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THE STRETCH FACTOR OF THE DELAUNAY TRIANGULATION
IS LESS THAN 1.998∗

GE XIA†

Abstract. Let S be a finite set of points in the Euclidean plane. Let D be a Delaunay
triangulation of S. The stretch factor (also known as dilation or spanning ratio) of D is the maximum
ratio, among all points p and q in S, of the shortest path distance from p to q in D over the Euclidean
distance ||pq||. Proving a tight bound on the stretch factor of the Delaunay triangulation has been
a long-standing open problem in computational geometry. In this paper we prove that the stretch
factor of the Delaunay triangulation is less than ρ = 1.998, significantly improving the current best
upper bound of 2.42 by Keil and Gutwin [“The Delaunay triangulation closely approximates the
complete Euclidean graph,” in Proceedings of the 1st Workshop on Algorithms and Data Structures
(WADS), 1989, pp. 47–56]. Our bound of 1.998 also improves the upper bound of the best stretch
factor that can be achieved by a plane spanner of a Euclidean graph (the current best upper bound
is 2). Our result has a direct impact on the problem of constructing spanners of Euclidean graphs,
which has applications in the area of wireless computing.
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1. Introduction. Let S be a finite set of points in the Euclidean plane. A
Delaunay triangulation of S is a triangulation in which the circumscribed circle of
every triangle contains no point of S in its interior. An alternative equivalent definition
is the following: An edge xy is in the Delaunay triangulation of S if and only if there
is a circle through points x and y whose interior is devoid of points of S. A Delaunay
triangulation of S is the dual graph of the Voronoi diagram of S.

LetD be a Delaunay triangulation of S. The stretch factor (also known as dilation
or spanning ratio) of D is the maximum ratio, among all points p and q in S, of the
shortest path distance from p to q in D over the Euclidean distance ||pq||.

Proving a tight bound on the stretch factor of the Delaunay triangulation has been
a long-standing open problem in computational geometry. Chew [5] showed a lower
bound of π/2 on the stretch factor of the Delaunay triangulation. This lower bound of
π/2 was widely believed to be tight until recently (2009) when Bose et al. [2] proved
that the lower bound is at least 1.5846 > π/2, which was further improved to 1.5932
by Xia and Zhang [17]. Dobkin, Friedman, and Supowit [7, 8] in 1987 showed that the
Delaunay triangulation has stretch factor at most (1 +

√
5)π/2 ≈ 5.08. This upper

bound was improved by Keil and Gutwin [12, 13] in 1989 to 2π/(3 cos (π/6)) ≈ 2.42.
Despite considerable efforts since then, 2.42 currently stands as the best upper bound
on the stretch factor of the Delaunay triangulation. For the special case when the
point set S is in convex position, Cui, Kanj, and Xia [6] recently proved that the
Delaunay triangulation of S has stretch factor at most 2.33.

In this paper we prove that the stretch factor of the Delaunay triangulation of a
point set in the plane is less than ρ = 1.998, significantly improving the current best
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upper bound of 2.42 from 1989 [12, 13]. Our bound of 1.998 is also better than the
upper bound of 2.33 for the special case when the point set is in convex position [6].

Our approach in proving the upper bound on the stretch factor of the Delaunay
triangulation is different from the previous approaches [7, 8, 12, 13, 6]. Our approach
focuses on the geometry of a “chain” of disks in the plane (the formal definition of the
chain is given in section 2). The “stretch factor” of a chain can be defined in analogy
to that of the Delaunay triangulation. We prove that the upper bound on the stretch
factor of a chain is less than 1.998.

Theorem 1. The stretch factor of a chain of disks O in the plane is less than
ρ = 1.998.

As a special case of Theorem 1, we derive the same upper bound on the stretch
factor of the Delaunay triangulation.

Corollary 1. The stretch factor of a Delaunay triangulation D of a set of
points S in the plane is less than ρ = 1.998.

Our result has a direct impact on the problem of constructing spanners of Eu-
clidean graphs [4], which has applications in the area of wireless computing (for more
details, see [15]). Many spanner constructions in the literature rely on extracting
subgraphs of the Delaunay triangulation (see, for example, [3, 9, 10, 14]) and their
spanning ratio is expressed as a function of the stretch factor of the Delaunay trian-
gulation. Hence the new upper bound of 1.998 on the stretch factor of the Delaunay
triangulation automatically improves the upper bounds on the spanning ratio of all
such spanners.

Another important consequence of our result is that it improves the upper bound
of the best stretch factor achieved by plane spanners of the complete two-dimensional
Euclidean graph. Previously, the plane spanner with the best known upper bound
on the stretch factor is the triangular distance Delaunay triangulation by Chew [5],
whose stretch factor is 2. Our result shows that the Delaunay triangulation has a
smaller upper bound of 1.998 on the stretch factor.

We believe that future research based on our approach will yield further improve-
ments in both the upper and lower bounds, and may eventually lead to the tight
bound of the stretch factor of the Delaunay triangulation. At the end of this paper,
we will discuss possible ways to improve our approach for a better upper bound. Fol-
lowing our approach, Xia and Zhang [17] showed an improved lower bound of 1.5932
for the stretch factor of the Delaunay triangulation by giving a sequence of chains
with increasing stretch factors. It was conjectured in [17] that the tight bound occurs
at the limit of the sequence.

The paper is organized as follows. The necessary definitions are given in section 2.
The main theorem of the paper is presented in section 3. There we also discuss the
proof strategy and provide an outline of the proof for the main theorem. Most of
the technical details are captured by two lemmas, whose proofs appear in sections 4
and 5. We discuss the possible improvements of our approach in section 6. Section 7
(the appendix) contains the proofs of some claims made in the paper.

2. Preliminaries. We label the points in the plane by lowercase letters, such as
p, q, u, v, etc. For any two points p, q in the plane, denote by pq the line in the plane
passing through p and q, by pq the line segment connecting p and q, and by −→pq the ray
from p to q. The Euclidean distance between p and q is denoted by ||pq||. The length
of a path P in the plane is denoted by |P |. Any angle denoted by ∠poq is measured
from −→op to −→oq in the counterclockwise direction. Unless otherwise specified, all angles
in this paper are defined in the range (−π, π].
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(b) Example 2.

Fig. 1. Examples of chains. The connecting arcs are thin. A chain may self-intersect, as in
Example 2. Although O1 and O5 intersect in Example 2, there are no connecting arcs between them
because they are not consecutive in the sequence.

Definition 1. We say that a finite sequence of distinct disks1 O = (O1, O2, . . . ,
On) in the plane is a chain if it has the following two properties: (1) Every two
consecutive disks Oi, Oi+1 intersect,2 1 ≤ i ≤ n − 1, but neither disk contains the

other. Denote by C
(i−1)
i and C

(i+1)
i the arcs on the boundary of Oi that is in Oi−1

and Oi+1, respectively. We refer to C
(i−1)
i and C

(i+1)
i as the “connecting arcs” of Oi.

(2) The connecting arcs C
(i−1)
i and C

(i+1)
i of Oi do not overlap for 2 ≤ i ≤ n − 1;

however, C
(i−1)
i and C

(i+1)
i can share an endpoint. See Figure 1 for an illustration.

For any 1 ≤ i ≤ j ≤ n, denote by Oi,j a subchain of O: Oi,j = (Oi, . . . , Oj).

1In this paper, a disk is considered to be a closed subset of the plane.
2This includes the case where Oi, Oi+1 are tangent.
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Definition 2. Given a chain O = (O1, O2, . . . , On). Let u be a point on the
boundary of O1 that is not in the interior of O2. Let v be a point on the boundary
of On that is not in the interior of On−1. We call u, v a pair of terminal points
(or simply terminals) of the chain O. Let o1, . . . , on be the centers of O1, . . . , On,
respectively. We call the polyline uo1 . . . onv the centered polyline between u and v.
For 1 ≤ i ≤ n− 1, let ai and bi be the intersections of the boundaries of Oi and Oi+1

(in the special case where Oi, Oi+1 are tangent, ai = bi). Without loss of generality,
assume all ai’s are on one side of the centered polyline uo1 . . . onv and all bi’s are
on the other side3 (if ai = bi then both of them are on the centered polyline). For
notational convenience, define a0 = b0 = u and an = bn = v. Every disk Oi has
two arcs on its boundary between the line segments ai−1bi−1 and aibi, denoted by Ai

and Bi. Without loss of generality, assume that ai−1, ai are the ends of Ai and bi−1, bi
are the ends of Bi for 1 ≤ i ≤ n. This means that A1 . . . An is a path from u to v
on one side of the chain and B1 . . . Bn is a path from u to v on the other side of
the chain. An arc Ai or Bi may degenerate to a point, in which case ai−1 = ai or
bi−1 = bi, respectively. Refer to Figure 2 for an illustration.

Definition 3. Let DO(u, v) = up1 . . . pn−1v be the shortest polyline from u to v
that consists of line segments up1, p1p2, . . . , pn−1v, where pi ∈ aibi for 1 ≤ i ≤ n−1.
In other words, the polyline DO(u, v) is the shortest polyline (which can be visualized
as a rubber band) from u to v that intersects line segments a1b1, . . . , an−1bn−1 in that
order. See Figure 2 for an illustration. The length of DO(u, v), denoted by |DO(u, v)|,
is the sum of the lengths of the line segments in DO(u, v). If the polyline DO(u, v)
contains a point pj which is aj or bj for some 1 ≤ j ≤ n − 1, we say that u, v are
obstructed. If u, v are unobstructed, then DO(u, v) is the straight line segment uv.
Note that the converse of this statement is not true, because even when DO(u, v) is
the straight line segment uv, DO(u, v) may still contain a point pj ∈ {aj, bj}. See
Figure 2 for an illustrations of obstructed and unobstructed cases.4

We have the following simple proposition.
Proposition 1. If DO(u, v) is the straight line segment uv, then −→uv stabs

O1, . . . , On in order. That is, for any 1 ≤ i < j ≤ n, −→uv enters Oi no later than
entering Oj and exits Oi no later than exiting Oj.

Proof. For 2 ≤ i ≤ n − 1, the two connecting arcs on Oi do not overlap. Hence
ai−1bi−1 and ai+1bi+1 must appear on the different sides of the line aibi. Refer to
Figure 3. Without loss of generality, assume that aibi is a vertical line which divides
the plane into two half-planes so that ai−1bi−1 appears in the left half-plane and
ai+1bi+1 appears in the right half-plane. If DO(u, v) is the straight line segment uv,
then u, p1, p2, . . . , pn−1, v are colinear and they appear in that order in the ray −→uv.
This means that −→uv crosses aibi from left to right. Thus −→uv enters Oi−1 and Oi in
the left half-plane. The line aibi divides Oi−1 and Oi each into the left portion and
the right portion (w.r.t. aibi). The left portion of Oi is contained in the left portion
of Oi−1, and hence −→uv must enter Oi−1 no later than entering Oi. Likewise,

−→uv exits
Oi−1 and Oi in the right half-plane. Since the right portion of Oi−1 is contained in
the right portion of Oi,

−→uv must exit Oi−1 no later than exiting Oi. This completes
the proof.

