XML

Semistructured Data
Extensible Markup Language
Document Type Definitions

Adapted from Lecture notes by Jeff Ullman @ Stanford
1

Semistructured Data

@ Another data model, based on trees.
L 2 : flexible representation of
data.

+ Often, data comes from multiple sources
with differences in notation, meaning, etc.

2 : sharing of documents
among systems and databases.

Graphs of Semistructured Data

@ Nodes = objects.
@ Labels on arcs (attributes, relationships).
@ Atomic values at leaf nodes (nodes with
no arcs out).
@ Flexibility: no restriction on:
+ Labels out of a node.
+ Number of successors with a given label.

Example: Data Graph

| root

Notice a
new kind
of data.

N
The beer object
for Bud

N
The bar object
for Joe's Bar

XML

O XML = Extensible Markup Language.

@ While HTML uses tags for formatting
(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”).

2 : create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents.

Well-Formed and Valid XML

4 allows you to invent
your own tags.
+ Similar to labels in semistructured data.
2 involves a DTD (Document
Type Definitior), a grammar for tags.

Well-Formed XML

@ Start the document with a declaration,
surrounded by <?xml ... ?> .
4 Normal declaration is:
<?xm version = “1.0"
st andal one = “yes” ?>
+ “Standalone” = “no DTD provided.”
#Balance of document is a
surrounding nested tags.

Tags

@ Tags, as in HTML, are normally
matched pairs, as <FOO> ... </FOO> .

€ Tags may be nested arbitrarily.
XML tags are case sensitive.

Example: Well-Formed XML

<?xml version = “1.0” standalone = “yes” ?> A NAME
subobject

[<BAR>[<NAME>Joe's Bar</NAMES

<BEER><NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER \

<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE> </BEER>

A BEER
subobject

<BAR> ...

XML and Semistructured Data

@ Well-Formed XML with nested tags is
exactly the same idea as trees of
semistructured data.

@ We shall see that XML also enables
nontree structures, as does the
semistructured data model.

10

Example

®The <BARS> XML document is:

BARS |

1

DTD Structure

<! DOCTYPE <root tag> [
<! ELEMENT <name>(<components>) >
.. . more elements . . .

1>

12

DTD Elements

@ The description of an element consists
of its name (tag), and a parenthesized
description of any nested tags.

+ Includes order of subtags and their
multiplicity.

@ Leaves (text elements) have #PCDATA
(Parsed Character DATA) in place of
nested tags.

13

Example: DTD

A BARS object has

<IDOCTYPE BARS [zero or more BAR’s
<|ELEMENTi:m‘:ted within,
<IELEMENT|BAR (NAME, BEER+) B

<!ELEMENT_> "_ NAME and one
or more BEER

<IELEMENTI|BEER (NAME, PRICE)b subobjects.
<IELEMENT SN

]> A BEER has a
NAME and PRICE NAME and a
are text. PRICE.

14

Element Descriptions

@ Subtags must appear in order shown.
@A tag may be followed by a symbol to
indicate its multiplicity.
+ * = zero or more.
+ 4+ = one or more.
¢ ? = zero or one.
@ Symbol | can connect alternative
sequences of tags.

15

Example: Element Description

€A name is an optional title (e.g., “Prof.”),
a first name, and a last name, in that
order, or it is an IP address:

<! ELEMENT NAME (

(TITLE?, FIRST, LAST) | | PADDR
)>

16

Use of DTD’s

1. Set standalone = “no”.
2. Either:

a) Include the DTD as a preamble of the
XML document, or

b) Follow DOCTYPE and the <root tag> by
SYSTEM and a path to the file where the
DTD can be found.

17

Example (a)

<?xml version = “1.0” standalone = “no” ?>

The DTD
<BARS>

/ The document
<BAR><NAME>Joe’s Bar</NAME>

<BEER> <NAME>Bud </NAME> <PRICE>2,50</PRICE> < /BEER>
<BEER><NAME>Miller</NAME> <PRICE>3,00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>

18

Example (b)

@ Assume the BARS DTD is in file bar.dtd.

<?xml version = “1.0” standalone = “no” ?>

<BARS> — Get the DTD
<BAR><NAME>Joe's Bar</NAME> from the file

<BEER><NAME>Bud</NAME> bar.dtd
<PRICE>2.50</PRICE></BEER>
<BEER><NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>
</BAR>
<BAR> ...
</BARS>
19

XML and Relational DB

@ We now know the basics of XML, but
how does it interact with relational DB,
in particular

+ How to input XML to relational DB?
+ How to retrieve XML from relational DB?

