant of the
original B-Tree
» The keys are stored in the leaves

B*+-Tree Index Files

A B*-tree is a rooted tree satisfying the following
properties:

All paths from root to leaf are of the same length

Each node that is not a root or a leaf has between
[n/21and n children where n is the maximum
number of pointers per node.

A leaf node has between [(n—1)/2]and n -1
values

Special cases: if the root is not a leaf, it has at least 2
children. If the root is a leaf (that is, there are no
other nodes in the tree), it can have between 0 and n
values.

B+-Tree Node Structure

* A typical node has tens to hundreds of elements

Pl Kl PZ b Pr\»l Kr\»l Pn

» K; are the search-key values

» P; are pointers to children (for non-leaf nodes) or
pointers to records or buckets of records (for leaf
nodes).

¢ The search-keys in a node are ordered

Ky <Ky <Kz <... <Ky

Leaf Nodes in B+*-Trees

Properties of a leaf node:

e Fori=1,2,.., n-1, pointer P, either points to a file record with
search-key value K, or to a bucket of pointers to file records,
each record having search-key value K;. If L, L; are leaf nodes
and i < j, L's search-key values are less than Lj's search-key
values

* P, points to next leaf node in search-key order

[[Brighton | [Downtown][— F——

‘ lest node ‘
ghton A-212 750
\—' Downtown| A-101 500

Downtown| A-110 600

account file

Non-Leaf Nodes in B*-Trees

* Non leaf nodes form a multi-level sparse index on the

leaf nodes. For a non-leaf node with m pointers:

» All the search-keys in the subtree to which P; points
are less than K;

» All the search-keys in the subtree to which P; points
are greater than or equal to K;_;

Pl Kl PZ b Pn»l Kn»l Pn

Examples of a B*-tree

[lPenyigel|]

Redwood [[]

[rghton [[Downtown[}+{ [Miami [] [1—[[Peryridge] | [[Redwood [[Round Hil

B*-tree for account file (n=3)

Example of a B*-tree

[[Perryridge][] [[
S

[[Brighton [[Downtown[[Miami_[[[[Perryridge[[Redwood [[Round Hil[[]

B*-tree for account file (n=5)

o Leaf nodes must have between 2 and 4 values (

[(n-1)/21and n - 1, with n=5).

* Non-leaf nodes other than root must have between 3

and 5 children (n/21and n with n = 5).

e Root must have at least 2 children

Observations about B* -trees

Since the inter-node connections are done by
pointers, there is no assumption that in the B*-tree ,
the “logically” close blocks are “physically” close.
The B*-tree contains a relatively small number of
levels (logarithmic in the size of the main file), thus
searches can be conducted efficiently.

Insertions and deletions to the main file can be
handled efficiently, as the index can be restructured
in logarithmic time (as we shall see).

Queries on B*-Trees

¢ Find all records with a search-key value of k.

Start with the root node

Examine the node for the smallest search-key value > k.

If such a value exists, assume it is K;. Then follow P, to the
child node

Otherwise k = K, ;, where there are m pointers in the node,
Then follow P, to the child node.

If the node reached by following the pointer above is not a
leaf node, repeat the above procedure on the node, and
follow the corresponding pointer.

Eventually reach a leaf node. If key K; = k, follow pointer P
to the desired record or bucket. Else no record with search-
key value k exists.

Queries on B*-Trees (Cont.)

In processing a query, a path is traversed in the tree
from the root to some leaf node.

If there are K search-key values in the file, the path
is no longer thanflogr,/,1(K)'.

A node is generally the same size as a disk block,
typically 4 kilobytes, and n is typically around 200 (20
bytes per index entry).

With 1 million search key values and n = 200, at
most log;0(1,000,000) = 3 nodes are accessed in a
lookup.

Contrast this with a balanced binary tree with 1
million search key values — around 20 nodes are
accessed in a lookup

» above difference is significant since every node access may
need a disk I/O, costing around 20 millisecond!

Updates on B*-Trees : Insertion

¢ Find the leaf node in which the search-key value
would appear

If the search-key value is already there in the leaf
node, record is added to file and if necessary pointer
is inserted into bucket.

If the search-key value is not there, then add the
record to the main file and create bucket if
necessary. Then:

» if there is room in the leaf node, insert (search-key value,
record/bucket pointer) pair into leaf node at appropriate
position.

» if there is no room in the leaf node, split it and insert
(search-key value, record/bucket pointer) pair as discussed
in the next slide.

Updates on B*-Trees: Insertion
(Cont.)

* Splitting a node:

» take the n(search-key value, pointer) pairs
(including the one being inserted) in sorted
order. Place the first [n/21in the original node,
and the rest in a new node.

» Let the new node be p, and let k be the least key
value in p. Insert (k, p) in the parent of the node
being split. If the parent is full, split it and
propagate the split further up.

¢ The splitting of nodes proceeds upwards till a node
that is not full is found. In the worst case the root
node may be split increasing the height of the tree
by 1.

Updates on B*-Trees :

Insertion(Cont.)
[[Pemyridgel []
[Miami [[l | [Redhwood || []
([Bigton | oowntomn[] [[Miami_ [T }—{[Penyricge[[| |—{[Rediood [[Round Hil[]

[[Peryridge[[]
[Joowmiowr []} TRediood [T]

[Brighton [[Cleaniew [+ D

[T3+{T Miami [T [3—+{[Peryridge[[[}-+{[Redwood[[Round Hl[]

Updates on B*-Trees : Deletion

e Find the record to be deleted, and remove it from the
main file and from the bucket (if present)
¢ Remove (search-key value, pointer) from the leaf
node if there is no bucket or if the bucket has
become empty
¢ If the node has too few entries due to the removal,
and the entries in the node and a sibling fit into a
single node, then
» Insert all the search-key values in the two nodes into a
single node (the one on the left), and delete the other node.
» Delete the pair (K;_;, P;), where P, is the pointer to the
deleted node, from its parent, recursively using the above
procedure.