3The two sides of uo1 . . . onv can be distinguished by the left- and right-hand sides as we move
along uo1 . . . onv.

4Note that for the purpose of bounding the stretch factor of the Delaunay triangulation, only
the case where u, v are unobstructed is relevant. However, for our proof to work, it is necessary to
consider the case when u, v are obstructed (see section 4).
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Fig. 2. Illustrations for the definitions of DO(u, v) and PO(u, v). In both Example 1 and
Example 2, DO(u, v) is the dashed (poly)line, PO(u, v) is the thick path, and the dotted polyline
is the centered polyline between u and v. In Example 1, the terminals u, v are unobstructed, and
in Example 2, u, v are obstructed. Figure (c) is the graph representation GO of the chain O in
Example 2, where the weight of each edge is the length of the corresponding arc or line segment in
O. The shortest path between u and v in (c) is the thick path PGO (u, v), which corresponds to the
thick path PO(u, v) in (b).

Definition 4. We define the shortest path between u and v in O, denoted by
PO(u, v), to be the shortest path from u to v that consists of arcs in {A1, . . . , An} ∪
{B1, . . . , Bn} and line segments in {a1b1, . . . , an−1bn−1}. A more formal definition
of PO(u, v) is given below. Consider a weighted graph representation of O, denoted
by GO, whose vertex set is {u = a0 = b0} ∪ {a1, . . . , an−1} ∪ {b1, . . . , bn−1} ∪ {v =
an = bn} and whose edge set is {(ai−1, ai) | 1 ≤ i ≤ n} ∪ {(bi−1, bi) | 1 ≤ i ≤ n} ∪
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Fig. 3. An illustration for the proof of Proposition 1. The left portion of Oi (w.r.t. aibi) is
contained in the left portion of Oi−1, and the right portion of Oi−1 is contained in the right portion
of Oi.

{(ai, bi) | 1 ≤ i ≤ n−1}. See Figure 2(c) for an illustration. There is a clear bijection
between the edge set of GO and the set of the arcs and line segments {A1, . . . , An} ∪
{B1, . . . , Bn} ∪ {a1b1, . . . , an−1bn−1} in O. The weight of any edge in GO is the
length of the corresponding arc or line segment in O, that is, w(ai−1, ai) = |Ai|,
w(bi−1, bi) = |Bi|, and w(ai, bi) = ||aibi||. If an arc or line segment is degenerated,
then the weight is 0. Let PGO (u, v) be the shortest path between u and v in GO. Then
PO(u, v) is defined to be the path in O that corresponds to PGO (u, v). The length
of PO(u, v), denoted |PO(u, v)|, is the total weight of the edges in PGO (u, v). Refer
to Figure 2 for an illustration. Now we can define the stretch factor of a chain O,
denoted by CO, as the maximum value of

|PO(u, v)|/|DO(u, v)|,

over all terminals u, v of O.
In this paper, we will prove that 1.998 is an upper bound on the stretch factor of

the chain.

3. An overview of the proof of Theorem 1. Due to the complex nature
of the proof of Theorem 1, in this section we discuss the proof strategy and present
an outline of the proof. The main technical details of the proof are captured in two
lemmas, whose proofs are given in the subsequent sections.

When O has only one disk, it is easy to see that for all O, u, and v, |PO(u, v)|/
|DO(u, v)| ≤ π/2 < ρ. So it is natural to attempt an inductive proof based on the
number of disks in O. A simple induction would require us to show that adding a
disk to a chain will not increase the stretch factor. However, this is not true because
one can always increase the stretch factor of a chain by adding a disk to it, albeit by
a very small amount [17]. We tackle this problem by amortized analysis. Specifically,
we introduce a potential function ΦO (to be determined later) and define a target
function ΥO(u, v):

ΥO(u, v) = |PO(u, v)| − λ|DO(u, v)|+ΦO,(1)
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Fig. 4. Illustrations for Definition 5. The path Pi consists of “heavy” (red or dark gray) arcs
and/or “light” (green or light gray) arcs. There are three possible cases for two consecutive disks
Oi−1 and Oi to intersect, as shown in cases (a), (b), and (c). In case (a), Q→i−1 is light and Q←i is
heavy. In this case, ri−1 > ri. In case (b), Q→i−1 is heavy and Q←i is light. In this case, ri > ri−1.
In case (c), both Q→i−1 and Q←i are light. In this case, ri−1 > ri, ri > ri−1, and ri−1 = ri are all
possible. Figure (d) shows an example of Pi and Pi+1 defined on three consecutive disks Oi−1, Oi,
and Oi+1. Note that Oi has two different peaks. The peak q←i is defined with regard to the preceding
disk Oi−1. The peak q→i is defined with regard to the succeeding disk Oi+1.

where λ = 1.8 is a parameter whose value is determined by the potential function.
Then we will try to prove that ΥO(u, v) < 0 for all O, u, and v. This is a sufficient
condition for Theorem 1, as we will show later in this section.

The key component of the amortized analysis is the selection of an appropriate
potential function ΦO, which is described in the following.

Definition 5. Let Oi−1 and Oi be two consecutive disks in a chain O. Without
loss of generality, assume that their centers oi−1, oi lie on a horizontal line and that
ai−1 is on or above the line oi−1oi. See Figure 4. Let q→i−1 be the “peak” of Oi−1 with
regard to oi−1oi, i.e., the point on the upper boundary of Oi−1 that is the farthest from
the line oi−1oi. Likewise, let q←i be the “peak” of Oi with regard to oi−1oi (the sign
→ or ← indicates whether the peak is defined with the preceding disk or the succeeding
disk in O). Let Q→i−1 be the upper arc between q→i−1 and ai−1 on the boundary of Oi−1
and let Q←i be the upper arc between q←i and ai−1 on the boundary of Oi. If Q→i−1 is
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inside Oi, we say that it is “heavy” (colored red5 in Figure 4); otherwise we say that
Q→i−1 is “light” (colored green6 in Figure 4). Likewise, we say that Q←i is “heavy”
or “light” depending on whether it is inside Oi−1. Let Pi be a path from q→i−1 to q←i
consisting of Q→i−1 and Q←i . Let Hi be the horizontal distance traveled along the path
Pi with light arcs contributing positively to Hi and heavy arcs contributing negatively
to Hi. Similarly, let Vi be the vertical distance traveled along the path Pi with light
arcs contributing positively to Vi and heavy arcs contributing negatively to Vi. The
potential function is defined as follows:

ΦO = ϕ(rn − r1)−
ϕ

3

n∑
i=2

(2Hi + Vi),(2)

where ri is the radius of Oi and ϕ = 3√
5
(1 − λ/ρ) is a parameter that determines

the “weight” of the potential function. When n = 1, i.e., when O has only one disk,
ΦO = ϕ(r1 − r1)− ϕ

3

∑1
i=2(2Hi + Vi) = 0.

The potential function is constructed with three goals in mind, given as three
lemmas (Lemmas 1, 2, and 3) in the following. Lemma 1 is easy to prove, but
Lemmas 2 and 3 are quite technical and will be proved in subsequent sections.

First goal: the potential function ΦO is constructed such that adding a disk to O
does not increase ΦO, as shown below.

Lemma 1. ΦO ≤ ΦO1,n−1 .
Proof. We have the following observations, whose proofs are given in the appendix

(section 7.1):

Hi = ||oioi−1||,(3)

Vi ≥ |ri − ri−1|.(4)

By the triangle inequality, ||onon−1|| ≥ ||onan−1|| − ||on−1an−1|| = rn − rn−1.
Combining this with (3) and (4), we have

2Hn + Vn ≥ 2||onon−1||+ |rn − rn−1|
≥ 2(rn − rn−1) + (rn − rn−1)
= 3(rn − rn−1).(5)

Therefore

ΦO − ΦO1,n−1 =

[
ϕ(rn − r1)−

ϕ

3

n∑
i=2

(2Hi + Vi)

]
−
[
ϕ(rn−1 − r1)−

ϕ

3

n−1∑
i=2

(2Hi + Vi)

]
= ϕ(rn − rn−1)−

ϕ

3
(2Hn + Vn)

≤ ϕ(rn − rn−1)−
ϕ

3
(3(rn − rn−1)) = 0.

Second goal: the potential function ΦO is constructed such that ΥO(u, v) =
|PO(u, v)| − λ|DO(u, v)|+ΦO < 0 for all O, u, and v, as shown below.

Lemma 2 (proof in section 4). For all O, u, and v, ΥO(u, v) < 0.

5Red appears as dark gray in black and white print. See electronic version for color images.
6Green appears as light gray in black and white print.
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Third goal: the potential function ΦO is constructed such that its value can be
bounded from below as a function of |PO(u, v)| for some chain O with certain extremal
properties, as shown below.