20

Map XML to Relational DB

@1t is easy if the DTD of the XML has been
designed according to an existing
relational DB schema

+ Simply parse the date according to the design

@ Otherwise, requires an mapping algorithm
to design a database schema that is
compatible with the XML document as
specified in the DTD

21

Map XML to Relational DB

© The mapping algorithm can be
complicated since XML is more flexible
that relational model
+ Needs to take care of lots of details
+ Still an on-going research topic

+ A good starting point:
www.rpbourret.com/xml/DTDToDatabase.htm

Extract XML from Relational DB

€ Much easier, because relational mode
is more structured than XML

@ To generate a DTD from a relation
model:

1. Define a scope, select a subset S of
relations to be included in the scope, and
remove unnecessary attributes

2. Select a relation R in S as the root, and
call subroutine LIST(R)

23

Subroutine LIST

LIST(R):

* Remove R from S, and create an element-list L =
<IELEMENT R (...)> including all attributes of R that
are not marked

« If there is another relation R" in S, such that and R” has

a foreign key k referencing R, then add R" * to L,
Because 1"/ mark the atbites of € ink/ nd cal IST(R)

by R e If there is another relation R"in S, such that R has a
foreign key k referencing R’, then

Because they gpiaca the forei key O Kin L BYpnd call IST(R)

are implied

by R’

24

Generate DTD (continues)

3. Finally, for each undefined element in the
lists, generate an element type with
PCDATA-only content

25

The Example

@ Map the following relational model to a
DTD:

/

26

The DTD

<IDOCTYPE Bars [
<IELEMENT Bars (Bar*)>

Generated
following the
steps

27

A Sample XML Using the DTD

L 2

28

Group exercise
@ Using the same relational model, write
a DTD with the relation Beer as the root
+ Bar (bar_name, addr)
+ Sell (bér, beer, price)

+ Beer (beer_name, manf)

29

ID and IDREF

@ What is the problem with the above
XML document?
+ Redundancies
@ How to eliminate the redundancies?
+ Use attributes of elements: ID and IDREF

Attributes

#Opening tags in XML can have
attributes.

¢InaDTD,
<IATTLIST £...>

declares an attribute for element £,
along with its datatype.

31

Example: Attributes

@ Bars can have an attribute ki nd, a
character string describing the bar.
<! ELEMENT BAR (NAME, BEER*)>
<! ATTLI ST BAR ki nd

#| MPLI ED)

Character string

; NO t
Attribute is optional type; no tags

opposite: #REQUIRED

32

Example: Attribute Use

@ 1In a document that allows BAR tags, we might
see:
<BAR ki nd = > Note attribute
- values are quoted
<NAME>Akasaka</ NAME>
<BEER><NAME>Sappor o</ NAMVE>
<PRI CE>5. 00</ PRI CE></ BEER>

</ BAR>

ID’s and IDREF's

@ Attributes can be pointers from one
object to another.
+ Compare to HTML's NAME = “foo” and
HREF = “#foo".
@ Allows the structure of an XML
document to be a general graph, rather
than just a tree.

Creating ID’s

#Give an element £ an attribute g of

type ID.
<IATTLIST Ea ID .>

@ When using tag <£ > in an XML
document, give its attribute @ a unique
value (do not include space and quote).

<E a = “xyz">

35

Creating IDREF's

@ To allow objects of type F to refer to
another object with an ID attribute,
give F an attribute of type IDREF.

<IATTLIST F b | DREF ..>

@ Or, let the attribute have type IDREFS,
so the F—object can refer to any
number of other objects.

36

The Example

<!DOCTYPE Bars [
<IELEMENT Bars (Bar*)>

<IELEMENT Bar (bar_name, addr, Sell*)>
<IELEMENT bar_name (#PCDATA)> -
= <IELEMENT Sell (price)>
<IELEMENT addr (#PCDATA)> L IATTLIST Sell beer IDREF #REQUIRED>|

<!ELEMENT Beer (manf)>
<IATTLIST BEER beer_name ID #REQUIRED:

<IELEMENT price (#PCDATA)> J

<IELEMENT manf (#PCDATA)>
1>
37

A Sample XML Using the DTD

L 2

Avoid Redundancy in DTD

1. Use the procedure discussed last time to
generate DTD (with redundancies)

2. For an element type R has another
element type R’ in its ELEMENT list
because of a foreign key constraint, then
+ Remove R’ from the ELEMENT list of R, add

an IDREF to the ATTLIST of R;

¢ Move the key of R’ from the ELEMENT list of
R’ to the ATTLIST of R and make it type ID

39

Group Exercise

@ Suppose we want to retrieve from the following
relational DB a XML that contains the name and
phone of all drinkers, and for each drinker, the beers
he/she likes, and their price at each bar. Write a DTD
for this purpose. Avoid unnecessary redundancies.

Beers(name, manf)
Bars(name, addr, phone)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Limitation of ID and IDREF

@ You can regard ID attributes as primary
keys and IDREF attributes as foreign
keys

@ But they are quite limited

+ ID and IDREF cannot represents composite
primary and foreign keys

+ They are not scoped; IDREF can refer to
any ID in the same XML doc

41

Integrity Constraints

@ If ID and IDREF are limited, why don't
we simply specify keys and foreign keys
in DTD just like what we did with
relations?

+ The problem of checking whether a given
specification is consistent, i.e., make sure
that there is at least some XML document
satisfies a given specification, is
undecidable (Fan, Libkin, 2002)

42

Alternatives

@ Alternatives to DTD:
+ XML schema
+ XML Data

@ They generally support more expressive
specifications for key and foreign keys,
but the problem of consistency checking
on them are still open

