SQL Authorization

Privileges
Grant and Revoke
Grant Diagrams

By Prof. Ullman @ Stanford

Authorization

◆ A file system identifies certain privileges on the objects (files) it manages.
 * Typically read, write, execute.
◆ A file system identifies certain participants to whom privileges may be granted.
 * Typically the owner, a group, all users.

Privileges --- (1)

◆ SQL identifies a more detailed set of privileges on objects (relations) than the typical file system.
◆ Nine privileges in all, some of which can be restricted to one column of one relation.

Privileges --- (2)

◆ Some important privileges on a relation:
 1. SELECT = right to query the relation.
 2. INSERT = right to insert tuples.
 * May apply to only one attribute.
 3. DELETE = right to delete tuples.
 4. UPDATE = right to update tuples.
 * May apply to only one attribute.

Example: Privileges

◆ For the statement below:
 INSERT INTO Beers(name)
 SELECT beer FROM Sells
 WHERE NOT EXISTS
 (SELECT * FROM Beers
 WHERE name = 'beer');
 We require privileges SELECT on Sells and Beers, and INSERT on Beers or Beers.name.

Authorization ID’s

◆ A user is referred to by authorization ID, typically their name.
◆ There is an authorization ID PUBLIC.
 * Granting a privilege to PUBLIC makes it available to any authorization ID.
Granting Privileges

- You have all possible privileges on the objects, such as relations, that you create.
- You may grant privileges to other users (authorization ID's), including PUBLIC.
- You may also grant privileges WITH GRANT OPTION, which lets the grantee also grant this privilege.

The GRANT Statement

- To grant privileges, say:
 GRANT <list of privileges>
 ON <relation or other object>
 TO <list of authorization ID’s>;
- If you want the recipient(s) to be able to pass the privilege(s) to others add:
 WITH GRANT OPTION

Example: GRANT

- Suppose you are the owner of Sells. You may say:
 GRANT SELECT, UPDATE(price)
 ON Sells
 TO sally;
- Now Sally has the right to issue any query on Sells and can update the price component only.

Example: Grant Option

- Suppose we also grant:
 GRANT UPDATE ON Sells TO sally
 WITH GRANT OPTION;
- Now, Sally not only can update any attribute of Sells, but can grant to others the privilege UPDATE ON Sells.
- Also, she can grant more specific privileges like UPDATE(price) ON Sells.

Revoking Privileges

REVOKE <list of privileges>
ON <relation or other object>
FROM <list of authorization ID’s>;
- Your grant of these privileges can no longer be used by these users to justify their use of the privilege.
- But they may still have the privilege because they obtained it independently from elsewhere.

REVOKE Options

- We must append to the REVOKE statement either:
 1. CASCADE. Now, any grants made by a revokee are also not in force, no matter how far the privilege was passed.
 2. RESTRICT. If the privilege has been passed to others, the REVOKE fails as a warning that something else must be done to “chase the privilege down.”
Grant Diagrams

◆ Nodes = user/privilege/option/isOwner?
 • UPDATE ON R, UPDATE(a) on R, and UPDATE(b) ON R live in different nodes.
 • SELECT ON R and SELECT ON R WITH GRANT OPTION live in different nodes.
 ◆ Edge X -> Y means that node X was used to grant Y.

Notation for Nodes

◆ Use AP for the node representing authorization ID A having privilege P.
 • P* represents privilege P with grant option.
 • P** represents the source of the privilege P. That is, AP** means A is the owner of the object on which P is a privilege.
 • Note ** implies grant option.

Manipulating Edges --- (1)

◆ When A grants P to B, We draw an edge from AP* or AP** to BP.
 • Or to BP* if the grant is with grant option.
 ◆ If A grants a subprivilege Q of P [say UPDATE(a) on R when P is UPDATE ON R] then the edge goes to BQ or BQ*, instead.

Manipulating Edges --- (2)

◆ Fundamental rule: User C has privilege Q as long as there is a path from XQ** (the origin of privilege Q) to CQ, CQ*, or CQ**.
 • Remember that XQ** could be CQ**.
 • Also: the path could be from a superprivilege of Q, rather than Q itself.

Manipulating Edges --- (3)

◆ If A revokes P from B with the CASCADE option, delete the edge from AP to BP.
 ◆ If A uses RESTRICT, and there is an edge from BP to anywhere, then reject the revocation and make no change to the graph.

Manipulating Edges --- (4)

◆ Having revised the edges, we must check that each node has a path from some ** node, representing ownership.
 ◆ Any node with no such path represents a revoked privilege and is deleted from the diagram.
Example: Grant Diagram

A owns the object on which P is a privilege

A: GRANT P TO B WITH GRANT OPTION

B: GRANT P TO C WITH GRANT OPTION

A: GRANT P TO C

Example: Grant Diagram

A executes REVOKE P FROM B CASCADE;

Not only does B lose P*, but C loses P.* Delete BP* and CP*.

Even had C passed P to B, both nodes are still cut off.

However, C still has P without grant option because of the direct grant.