Lemma 3 (proof in section 5). Let O be a set of chains whose stretch factor
is greater than or equal to a threshold τ . If O is nonempty, then there exists a
chain O∗ ∈ O with terminals u, v such that |PO∗(u, v)|/|DO∗(u, v)| ≥ τ and ΦO∗ ≥
−
√
5ϕ
3 |PO∗(u, v)|.
Assuming Lemmas 2 and 3 are true, we can prove the main theorem.
Proof for Theorem 1. We will prove that for all O, the stretch factor CO is less

than ρ = 1.998. For the sake of contradiction, suppose that there is a nonempty set O
of chains O with stretch factor CO ≥ ρ. By Lemma 3, there exists a chain O∗ ∈ O

with terminals u and v such that

|PO∗(u, v)|/|DO∗(u, v)| ≥ ρ(6)

and

ΦO∗ ≥ −
√
5ϕ

3
|PO∗(u, v)|.(7)

By Lemma 2,

ΥO∗(u, v) = |PO∗(u, v)| − λ|DO∗(u, v)|+ΦO∗ < 0.(8)

Combining (7) and (8), we have

|PO∗(u, v)| − λ|DO∗(u, v)| −
√
5ϕ

3
|PO∗(u, v)|

≤ |PO∗(u, v)| − λ|DO∗(u, v)|+ΦO∗

= ΥO∗(u, v)
< 0.(9)

Recall that ϕ = 3√
5
(1− λ/ρ). We have

|PO∗(u, v)| − λ|DO∗(u, v)| −
√
5ϕ

3
|PO∗(u, v)|

=

(
1−

√
5ϕ

3

)
|PO∗(u, v)| − λ|DO∗(u, v)|

= (1− (1− λ/ρ))|PO∗(u, v)| − λ|DO∗(u, v)|

=
λ

ρ
|PO∗(u, v)| − λ|DO∗(u, v)|

= λ

(
|PO∗(u, v)|

ρ
− |DO∗(u, v)|

)
.(10)

From (9) and (10), we have λ
( |PO∗ (u,v)|

ρ − |DO∗(u, v)|
)
< 0. In other words,

|PO∗ (u,v)|
|DO∗ (u,v)| < ρ. This is a contradiction of (6). Therefore O must be empty and hence

CO < ρ for all O.
As a special case of Theorem 1, we can derive an improved upper bound on the

stretch factor of the Delaunay triangulation.
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Proof for Corollary 1. We will prove that the stretch factor of a Delaunay tri-
angulation D of a set of points S in the plane is less than ρ = 1.998. For any two
points x, y ∈ S, let T be the sequence of triangles in D crossed by the ray −→xy. Let
O be the corresponding sequence of circumscribed circles of the triangles in T . It
is clear that O is a chain and x, y are terminals of O. The shortest path distance
from x to y is at most |PO(x, y)|. Since −→xy stabs through all circles in O, x, y are
unobstructed and hence |DO(x, y)| = ||xy||. By Theorem 1, the stretch factor of a
Delaunay triangulation is at most |PO(x, y)|/||xy|| = |PO(x, y)|/|DO(x, y)| < ρ.

The rest of the paper contains the proofs for Lemmas 2 and 3.

4. Proof of Lemma 2. In this section, we will prove that for all O, u, and v,
ΥO(u, v) < 0.

Recall that ΥO(u, v) = |PO(u, v)| − λ|DO(u, v)| + ΦO. Proceed by induction on
n, the number of disks in O. If n = 1, then O has a single disk O1. In this case,
ΦO = 0, PO(u, v) is the shorter arc between u and v on the boundary of O1, and
DO(u, v) is the chord between u and v inside O1. So |PO(u, v)| ≤ π/2|DO(u, v)| <
1.8|DO(u, v)| = λ|DO(u, v)| and hence ΥO(u, v) = |PO(u, v)| − λ|DO(u, v)| + ΦO =
|PO(u, v)| − λ|DO(u, v)| < 0 when n = 1.

Now assuming that the statement is true when there are less than n disks in O,
where n ≥ 2, we will prove that it is true when there are n disks in O.

For the rest of this section, fix an arbitrary chain O = (O1, O2, . . . , On) and an
arbitrary terminal u on the boundary of O1.

Before presenting the technical details of the proof for Lemma 2, we give a road-
map of the steps involved in the proof. Essentially, this is a step-by-step process of
narrowing down the worst case to a specific configuration where the stretch factor of
the chain can be bounded by some smooth single-variant functions, whose values can
be easily bounded.

1. First, we eliminate some simple special cases, including the case when v =
an−1 or v = bn−1 (Proposition 2) and the case when u and v are obstructed
(Proposition 3).

2. Then by Propositions 4 and 5 we narrow down the worst case to the condition
when v is the “pivot point” on the boundary of On, i.e., when the shortest
path from u to v including An and the the shortest path from u to v including
Bn have the same length.

3. Finally we distinguish two cases depending on the angle between uv and
on−1on. Proposition 6 deals with the case when the angle is large, and Propo-
sition 7 deals with the case when the angle is small, which is by far the most
complicated case.

First consider the special case when v is either an−1 or bn−1.
Proposition 2. ΥO(u, an−1) < 0 and ΥO(u, bn−1) < 0.
Proof. We first prove that ΥO(u, an−1) < 0. Refer to Figure 5 for an illustra-

tion. Consider the subchain O1,n−1 = (O1, . . . , On−1). Since u, an−1 are terminals of
O1,n−1, by the inductive hypothesis,

ΥO1,n−1(u, an−1)
= |PO1,n−1(u, an−1)| − λ|DO1,n−1(u, an−1)|+ΦO1,n−1

< 0.(11)

We claim that

|PO(u, an−1)| ≤ |PO1,n−1(u, an−1)|(12)



1630 GE XIA

a1

b1

A1

B1

a2

b2(b3)

A2

B2

a3

A3

B3

v
(a4,a5,b5)

b4

A4

B4

A5

B5

u

(a0,b0)

Fig. 5. An illustration for Proposition 2.

and

|DO(u, an−1)| = |DO1,n−1(u, an−1)|.(13)

To verify (12), we note that any arc or line segment in PO1,n−1(u, an−1) can also
be used by PO(u, an−1), with the exception that the arc Bn−1 in O1,n−1 between bn−1
and an−1 (the dotted arc in Figure 5) is replaced by a “shortcut” in O via bn−1an−1.
So clearly |PO(u, an−1)| ≤ |PO1,n−1(u, an−1)|.

Now we verify equality (13). By Definition 3, DO(u, an−1) is the shortest polyline
that consists of line segments up1, p1p2, . . . , pn−1an−1, where pi ∈ aibi for 1 ≤ i ≤
n−1. We can assume pn−1 = an−1, because |pn−2an−1|+ |an−1an−1| = |pn−2an−1| ≤
|pn−2pn−1| + |pn−1an−1| for any pn−1 by triangle inequality. So DO(u, an−1) is the
shortest polyline that consists of line segments up1, p1p2, . . . , pn−2an−1 which is the
same as DO1,n−1(u, an−1). Hence |DO(u, an−1)| = |DO1,n−1(u, an−1)| and we have
equality (13).

From (11), (12), and (13), we have

ΥO(u, an−1) = |PO(u, an−1)| − λ|DO(u, an−1)|+ΦO
≤ |PO1,n−1(u, an−1)| − λ|DO1,n−1(u, an−1)|+ΦO
= |PO1,n−1(u, an−1)| − λ|DO1,n−1(u, an−1)|+ΦO1,n−1 +ΦO − ΦO1,n−1

= ΥO1,n−1(u, an−1) + ΦO − ΦO1,n−1

< ΦO − ΦO1,n−1

≤ 0.(14)

The last inequality is from Lemma 1. Similarly, we can prove that ΥO(u, bn−1) < 0.
This completes the proof of Proposition 2.

Next consider the case when u and v are obstructed. Refer to Figure 6 for an
illustration.

Proposition 3. If u and v are obstructed, then ΥO(u, v) < 0.
Proof. If u and v are obstructed, then DO(u, v) contains a point pj that is either

aj or bj for some 1 ≤ j ≤ n− 1. Without loss of generality, assume pj = aj . Consider
two subchains of O: O1,j+1 = (O1, . . . , Oj+1) and Oj+1,n = (Oj+1, . . . , On). Points
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Fig. 6. An illustration for Proposition 3.

u, aj are terminals of O1,j+1 and points aj , v are terminals of Oj+1,n. If j = n− 1, by
Proposition 2,

ΥO1,j+1(u, aj) = ΥO(u, an−1) < 0.(15)

If j < n− 1, O1,j+1 has fewer than n disks, and by the inductive hypothesis

ΥO1,j+1(u, aj) < 0.(16)

On the other hand, Oj+1,n has fewer than n disks, and by the inductive hypothesis,

ΥOj+1,n(aj , v) < 0.(17)

For reasons similar to those for (12) and (13), we have

|PO(u, v)| ≤ |PO1,j+1(u, aj)|+ |POj+1,n(aj , v)|,(18)

|DO(u, v)| = |DO1,j+1(u, aj)|+ |DOj+1,n(aj , v)|.(19)

Also,

ΦO = ϕ(rn − r1)−
ϕ

3

n∑
i=2

(2Hi + Vi)

= ϕ(rn − rj+1 + rj+1 − r1)−
ϕ

3

j+1∑
i=2

(2Hi + Vi)−
ϕ

3

n∑
i=j+2

(2Hi + Vi)

= ϕ(rj+1 − r1)−
ϕ

3

j+1∑
i=2

(2Hi + Vi) + ϕ(rn − rj+1)−
ϕ

3

n∑
i=j+2

(2Hi + Vi)

= ΦO1,j+1 +ΦOj+1,n .(20)
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Combining (15)–(20), we have

ΥO(u, v) = |PO(u, v)| − λ|DO(u, v)|+ΦO
≤ |PO1,j+1(u, aj)| − λ|DO1,j+1(u, aj)|+ΦO1,j+1

+ |POj+1,n(aj , v)| − λ|DOj+1,n(aj , v)|+ΦOj+1,n

= ΥO1,j+1(u, aj) + ΥOj+1,n(aj , v)

< 0,(21)

as desired. This completes the proof of Proposition 3.
In the rest of the proof for Lemma 2, we assume that u and v are unobstructed,

even if it is not explicitly stated. The following definitions are needed. Recall that u
is fixed.

Definition 6. Consider the set of terminal points v on On such that u and v
are unobstructed. Such a set forms an arc (illustrated by the thick arc in Figure 7(a)),

denoted by Â and referred to as the unobstructed arc.7 Denote by PAn

O (u, v) and

PBn

O (u, v) the shortest paths from u to v that include the arcs An and Bn (on the
boundary of On), respectively. See Figures 7(b) and 7(c) for an illustration. We call

v pivotal if |PAn

O (u, v)| = |PBn

O (u, v)|. Note that Â cannot have more than one pivotal

point because |PAn

O (u, v)| − |PBn

O (u, v)| varies monotonically as v moves along Â in
one direction.

Proposition 4. If u is fixed and u, v are unobstructed, then the maximum of
ΥO(u, v) occurs when v is an endpoint of Â or when v is pivotal in Â.

Proof. Let Â′ be an arbitrary subarc of Â that does not contain a pivotal point
in its interior. We will use functional analysis to show that the maximum of ΥO(u, v)
for v ∈ Â′ occurs when v is an endpoint of Â′.

Since Â′ does not contain a pivotal point in its interior, either |PAn

O (u, v)| ≤
|PBn

O (u, v)| for every point v ∈ Â′ or |PBn

O (u, v)| ≤ |PAn

O (u, v)| for every point v ∈ Â′.
Without loss of generality assume that |PAn

O (u, v)| ≤ |PBn

O (u, v)| for every point v

in Â′. Fixing other parameters, ΥO(u, v) is a function of |An| as v moves along Â′.
One observes the following:

1. Since the definition of ΦO is independent of v, ΦO remains constant when v
moves along Â′.

2. |PO(u, v)| is a linear function of |An| because |PO(u, v)| = min{|PAn

O (u, v)|,
|PBn

O (u, v)|} = |PAn

O (u, v)| = |PO(u, an−1)| + |An|, where |PO(u, an−1)| re-
mains constant when v moves along Â′.