Updates on B*-Trees : Deletion

* Otherwise, if the node has too few entries due to the
removal, and the entries in the node and a sibling
don't fit into a single node, then

» Redistribute the pointers between the node and a sibling
such that both have at least the minimum number of entries

» Update the corresponding search-key value in the parent of
the node.

¢ The node deletions may cascade upwards till a node
which has [n/21 or more pointers is found. If the root
node has only one pointer after deletion, it is deleted
and the sole child becomes the root.

Examples of B+-Tree Deletion

[Pemyridgel []

[Miami_] I [Redwood [[
/

[[Brighton | |CIearviewH”|’| Miami [[[1+{ [Perryridge[[[]+[]Redwood[[Round Hill|

Result after deleting “Downtown” from account

¢ The removal of the leaf node containing “Downtown”
did not result in its parent having too little pointers.
So the cascaded deletions stopped with the deleted
leaf node’s parent.

Examples of B*-Tree Deletion
(Cont.)

tvani J[]

| Downtown | I | [Redwood || I

[[Brighton [[Cleaniew [1] [Downtown]] [] [Miami [] [1+{]Redwood][Round Hil[]

Deletion of “Perryridge” instead of “Downtown”

The deleted “Perryridge” node’s parent became too
small, but its sibling did not have space to accept one
more pointer, so redistribution is performed. Observe
that Ithe root node’s search-key value changes as a
result.

B+-Tree File Organization

Index file degradation problem is solved by using B*-Tree
indices. Data file degradation problem is solved by using B*-
Tree File Organization.

* The leaf nodes in a B+-tree file organization store records,
instead of pointers.

Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the
number of pointers in a nonleaf node.

Leaf nodes are still required to be half full.

Insertion and deletion are handled in the same way as insertion
and deletion of entries in a B*-tree index.

* Good space utilization is important since records use more
space than pointers. To improve space utilization, involve more
sibling nodes in redistribution during splits and merges.

Static Hashing

* A bucket is a unit of storage containing one or more
records (a bucket is typically a disk block). In a hash
file organization we obtain the bucket of a record
directly from its search-key value using a hash
function.

¢ Hash function h is a function from the set of all
search-key values K to the set of all bucket addresses
B.

* Hash function is used to locate records for access,

insertion, and deletion.

Records with different search-key values may be

mapped to the same bucket; thus entire bucket has

to be searched sequentially to locate a record.

Hash Functions

Worst hash function maps all search-key values to the same
bucket; this makes access time proportional to the number of
search-key values in the file.

An ideal hash function is uniform, i.e. each bucket is assigned
the same number of search-key values from the set of all
possible values.

Ideal hash function is random, so each bucket will have the
same number of records assigned to it irrespective of the actual
distribution of search-key values in the file.

Typical hash functions perform computation on the internal
binary representation of the search-key. For example, for a
string search-key, the binary representations of all the
characters in the string could be added and the sum modulo
number of buckets could be returned.

Hash Indices

* Hashing can be used not only for file organization,
but also for index-structure creation. A hash index
organizes the search keys, with their associated
record pointers, into a hash file structure.

¢ Hash indices are always secondary indices — if the
file itself is organized using hashing, a separate
primary hash index on it using the same search-key
is unnecessary. However, the term hash index is
used to refer to both secondary index structures and
hash organized files.

Example of Hash Index

Brighton A-217 | 750
Downtown | A-101 | 500
Downtown | A-110 | 600
Miaimi A-215| 700
Perryridge | A-102 | 400
Perryridge | A-201 [900
Perryridge | A-218 | 700
Redwood | A-222 | 700
Round Hill | A-305 | 350

Deficiencies of Static Hashing

¢ In static hashing, function h maps search-key values
to a fixed set B of bucket addresses.

» Databases grow with time. If initial number of buckets is too

small, performance will degrade due to too much overflows.

» If file size at some point in the future is anticipated and
number of buckets allocated accordingly, significant amount
of space will be wasted initially.

» If database shrinks, again space will be wasted.
» One option is periodic, re-organization of the file with a new
hash function, but it is very expensive.
e These problems can be avoided by using techniques
that allow the number of buckets to be modified
dynamically.

Dynamic Hashing

¢ Good for database that grows and shrinks in size
¢ Allows the hash function to be modified dynamically
+ Extendable hashing — one form of dynamic
hashing
» Hash function generates values over a large range —
typically
b-bit integers, with 6 = 32.
» At any time use only the last /bits of the hash function to
index into a table of bucket addresses, where: 0 <i <32
» Initially i =0
» Value of i grows and shrinks as the size of the database
grows and shrinks.
» Actual number of buckets is < 2!, and this also changes
dynamically due to merging and splitting of buckets.

General Extendable Hash
Structure

il
; 7 bucket 1
hash suffix
.00
.01 —\ ip
10 bucket 2
1 \
) bucket 3
bucket address table

In this structure, i, = i; = i, whereasi, =i —1

Index Definition in SQL

Create an index

create index <index-name> on <relation-
name>
(<attribute-list>)
E.g.: create index bH-index on branch(branch-name)
Use create unique index to indirectly specify and
enforce the condition that the search key is a
candidate key.
To drop an index

drop index <index-name>