3. −λ|DO(u, v)| is a convex function of |An|. To see why, refer to Figure 8. Let
v1 be the location of v after |An| is increased by an infinitesimal amount (i.e.,
d|An|). Then −→vv1 is tangent to On. Let σ be the angle from −→vv1 to −→uv. So
σ = π/2− ∠uvon. It is a simple geometric observation that

d|DO(u, v)|
d|An|

= cosσ = sin(∠uvon).(22)

Also observe that ∠uvon decreases as v moves away from an−1 along Â′ and
hence d∠uvon

d|An| ≤ 0. Since v is the exit-point of ray −→uv on On, ∠uvon ∈

7For notational convenience, assume that ̂A includes its endpoints. This makes ̂A a closed set.
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(b) The thick path is PAn
O (u, v), which is the shortest path from u to v

that includes the arcs An.
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(c) The thick path is PBn
O (u, v), which is the shortest path from u to v

that includes the arcs Bn.

Fig. 7. An illustration for Definition 6. v is pivotal if |PAn
O (u, v)| = |PBn

O (u, v)|.
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Fig. 8. An illustration for Proposition 4. The angle ∠uvon is in the range (−π/2, π/2). As

v moves away from an−1 along ̂A′, ∠uvon decreases. When v moves below uon, ∠uvon becomes
negative.

[−π/2, π/2] and hence d sin(∠uvon)
d∠uvon

≥ 0. So

d sin(∠uvon)
d|An|

=
d sin(∠uvon)

d∠uvon
· d∠uvon

d|An|
≤ 0.(23)

Combining (22) and (23), we have

d2(−λ|DO(u, v)|)
d|An|2

= −λ ·
d(d|DO(u,v)|

d|An| )

d|An|
= −λ · d(sin(∠uvon))

d|An|
≥ 0,

which implies that −λ|DO(u, v)| is a convex function of |An|.
Now we know ΦO, |PO(u, v)|, and −λ|DO(u, v)| are all convex functions of |An|

(constant and linear functions are also convex). Being a sum of convex functions,
ΥO(u, v) = |PO(u, v)| − λ|DO(u, v)| + ΦO is a convex function of |An|. This proves

that the maximum of ΥO(u, v) occurs when v is an endpoint of Â′. Proposition 4
follows from this, because of the following:

• If Â does not contain a pivotal point in its interior, then the maximum of
ΥO(u, v) occurs when v is an endpoint of Â and hence Proposition 4 is true.

• If Â contains a pivotal point in its interior, we can split Â at the pivotal
point into two subarcs Â1 and Â2 that do not contain a pivotal point in their
interiors. So the maximum of ΥO(u, v) for all v ∈ Â1 ∪ Â2 occurs when v is

an endpoint of Â1 or Â2. The endpoints of Â1 and Â2 are either the pivotal
point or the endpoints of Â. Thus, Proposition 4 is also true.

This completes the proof of Proposition 4
In the rest of the proof for Lemma 2, we will show that ΥO(u, v) < 0 if v is

an endpoint of Â and ΥO(u, v) < 0 if v is pivotal. Once these are proven, then by

Proposition 4, we have ΥO(u, v) < 0 for any point v in Â, which completes the proof
of Lemma 2.
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Fig. 9. An illustration of the coordinate system and the definition of the parameters α, β, γ.

Proposition 5. ΥO(u, v) < 0 if v is an endpoint of Â.

Proof. If v is an endpoint of Â, then there are two cases: (1) v ∈ {an−1, bn−1},
or (2) u, v are obstructed. See Figure 7 for an illustration. In either case, we have
ΥO(u, v) < 0 by Propositions 2 and 3.

What remains to be shown is that ΥO(u, v) < 0 when v is pivotal. This requires a
careful analysis of the geometry. To start, we fix a coordinate system where the origin
is the center point of an−1bn−1, the x-axis is on−1on, and the y-axis is an−1bn−1. See
Figure 9 for an illustration. For any point p in the plane, denote by Xp and Yp the
x- and y-coordinates of p in the coordinate system. By flipping along the x-axis or
the y-axis (or both) if necessary, we can assume that Xon−1 ≤ Xon (i.e., on−1 is to
the left of on) and Yv ≤ Yu (i.e., u is above v). Without loss of generality, let an−1
be above bn−1 (the analysis will be similar if bn−1 is above an−1). By Proposition 1,
−→uv crosses an−1bn−1 from left to right. Hence u is to the left of the y-axis and v is to
the right of the y-axis.

Let q be the rightmost intersection between On and the x-axis. We define the
following parameters. Let α = ∠qonan−1 and β = ∠vonq. Let γ be the angle from
−→uv to the x-axis in the counterclockwise direction.

The ranges of α, β, and γ are given as follows.
• Since an−1 is on or above the x-axis, 0 ≤ α ≤ π. If α = 0 or α = π, then
an−1 = bn−1, which means that DO(u, v) contains an−1 and ΥO(u, v) < 0 by
Proposition 3. So we can assume

0 < α < π.(24)

• Since v is a pivotal point, we have |PAn

O (u, v)| = |PBn

O (u, v)|, where |PAn

O
(u, v)| = |PO(u, an−1)|+ |An| and |PBn

O (u, v)| = |PO(u, bn−1)|+ |Bn|. Thus,

|An| − |Bn| = |PO(u, bn−1)| − |PO(u, an−1)|.(25)
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Fig. 10. An illustration for the range of γ. This shows that 0 < γ < γ′, where γ′ = π/2 −
∠bn−1an−1v = π/2− ∠bn−1onv

2
= π/2− (α− β)/2.

Since an−1 and bn−1 are connected by a line segment an−1bn−1, the difference
between |PO(u, an−1)| and |PO(u, bn−1)| is at most ||an−1bn−1||. In other
words,

−||an−1bn−1|| ≤ |PO(u, bn−1)| − |PO(u, an−1)| ≤ ||an−1bn−1||.(26)

Combining (25) and (26) gives −||an−1bn−1|| ≤ |An| − |Bn| ≤ ||an−1bn−1||.
We further observe that ||an−1bn−1|| = 2rn sinα and |An| − |Bn| = 2rnβ.
Thus the range of β is

− sinα ≤ β ≤ sinα.(27)

• We have γ ≥ 0 since Yv ≤ Yu.
We claim that the largest value of γ occurs when uv passes through an−1.
Here is why. Refer to Figure 10. Since uv crosses an−1bn−1 and γ ≥ 0 , uv is
sandwiched between the horizontal line passing through v and the line an−1v
(see Figure 10). Within this range, γ obtains its maximum value when uv is
on the line an−1v, i.e., when uv passes through an−1.
This means γ ≤ π/2− ∠bn−1an−1v = π/2− ∠bn−1onv

2 = π/2− (α− β)/2 (as
illustrated in Figure 10). So the range of γ is

0 ≤ γ ≤ π/2− (α− β)/2 < π/2.(28)

The last inequality is true because from (27) α− β ≥ α− sinα > 0.
We proceed by distinguishing two cases depending on the value of γ with regard

to a threshold value γ+, which is defined as

γ+ =
3 sinα− α

4
+ arcsin

(
α+ sinα

4λ sin(α+sinα
4 )

)
.(29)
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Fig. 11. An illustration for Proposition 6.

Proposition 6. If v is a pivotal point and γ ≥ γ+, then ΥO(u, v) < 0.
Proof. The first step is to show that |DO(u, v)| − |DO(u, an−1)| ≥ ||v′v|| −

||v′an−1||, where v′ is the entry-point of −→uv on On (see Figure 11). This requires
a careful verification because in general DO(u, an−1) may not be a straight line seg-
ment.

Recall that u, v are unobstructed. So −→uv crosses all line segments aibi, 1 ≤
i ≤ n − 1, in that order. Visualize DO(u, v) as a rubber band connecting u and v
(illustrated by the dashed line between u and v in Figure 11). As v moves along the
boundary of On toward an−1, the line segment DO(u, v) transforms into a polyline
DO(u, an−1) that “bends” around points aj , ak, . . . ∈ {a1, . . . , an−1}, as illustrated in
Figure 11. Therefore DO(u, an−1) is a path from u to an−1 that is convex-away from
uan−1 and is contained in the area bounded by uan−1, uv, and An. Refer to Figure 11.
Let ak be the last turning point in the polyline DO(u, an−1). So akan−1 is a part of
DO(u, an−1). By definition, ak is an intersection between Ok and Ok+1. Note that
ak and an−1 are terminals of the subchain Ok+1,n and ak 	= ak+1 (otherwise we will
choose ak+1 as the last turning point). Therefore ak is the entry-point of −−−−→akan−1 on
Ok+1. By Proposition 1, −−−−→akan−1 enters Ok+1 no later than entering On. This means
that ak appears in the ray −−−−→akan−1 no later than the entry-point of −−−−→akan−1 on On,
denoted henceforth by v′′. Since akan−1 is a part of DO(u, an−1), akan−1 is contained
in the area bounded by uan−1, uv, and An. This means that −−−−→akan−1 cannot enter On

via An (the blue8 arc in Figure 11). In other words, the entry-point of −−−−→akan−1 on On

(i.e., v′′) is on the arc between an−1 and v′ (the green9 arc in Figure 11). Since ak
appears in −−−−→akan−1 no later than v′′, ak is in 
uv′an−1. Now recall that DO(u, an−1)
is a path from u to an−1 that is convex-away from uan−1. Let

Π = uan−1 ∪DO(u, an−1).

8Blue appears as dark gray in black and white print.
9Green appears as light gray in black and white print.
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Then Π is a convex polygon. Since Π contains akan−1 as an edge, the convex polygon
Π as a whole is on the same side of the line an−1v′′. Combining this with the fact
that Π is contained in the area bounded by uan−1, uv, and An, we conclude that Π
is contained in the triangle 
uv′an−1. See Figure 11 for an illustration. It is known
that if a convex polygonal body Π is contained in another convex polygonal body

uv′an−1, then the length of the boundary of Π is less than or equal to the length
of the boundary of 
uv′an−1 (see [1, p. 42]). Therefore we have |DO(u, an−1)| +
||uan−1|| ≤ ||uv′|| + ||v′an−1|| + ||uan−1|| or, equivalently, |DO(u, an−1)| ≤ ||uv′|| +
||v′an−1||. Recall that |DO(u, v)| = ||uv||. We have

|DO(u, v)| − |DO(u, an−1)| ≥ ||uv|| − (||uv′||+ ||v′an−1||)
= ||v′v|| − ||v′an−1||,(30)

as claimed in the beginning of this proof.
Again refer to Figure 11. Using simple trigonometric functions, one verifies

that ||v′v|| = 2rn cos(∠vv′on) and ||v′an−1|| = 2rn cos(∠onv′an−1), where ∠vv′on =

∠onvv′ = β − γ and ∠onv′an−1 = ∠vv′an−1 − ∠vv′on = ∠vonan−1

2 − ∠vv′on =
(α + β)/2 − (β − γ) = α/2 − β/2 + γ. Combining these with (30) and applying
trigonometric identities, we have

|DO(u, v)| − |DO(u, an−1)|
≥ ||v′v|| − ||v′an−1||
= 2rn cos(β − γ)− 2rn cos(α/2− β/2 + γ)

= −4rn sin(α/4 + β/4) sin(3β/4− α/4− γ).(31)

Since v is pivotal, |PO(u, v)| = |PO(u, an−1)| + |An| = |PO(u, bn−1)| + |Bn|.
Note that |An| = rn(α + β). By Proposition 2, ΥO(u, an−1) = |PO(u, an−1)| −
λ|DO(u, an−1)|+ΦO < 0. Combining these with (31), we have

ΥO(u, v) = |PO(u, v)| − λ|DO(u, v)|+ΦO
= |PO(u, an−1)|+ |An| − λ|DO(u, v)|+ΦO
= (|PO(u, an−1)| − λ|DO(u, an−1)|+ΦO)

+ |An| − λ|DO(u, v)|+ λ|DO(u, an−1)|
= ΥO(u, an−1) + |An| − λ(|DO(u, v)| − |DO(u, an−1)|)
< |An| − λ(|DO(u, v)| − |DO(u, an−1)|)
≤ rn(α+ β) + 4λrn sin(α/4 + β/4) sin(3β/4− α/4− γ).(32)

Define a function

h(α, β, γ) = rn(α+ β) + 4λrn sin(α/4 + β/4) sin(3β/4− α/4− γ).

Then from (32)

ΥO(u, v) < h(α, β, γ).(33)

We have

∂h

∂γ
= −4λrn sin(α/4 + β/4) cos(3β/4− α/4− γ).(34)
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By (27), we have α/4 + β/4 ≥ (α − sinα)/4 > 0 and α/4 + β/4 ≤ (α + sinα)/4 <
π/4. The last inequality is true because (α + sinα)/4 is an increasing function for
α ∈ (0, π). So

0 < α/4 + β/4 < π/4.(35)

By (28), we have 3β/4−α/4−γ ≥ 3β/4−α/4−π/2+(α−β)/2 = α/4+β/4−π/2 >
−π/2. Also 3β/4− α/4− γ < 3β/4 ≤ (3 sinα)/4 ≤ 3/4. So

−π/2 < 3β/4− α/4− γ < 3/4.(36)

From (35) and (36), sin(α/4+ β/4) > 0 and cos(3β/4−α/4− γ) > 0. Plugging these
into (34), we have

∂h

∂γ
< 0.(37)

Let

γ∗ = 3β/4− α/4 + arcsin

(
α+ β

4λ sin(α/4 + β/4)

)
.

It is easy to verify that h(α, β, γ∗) = 0. By a careful calculation that is given in the
appendix (section 7.2), we can show that

γ∗ ≤ γ+.(38)

By (37), h is a decreasing function of γ. So for any γ ≥ γ+ ≥ γ∗, we have

h(α, β, γ) ≤ h(α, β, γ+) ≤ h(α, β, γ∗) = 0.

Combining this with (33), we have ΥO(u, v) < h(α, β, γ) ≤ 0, as desired. This
completes the proof of Proposition 6.

The only remaining case is when γ is below the threshold γ+.
Proposition 7. If v is a pivotal point and γ < γ+, then ΥO(u, v) < 0.
Proof. Consider the following transformation (see Figure 12):
• Transform On by fixing two “anchor” points an−1, bn−1 on its boundary
and moving its center on along the x-axis toward on−1, the center of On−1.
During the transformation, the points an−1 and bn−1 remain the intersections
between the boundaries of On and On−1. The radius of On changes during
the transformation. In Figure 12, the dotted disks show the process of the
transformation.

• Adjust the location of v on the boundary of On so that v stays pivotal. In
Figure 12, the sequence of large dots shows the locations of v during the
transformation.

• Stop the transformation when γ ≥ γ+ or when on reaches on−1.
We will have one of two cases by the end of the transformation: (1) if γ ≥ γ+ at

the end of the transformation, then ΥO(u, v) < 0 by Proposition 6; (2) if on reaches
on−1 at the end of the transformation, then ΥO(u, v) = ΥO1,n−1(u, v) < 0 by the
inductive hypothesis. So in any case, ΥO(u, v) < 0 at the end of the transformation.

In order to prove the proposition, we need to show that ΥO(u, v) < 0 before the
transformation. Since ΥO(u, v) < 0 at the end of the transformation, it suffices to
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u

on−1 on q

v

an−1

bn−1

An

Bn

On−1 On

Fig. 12. An illustration for the transformation in Proposition 7. Transform On by moving on
(the center of On) toward on−1 (the center of On−1) along the x-axis while fixing an−1 and bn−1

as the intersections between the boundaries of On and On−1. The dotted disks show the process of
the transformation. In the transformation, the radius of On changes, but v stays pivotal. The large
dots show the locations of v during the transformation.

show that ΥO(u, v) does not decrease during the transformation. Since the transfor-
mation is effected by varying Xon—the x-coordinate of on—and Xon decreases during
the transformation, we only need to show that

∂ΥO(u, v)
∂Xon

≤ 0

during the transformation. We will prove this by analyzing the geometry. Recall that
we have fixed a coordinate system where the origin is the center point of an−1bn−1,
the x-axis is on−1on, where on−1 is to the left of on, and the y-axis is an−1bn−1, where
an−1 is above bn−1.

Since ΥO(u, v) = |PO(u, v)| − λ|DO(u, v)| + ΦO by (1), we need to calculate the

partial derivatives ∂|PO(u,v)|
∂Xon

, ∂ΦO
∂Xon

, and ∂|DO(u,v)|
∂Xon

. The calculations for them are

routine but technical, and are given in the appendix (section 7.3).

∂|PO(u, v)|
∂Xon

= sinα− α cosα,(39)

∂ΦO
∂Xon

=

{
− 2ϕ

3 − 4ϕ
3 cosα if 0 < α < π/2,

− 2ϕ
3 − 2ϕ

3 cosα if π/2 ≤ α < π,
(40)

∂|DO(u, v)|
∂Xon

= cos γ − cosα(cos(β − γ) + β sin(β − γ)).(41)

Based on (41), we define a function

f(α, β, γ) = −λ
∂|DO(u, v)|

∂Xon

(42)

= −λ(cos γ − cosα(cos(β − γ) + β sin(β − γ))).(43)
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We can bound f(α, β, γ) by single-variant functions in α, as shown in the following
inequality, whose proof is quite technical and is given in the appendix (section 7.4):

f(α, β, γ) ≤
{
max{f(α, sinα, 0), f(α, sinα, γ+)} if 0 < α < π/2,

max{f(α, 0, 0), f(α, 0, γ+)} if π/2 ≤ α < π.
(44)

Combining (39), (40), (41), (42), and (44), we have

∂ΥO(u, v)
∂Xon

=
∂|PO(u, v)|

∂Xon

− λ
∂|DO(u, v)|

∂Xon

+
∂|ΦO|
∂Xon

=
∂|PO(u, v)|

∂Xon

+ f(α, β, γ) +
∂|ΦO|
∂Xon

=

{
sinα− α cosα+ f(α, β, γ)− 2ϕ

3 − 4ϕ
3 cosα if 0 < α < π/2,

sinα− α cosα+ f(α, β, γ)− 2ϕ
3 − 2ϕ

3 cosα if π/2 ≤ α < π

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sinα− α cosα+max{f(α, sinα, 0), f(α, sinα, γ+)}

− 2ϕ
3 − 4ϕ

3 cosα if 0 < α < π/2,

sinα− α cosα+max{f(α, 0, 0), f(α, 0, γ+)}
− 2ϕ

3 − 2ϕ
3 cosα if π/2 ≤ α < π.

(45)

By (45), we only need to verify the following four inequalities, where f(α, β, γ) =
−λ(cos γ−cosα(cos(β−γ)+β sin(β−γ))) and γ+ = 3 sinα−α

4 +arcsin
(

α+sinα
4λ sin(α+sinα

4 )

)
:

g1(α) = sinα− α cosα− 2ϕ

3
− 2ϕ

3
cosα+ f(α, 0, 0) < 0, when π/2 ≤ α < π,

(46)

g2(α) = sinα− α cosα− 2ϕ

3
− 2ϕ

3
cosα+ f(α, 0, γ+) < 0, when π/2 ≤ α < π,

(47)

g3(α) = sinα− α cosα− 2ϕ

3
− 4ϕ

3
cosα+ f(α, sinα, 0) < 0, when 0 < α < π/2,

(48)

g4(α) = sinα− α cosα− 2ϕ

3
− 4ϕ

3
cosα+ f(α, sinα, γ+) < 0, when 0 < α < π/2.

(49)

Since g1, g2, g3, and g4 are smooth single-variant functions on small intervals of
α, one can easily verify the above inequalities using numerical computing software,
such as Mathematica. For completeness, a more formal verification is given in the
appendix (section 7.5). There we show that g1, g2, g3, and g4 have small Lipschitz
constants, and then use a program that implements a simplified Piyavskii algorithm
[16] to verify that their upper bounds are less than 0. This completes the proof of
Proposition 7.

This is the end of the proof of Lemma 2.

5. Proof of Lemma 3. Let O be a set of chains whose stretch factor is greater
than or equal to a threshold τ . In this section, we will prove that ifO is nonempty, then
there exists a chain O∗ ∈ O with terminals u, v such that |PO∗(u, v)|/|DO∗(u, v)| ≥ τ

and ΦO∗ ≥ −
√
5ϕ
3 |PO∗(u, v)|.
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Suppose that O is nonempty. Let E be the subset of O consisting of chains in
O with a minimum number of disks. E is nonempty because O is nonempty. The
number of disks in a chain of E is denoted n. Next, we will choose a chain O∗ from E

such that the total radii of the disks in O∗ is minimized. We justify below that such
an O∗ always exists when E is nonempty.

Note that the definition of the chain (Definition 1) includes the boundary cases:
the case when two consecutive disks are tangent and the case when two connecting
arcs of the same disk share an endpoint. Also note that the definition of O includes
the boundary case, i.e., the case when the stretch factor is equal to the threshold τ .
Therefore, E also contains its boundary cases. In other words, E is a closed set (but
E is not necessarily bounded). Associate with every chain O ∈ E a pair of terminals
u, v that yields the worst stretch factor of O. Every O ∈ E can be represented10 by
a vector x ∈ R3n that specifies, for each of the n disks in O, its radius and the x-
and y-coordinates of its center in a (normalized) coordinate system where u is the
origin and v is (1, 0). Therefore E can be mapped to a nonempty closed set S ⊆ R3n.
Define a function H : S → R as H(x) =

∑n
i=1 ri, where x ∈ S and r1, . . . , rn are

the radii of the disks in the chain O represented by x. H(x) is a continuous (linear)
function on S. Observe that when the L2-norm of x, ||x||2, approaches infinity, the
length of the centered polyline (the polyline connecting the centers of the disks in O;
see Definition 2) also approaches infinity. Therefore, to prevent the chain O from
being broken, the total radii of the disks in the chain (i.e., H(x)) must also approach
infinity. In other words,

lim
||x||2→∞

H(x) → ∞.

This means that H is a coercive function on S. It is known that a continuous coercive
function on a nonempty closed set S ⊆ R3n has a global minimum, regardless of
whether S is bounded or not (see [11, p. 60]). So H has a global minimum on S.
Therefore we can choose O∗ to be the chain in E that achieves the global minimum
of H. Let u, v be the terminals associated with O∗ that yield the worst stretch factor.
Then O∗ satisfies three conditions:

1. Since O∗ ∈ O, O∗ has stretch factor ≥ τ , i.e., |PO∗(u, v)|/|DO∗(u, v)| ≥ τ .
2. Since O∗ ∈ E, the number of disks in O∗ is minimized among all chains in O.
3. Since O∗ minimizes H, the sum of the radii

∑
Oi∈O∗ ri is minimized among

all chains in E.
Because O∗ satisfies conditions 1–3, we can prove that it has the following two

properties (Propositions 8 and 9), which may not hold for a general chain.
Proposition 8. u and v are unobstructed in O∗.
Proof. Suppose that DO∗(u, v) is obstructed. Then DO∗(u, v) contains a point pj

which is either aj or bj for some 1 ≤ j ≤ n−1. Consider two subchains of O∗: O∗1,j =
(O1, . . . , Oj) and O∗j+1,n = (Oj+1, . . . , On). So u, pj are terminals of O∗1,j and pj , v
are terminals of O∗j+1,n. For reasons similar to those for (12) and (13), |PO∗(u, v)| ≤
|PO∗1,j (u, pj)| + |PO∗j+1,n

(pj , v)| and |DO∗(u, v)| = |DO∗1,j (u, pj)| + |DO∗j+1,n
(pj , v)|.

Since |PO∗(u, v)|/|DO∗(u, v)| ≥ τ , we have either |PO∗1,j (u, pj)|/|DO∗1,j (u, pj)| ≥ τ or

|PO∗j+1,n
(pj , v)|/|DO∗j+1,n

(pj , v)| ≥ τ . This means that either O∗1,j ∈ O or O∗j+1,n ∈ O

and both have fewer disks than O∗—a contradiction of condition 2 of O∗. So u, v
must be unobstructed in O∗. This completes the proof of Proposition 8.

10Modulo rotating and scaling, which do not affect the stretch factor.
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Proposition 9. Both A1A2 . . . An and B1B2 . . . Bn are shortest paths between u
and v in O∗.

Proof. Suppose that the statement is not true. Then at least one of these two
paths, say B1B2 . . . Bn, is not a shortest path between u and v in O∗. Let Q be
a shortest path between u and v that contains the longest prefix B1B2 . . . Bj−1 of
B1B2 . . . Bn. If B1B2 . . . Bj−1 is empty, then j = 1. We have a few observations:

• Bj is not in any shortest path between u and v, because if there is a shortest
path Q′ that contains Bj , then replacing the subpath of Q′ before Bj by
B1B2 . . . Bj−1 yields another shortest path Q′′ which contains a longer prefix
B1B2 . . . Bj than Q.

• Since every shortest path between u and v cannot contain Bj , every shortest
path between u and v must containAj because {Aj, Bj} is a cut that separates
u and v.

• Since Q contains Bj−1 and Aj (but not Bj), it must also contain aj−1bj−1.
In the case when j = 1, B0 is degenerated and a0 = b0 = u.

• Bj is not degenerated because (i) if both Aj and Bj are degenerated, then Oj

can be removed from O∗ without changing the stretch factor—a contradiction
of condition 2 of O∗; (ii) if Bj is degenerated and Aj is not degenerated, then
Q can be further shortened by taking ajbj as a shortcut from bj−1 (which
equals bj) to aj instead of taking aj−1bj−1 and Aj—a contradiction of the
fact that Q is a shortest path.

We perform a transformation that shrinks Oj by reducing rj , as follows: fix aj−1
and aj on the boundary of Oj and reduce Oj ’s radius rj by a small amount; in
case where Aj is degenerated, fix aj (which equals aj−1) on the boundary of Oj and
move the center oj toward aj by a small amount along the line segment ojaj . See
Figure 13 for illustrations. Such transformation can be performed while maintaining
the following three properties:

1. O∗ remains a chain. Since aj−1 and aj stay on the boundary of Oj , Oj

remains intersected with Oj−1 and Oj+1 during the transformation. So prop-
erty (1) of a chain (in Definition 1) is satisfied. Shrinking Oj will shrink the

connecting arcs C
(j)
j−1 and C

(j)
j+1, while C

(j−2)
j−1 and C

(j+2)
j+1 remain the same.

Therefore the two connecting arcs on Cj−1, namely, C
(j−2)
j−1 and C

(j)
j−1 will not

overlap after shrinking Oj . For the same reason, C
(j)
j+1 and C

(j+2)
j+1 will not

overlap after shrinking Oj . The only other possible way that property (2) of

a chain can be violated is for C
(j−1)
j and C

(j+1)
j to overlap; but we know that

Bj is not degenerated. So shrinking Oj by a sufficiently small amount will

not make C
(j−1)
j and C

(j+1)
j overlap.

2. Bj is still not in any shortest path between u and v. This is because the
lengths of the paths between u and v change continuously when Oj shrinks.
So we can shrink Oj by a sufficiently small amount such that Bj is still not
in any shortest path between u and v.

3. |DO∗(u, v)| remains unchanged. This is because by Proposition 8, u, v are
unobstructed in O∗. So we can shrink Oj by a sufficiently small amount such
that u, v remain unobstructed, which means that |DO∗(u, v)| = ||uv|| remains
the same.

We claim that shrinking Oj by a sufficiently small amount will not decrease
|PO∗(u, v)|. We will prove the claim by showing that the length of any shortest
path between u and v in O∗ is not decreased after shrinking Oj . Since shrinking Oj
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Aj

a1

b1

b′1

a2

b2(b3)b′2

a3(a4)

b4

a0
u
b0

a5
v
b5

(a) Case 1: Aj is not degenerated.

a1

b1

a2

b2(b3)
b′3

Aj

a3(a4)

b4

b′4

a0
u
b0

a5
v
b5

(b) Case 2: Aj is degenerated.

Fig. 13. Illustrations of Propositions 9: shrinking a disk. There are two cases depending on
whether Aj is degenerated.

does not affect O∗ except for Aj and the arcs and line segments containing bj−1 or bj
(including Bj−1, Bj , Bj+1, aj−1bj−1, and ajbj), we only need to consider the effect
of shrinking Oj on shortest paths that contain Aj , bi−1, or bj .

First consider the effect of shrinking Oj on |Aj |. We have |Aj | ≤ ||aj−1bj−1|| +
|Bj |+ ||ajbj || because otherwise Aj will not be in a shortest path. Hence |Aj | is less
than half of the circumference of Oj . Therefore, shrinking Oj while keeping aj−1 and
aj on the boundary of Oj will increase |Aj |. For an illustration, see Figure 13(a),
which shows that shrinking Oj increases |Aj |.

Next consider the effect of shrinking Oj on any shortest path containing bj−1 or bj .
Let P be an arbitrary shortest path between u and v in O∗ that contains bj . Since
P contains bj but not Bj , P includes Aj , ajbj , and Bj+1. Let b

′
j be the new location

of bj after the transformation of Oj (see Figure 13). Then the arc bjb
′
j becomes an

extension of Bj+1. So after shrinking Oj , |Bj+1| becomes |Bj+1|+ |bjb′j| and ||ajbj ||
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becomes ||ajb′j||. Hence, |P | becomes |P | + |bjb′j | + ||ajb′j || − ||ajbj || after shrinking
Oj . Since ||ajbj || is the shortest distance between aj and bj, we have

|bjb′j|+ ||ajb′j|| − ||ajbj || > 0.(50)

For an illustration, see Figure 13(b), which shows that b′4 is the new location of b4
after shrinking O4 and |b4b′4| + ||a4b′4|| − ||a4b4|| > 0. This implies that shrinking
Oj increases |P |. By a similar argument, shrinking Oj increases the length of any
shortest path containing bj−1.

So in any case, shrinking Oj will not decrease |PO∗(u, v)|.
In summary, we have proven that if B1B2 . . . Bn is not a shortest path, then by

shrinking a disk Oj ∈ O∗ we have a new chain that satisfies conditions 1 and 2 of O∗
and has a smaller sum of radii than O∗, which is a contradiction of condition 3 of O∗.
Therefore the statement of Proposition 9 is true.

In order to prove Lemma 3, we then only need to prove the following.

Proposition 10. ΦO∗ ≥ −
√
5ϕ
3 |PO∗(u, v)|.

Proof. Recall that ΦO∗ = ϕ(rn − r1) − ϕ
3

∑n
i=2(2Hi + Vi). Without loss of

generality, we can assume that rn ≥ r1, because if this is not the case, we can reverse
the labels of the disks in O∗. So it suffices to show that

n∑
i=2

(2Hi + Vi) ≤
√
5|PO∗(u, v)|.(51)

See Figure 14. We create a chain O∗ from O∗ where the centers o1 . . . on are
aligned on a straight line, as follows: first rotate O1 around o1 such that u comes to
a location where |A1| = |B1|; then rotate O1 and O2 as a whole around o2 such that
|A2| = |B2|; then rotate O1, O2, and O3 as a whole around o3 such that |A3| = |B3|;
and so on. O∗ is the resulting chain after the rotation operations.

s
t

PO∗

Fig. 14. An illustration for Proposition 10. The centers of the disks in O∗ are aligned on a
straight line. The path PO∗ consists of “heavy” (red or dark gray) arcs and “light” (green or light
gray) arcs. If we let overlapping heavy arcs and light arcs in PO∗ cancel each other out and then
remove the heavy arcs at the beginning or the end of PO∗ , the resulting path is P ′O∗ , which is a

subpath of A1 . . . An between s and t.



1646 GE XIA

Observe that the rotation operations do not change the total length of the bound-
ary of the chain. So

∑n
i=1(|Ai| + |Bi|) in O∗ remains the same as in O∗, which is

2|PO∗(u, v)| by Proposition 9. In O∗, since Ai = Bi for 1 ≤ i ≤ n, we have

|A1 . . . An| = |B1 . . . Bn| = |PO∗(u, v)|.(52)

Recall from Definition 5 that Hi and Vi are the horizontal and vertical distances
traveled along the path Pi, where Pi is a path from q→i−1, a peak of Oi−1 with regard
to oi−1oi, to q←i , a peak of Oi with regard to oi−1oi. Also recall that the arcs in Pi

are “light” or “heavy” depending on whether the arc is on the boundary of the chain
or not. The light arcs in Pi contribute positively to Hi and Vi, and the heavy arcs
in Pi contribute negatively to Hi and Vi. Observe that Hi and Vi are determined by
the sizes of Oi−1, Oi and the distance between them. The rotation operations do not
affect the sizes and the distance of Oi−1 and Oi. So

∑n
i=2(2Hi + Vi) in O∗ remains

the same as in O∗.
Since the centers o1 . . . on are all aligned on a straight line in O∗, the peaks q←i

and q→i of every disk Oi overlap for 2 ≤ i ≤ n − 1. So the paths P2, . . . ,Pn join at
the peaks to form a single path from q→1 to q←n ; denote it by PO∗ (see Figure 14).
Let HO∗ and VO∗ denote the horizontal and vertical distances traveled along the path
PO∗ . Then HO∗ =

∑n
i=2 Hi and VO∗ =

∑n
i=2 Vi.

We further refine PO∗ into another path P ′O∗ as follows (see Figure 14). First
we let the overlapping portions of heavy arcs and light arcs in PO∗ cancel each other
out; this will not affect HO∗ and VO∗ . All heavy arcs in PO∗ will be canceled in this
manner except for those at the beginning or the end of PO∗ , which can then be safely
removed since they contribute negatively to HO∗ and VO∗ . The resulting path is P ′O∗ .
Let s and t be the endpoints of P ′O∗ .

Let H ′O∗ and V ′O∗ be the horizontal and vertical distances traveled by P ′O∗ . Then

n∑
i=2

Hi = HO∗ ≤ H ′O∗(53)

and

n∑
i=2

Vi = VO∗ ≤ V ′O∗ .(54)

Since P ′O∗ is a path between s and t, by the generalized triangle inequality, we have

√
(H ′O∗)

2 + (V ′O∗)
2 =

√(∫ t

s

|dx|
)2

+

(∫ t

s

|dy|
)2

≤
∫ t

s

√
(dx)2 + (dy)2

= |P ′O∗ |.(55)

Since P ′O∗ is a subpath of A1 . . . An, from (52), we have

|P ′O∗ | ≤ |A1 . . . An| = |PO∗(u, v)|.(56)



STRETCH FACTOR OF THE DELAUNAY TRIANGULATION 1647

Combining (53), (54), (55), and (56) gives√√√√( n∑
i=2

Hi

)2

+

(
n∑

i=2

Vi

)2

≤
√
(H ′O∗)

2 + (V ′O∗)
2

≤ |P ′O∗ |
≤ |PO∗(u, v)|.(57)

Applying the Cauchy–Schwarz inequality and using (57), we have

2

n∑
i=2

Hi +

n∑
i=2

Vi ≤
√
22 + 12 ·

√√√√( n∑
i=2

Hi

)2

+

(
n∑

i=2

Vi

)2

=
√
5 ·

√√√√( n∑
i=2

Hi

)2

+

(
n∑

i=2

Vi

)2

≤
√
5 · |PO∗(u, v)|,(58)

as required by (51). This proves Proposition 10.
This completes the proof of Lemma 3.

6. Conclusions. In this paper, we showed that the stretch factor of the Delau-
nay triangulation is less than 1.998 by proving the same upper bound on the stretch
factor of the chain.

There are a few places where our approach can be further improved. First, the
potential function can be improved to yield a better upper bound. For example, if we
define the potential function ΦO to be the length of the segment of uv inside On, then
we can improve the upper bound to 1.98, although the analysis is quite complicated.
Second, the key components of our proof are Propositions 6 and 7, whose proofs rely
largely on functional analysis. We hope to gain insight of the underlying geometry
that will help us simplify the proofs and push the upper bound closer to the tight
bound.

7. Appendix.

7.1. Proofs for equality (3) and inequality (4). For this proof, fix a coor-
dinate system where the origin is oi, the x-axis is −−−→oi−1oi, and ai−1 is on or above the
x-axis. Let Xq→i−1

and Yq→i−1
be the x- and y-coordinates of q→i−1. Let Xq←i and Yq←i

be the x- and y-coordinates of q←i . Let Xai−1 and Yai−1 be the x- and y-coordinates
of ai−1. We distinguish three cases.

• Case 1. Q→i−1 is light and Q←i is heavy, as in Figure 4(a). In this case,
ri < ri−1,Xai−1 > Xq→i−1

, andXai−1 > Xq←i . The horizontal distance traveled
by Q→i−1 and Q←i are Xai−1 −Xq→i−1

and Xai−1 −Xq←i , respectively. So

Hi = (Xai−1 −Xq→i−1
)− (Xai−1 −Xq←i ) = Xq←i −Xq→i−1

= ||oioi−1||.

In this case, the vertical distance traveled by Q→i−1 and Q←i are Yq→i−1
− Yai−1

and Yq←i − Yai−1 , respectively (this is the same for all three cases). We have

Vi = (Yq→i−1
− Yai−1)− (Yq←i − Yai−1) = Yq→i−1

− Yq←i = ri−1 − ri = |ri − ri−1|.
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• Case 2. Q→i−1 is heavy and Q←i is light, as in Figure 4(b). In this case,
ri > ri−1,Xq→i−1

> Xai−1 , andXq←i > Xai−1 . The horizontal distance traveled
by Q→i−1 and Q←i are Xq→i−1

−Xai−1 and Xq←i −Xai−1 , respectively. So

Hi = −(Xq→i−1
−Xai−1) + (Xq←i −Xai−1) = Xq←i −Xq→i−1

= ||oioi−1||.

Same as in Case 1, the vertical distance traveled by Q→i−1 and Q←i are Yq→i−1
−

Yai−1 and Yq←i − Yai−1 , respectively. We have

Vi = −(Yq→i−1
−Yai−1)+ (Yq←i −Yai−1) = Yq←i −Yq→i−1

= ri− ri−1 = |ri− ri−1|.

• Case 3. Both Q→i−1 and Q←i are light, as in Figure 4(c). In this case, Xai−1 >
Xq→i−1

and Xq←i > Xai−1 . The horizontal distance traveled by Q→i−1 and Q←i
are Xai−1 −Xq→i−1

and Xq←i −Xai−1 , respectively. So

Hi = (Xai−1 −Xq→i−1
) + (Xq←i −Xai−1) = Xq←i −Xq→i−1

= ||oioi−1||.

Same as in Case 1, the vertical distance traveled by Q→i−1 and Q←i are Yq→i−1
−

Yai−1 and Yq←i − Yai−1 , respectively. We have

Vi = (Yq←i − Yai−1) + (Yq→i−1
− Yai−1).

Note that Yq→i−1
− Yai−1 ≥ 0 and Yq←i − Yai−1 ≥ 0. If ri ≥ ri−1 (i.e., Yq←i ≥

Yq→i−1
), then

Vi = (Yq←i − Yai−1) + (Yq→i−1
− Yai−1)

≥ (Yq←i − Yai−1)− (Yq→i−1
− Yai−1)

= Yq←i − Yq→i−1

= ri − ri−1 = |ri − ri−1|.

If ri < ri−1 (i.e., Yq←i < Yq→i−1
), then

Vi = (Yq←i − Yai−1) + (Yq→i−1
− Yai−1)

≥ −(Yq←i − Yai−1) + (Yq→i−1
− Yai−1)

= Yq→i−1
− Yq←i

= ri−1 − ri = |ri − ri−1|.

• It is impossible for both Q→i−1 and Q←i to be heavy.
So in any case, Hi = ||oioi−1|| and Vi ≥ |ri − ri−1|, as required for equality (3) and
inequality (4).

7.2. Proof for inequality (38). Recall that

γ∗ = 3β/4− α/4 + arcsin

(
α+ β

4λ sin(α/4 + β/4)

)
.

Let μ = α/4 + β/4 and ν = μ
λ sinμ = α+β

4λ sin(α/4+β/4) . So

∂μ

∂β
=

∂(α/4 + β/4)

∂β
> 0.(59)
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u

on−1 on
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γ

η
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o vx

Fig. 15. An illustration for the parameters defined in section 7.3.

By (35), 0 < μ < π/4. In this range, μ < tanμ and sinμ > 0. We have

∂ν

∂μ
=

∂ μ
λ sinμ

∂μ
= (1− μ/ tanμ)/(λ sinμ) > 0.(60)

This means that ν is an increasing function of μ. Therefore ν = μ
λ sinμ ≤ π/4

λ sin(π/4) <

0.618. Also ν > 0. In the range 0 < ν < 0.618, we have

∂ arcsin ν

∂ν
= 1/

√
1− ν2 > 0.(61)

By (59), (60), and (61),

∂γ∗

∂β
= 3/4 +

∂ arcsin ν

∂ν
· ∂ν
∂μ

· ∂μ
∂β

> 0.

This means γ∗ is an increasing function of β, and since β ≤ sinα, we have

γ∗ ≤ γ∗|β=sinα =
3 sinα− α

4
+ arcsin

(
α+ sinα

4λ sin(α+sinα
4 )

)
= γ+,

as required by inequality (38).

7.3. Calculations of the partial derivatives in equalities (39), (40), and
(41). First, let’s define some parameters (refer to Figure 15 for an illustration):

• Let Xu, Yu and Xv, Yv be the x- and y-coordinates of u and v, respectively.
• Let Yan−1 be the y-coordinate of an−1.
• Let η = βrn.
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We claim that the parameters Xu, Yu, Yan−1 , and η remain constant during the
transformation. Here is why. First, Xu and Yu remain constant during the trans-
formation because the location of u is not changed by the transformation. Second,
Yan−1 remains constant during the transformation because an−1 is fixed during the
transformation. Third, observe that η = βrn is the length of the arc between v and q
on the boundary of On (the thick arc in Figure 15). Recall that An is the arc on the
boundary of On between an−1 and v, and Bn is the arc on the boundary of On be-
tween bn−1 and v. So η = (|An|− |Bn|)/2. During the transformation, v stays pivotal
and hence |PAn

O (u, v)| = |PBn

O (u, v)|, where |PAn

O (u, v)| = |PO(u, an−1)| + |An| and
|PBn

O (u, v)| = |PO(u, bn−1)|+ |Bn|. Therefore, η = (|An|− |Bn|)/2 = (|PO(u, bn−1)|−
|PO(u, an−1)|)/2. Since the transformation does not affect O1, . . . , On−1, clearly
|PO(u, bn−1)| and |PO(u, an−1)| remain constant during the transformation. In other
words, η remains constant during the transformation.

In what follows, we express all other parameters as functions of (Xon , η, Xu,
Yu, Yan−1) and then calculate their partial derivatives w.r.t. Xon . This is achievable
because, as mentioned above, the parameters η, Xu, Yu, and Yan−1 are all independent
of Xon .

Refer to Figure 15. Let o be the origin of the coordinate system. Consider the
triangle 
oonan−1. We have ||onan−1|| = rn, ||oon|| = |Xon | (Xon < 0 if on is to the
left of o and Xon ≥ 0 otherwise), and ||oan−1|| = Yan−1 (Yan−1 is always nonnegative
since an−1 is above bn−1). Therefore

rn = ||onan−1|| =
√
||oon||2 + ||oan−1||2 =

√
X2

on + Y 2
an−1

,(62)

and hence

∂rn
∂Xon

=
∂
√
X2

on + Y 2
an−1

∂Xon

=
2Xon

2
√
X2

on + Y 2
an−1

=
Xon

rn
= − cosα.(63)

The last equality is based on the geometric observation that cosα = −Xon

rn
(refer to

Figure 15).
Since α = π/2+∠oan−1on and ∠oan−1on = arctan(

Xon

Yan−1
) (note that ∠oan−1on ≥

0 if and only if Xon ≥ 0), we have

α = π/2 + arctan

(
Xon

Yan−1

)
,(64)

and hence

∂α

∂Xon

=
∂(π/2 + arctan(

Xon

Yan−1
))

∂Xon

(65)

=
Y 2
an−1

X2
on + Y 2

an−1

· 1

Yan−1

=
Yan−1

X2
on + Y 2

an−1

=
Yan−1

r2n
=

sinα

rn
.

The last equality is based on the geometric observation that sinα =
Yan−1

rn
(refer to

Figure 15).
Since η = βrn, we have

β = η/rn,(66)
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and hence, from (63), we have

∂β

∂Xon

=
∂(η/rn)

∂Xon

= − η

r2n
· ∂rn
∂Xon

= − β

rn
· ∂rn
∂Xon

=
β cosα

rn
.(67)

Refer to Figure 15. Let vx be the projection of v on the x-axis. Consider the
triangle 
onvvx. We have Xv −Xon = ||onv|| cosβ = rn cosβ. Therefore

Xv = Xon + rn cosβ,(68)

and hence, from (63) and (67), we have

∂Xv

∂Xon

=
∂(Xon + rn cosβ)

∂Xon

= 1− rn sinβ
∂β

∂Xon

+ cosβ
∂rn
∂Xon

= 1− β cosα sinβ − cosα cosβ.(69)

Again consider the triangle 
onvvx. We have

Yv = −||onv|| sinβ = −rn sinβ,(70)

and hence, from (63) and (67), we have

∂Yv

∂Xon

=
∂(−rn sinβ)

∂Xon

= −rn cosβ
∂β

∂Xon

− sinβ
∂rn
∂Xon

= −β cosα cosβ + cosα sinβ.(71)

Since An is the arc on the boundary of On between an−1 and v, we have

|An| = (α+ β)rn = αrn + βrn = αrn + η,(72)

and hence, from (63) and (65), we have

∂|An|
∂Xon

=
∂(αrn + η)

∂Xon

=
∂(αrn)

∂Xon

= α
∂rn
∂Xon

+ rn
∂α

∂Xon

= sinα− α cosα.(73)

Next we will express ∂ΥO(u,v)
∂Xon

as a function of α, β, and γ.

By the definition of ΥO(u, v) (see (1)), we have

∂ΥO(u, v)
∂Xon

=
∂(|PO(u, v)| − λ|DO(u, v)|+ΦO)

∂Xon

(74)

=
∂|PO(u, v)|

∂Xon

− λ
∂|DO(u, v)|

∂Xon

+
∂|ΦO|
∂Xon

.
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Since v is the pivotal point, we have |PO(u, v)| = |PO(u, an−1)| + |An|, where
|PO(u, an−1)| is independent ofXon because the transformation does not affectO1, . . . ,
On−1. Hence from (73),

∂|PO(u, v)|
∂Xon

=
∂(PO(u, an−1) + |An|)

∂Xon

=
∂|An|
∂Xon

= sinα− α cosα,(75)

which gives equality (39).
From (2),

∂ΦO
∂Xon

=
∂(ϕ(rn − r1)− ϕ

3

∑n−1
i=2 (2Hi + Vi))

∂Xon

.(76)

Since the transformation does not affect O1, . . . , On−1, the variables r1, H1, . . . , Hn−1,
V1, . . . , Vn−1 are independent of Xon . We have

∂ΦO
∂Xon

=
∂(ϕ(rn − r1)− ϕ

3

∑n−1
i=2 (2Hi + Vi))

∂Xon

= ϕ
∂rn
∂Xon

− ϕ

3

(
2
∂Hn

∂Xon

+
∂Vn

∂Xon

)
.(77)

From (3) in section 3, Hn = ||onon−1|| = Xon −Xon−1 . Since Xon−1 is constant
during the transformation,

∂Hn

∂Xon

=
∂(Xon −Xon−1)

∂Xon

=
∂Xon

∂Xon

= 1.(78)

Now let’s consider Vn, which is the vertical distance traveled by Q→n−1 and Q←n ,
with light arcs contributing positively and heavy arcs contributing negatively (refer
to Figure 4). The vertical distance traveled by Q←n is rn − Yan−1 , and the vertical
distance traveled by Q→n−1 is rn−1 − Yan−1 .

When 0 < α < π/2 (as in case (a) of Figure 4), Q→n−1 is light and Q←n is heavy.
So Vn = (rn−1 − Yan−1) − (rn − Yan−1) = rn−1 − rn. Since rn−1 is constant during
the transformation,

∂Vn

∂Xon

=
∂(rn−1 − rn)

∂Xon

= − ∂rn
∂Xon

= cosα.(79)

When π/2 ≤ α < π, there are two possibilities: (1) Q←n is light and Q→n−1 is heavy
(as in case (b) of Figure 4), and Vn = −(rn−1 − Yan−1) + (rn − Yan−1) = rn − rn−1.
Since rn−1 is constant during the transformation,

∂Vn

∂Xon

=
∂(rn − rn−1)

∂Xon

=
∂rn
∂Xon

= − cosα.(80)

(2) Q←n and Q→n−1 are both light (as in case (c) of Figure 4), and Vn = (rn−1−Yan−1)+
(rn − Yan−1) = rn + rn−1 − 2Yan−1. Since rn−1 and Yan−1 are constant during the
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transformation,

∂Vn

∂Xon

=
∂(rn + rn−1 − 2Yan−1)

∂Xon

=
∂rn
∂Xon

= − cosα.(81)

Therefore, combining (63), (78), (79), (80), and (81), we have

∂ΦO
∂Xon

=
∂(ϕ(rn − r1)− ϕ

3

∑n−1
i=2 (2Hi + Vi))

∂Xon

= ϕ
∂rn
∂Xon

− ϕ

3

(
2
∂Hn

∂Xon

+
∂Vn

∂Xon

)
=

{
−ϕ cosα− 2ϕ

3 − ϕ
3 cosα if 0 < α < π/2,

−ϕ cosα− 2ϕ
3 + ϕ

3 cosα if π/2 ≤ α < π,

=

{
− 2ϕ

3 − 4ϕ
3 cosα if 0 < α < π/2,

− 2ϕ
3 − 2ϕ

3 cosα if π/2 ≤ α < π,
(82)

which gives equality (40).
For the case under consideration, |DO(u, v)| = ||uv|| and hence

∂|DO(u, v)|
∂Xon

=
∂||uv||
∂Xon

=
∂
√
(Xv −Xu)2 + (Yv − Yu)2

∂Xon

=
Xv −Xu√

(Xv −Xu)2 + (Yv − Yu)2
· ∂(Xv −Xu)

∂Xon

+
Yv − Yu√

(Xv −Xu)2 + (Yv − Yu)2
· ∂(Yv − Yu)

∂Xon

=
Xv −Xu

||uv|| · ∂(Xv −Xu)

∂Xon

+
Yv − Yu

||uv|| · ∂(Yv − Yu)

∂Xon

= cos γ
∂Xv

∂Xon

− sin γ
∂Yv

∂Xon

.(83)

The last equality is true because cos γ = Xv−Xu

||uv|| , − sin γ = Yv−Yu

||uv|| , and Xu, Yu are

independent of Xon .
Combining (69), (71), and (83) and by the trigonometric identities, we have

(84)

∂|DO(u, v)|
∂Xon

= cos γ
∂Xv

∂Xon

− sin γ
∂Yv

∂Xon

= cos γ(1− β cosα sinβ − cosα cosβ)

− sin γ(−β cosα cosβ + cosα sinβ)

= cos γ − cosα(β sinβ cos γ − β cosβ sin γ + cosβ cos γ + sinβ sin γ)

= cos γ − cosα(cos(β − γ) + β sin(β − γ)),(85)

which gives equality (41).
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Fig. 16. An illustration for the definition of θ and ω.

7.4. Proof for inequality (44). Recall that by definition

f(α, β, γ) = −λ
∂|DO(u, v)|

∂Xon

(86)

= −λ(cos γ − cosα(cos(β − γ) + β sin(β − γ))),(87)

where λ = 1.8 is a constant.
We will first analyze the occurrence of the maximum value of f(α, β, γ) w.r.t. γ.

Let v2 be the location of v when Xon increases by ∂Xon (i.e., on moves to the right
by ∂Xon).

11 Let ∂� be the distance from v to v2. Let ω be the angle from the x-axis
to −→vv2. See Figure 16 for an illustration.12 So

cosω =
∂Xv

∂�
(88)

and

sinω =
∂Yv

∂�
,(89)

where Xv and Yv are the x- and y-coordinates of v. Recall that γ is the angle from
−→uv to the x-axis. Let θ = ω + γ.

11Note that here on is moving in the opposite direction to the transformation of On defined in
the beginning of the proof for Proposition 7. While it is necessary for the correctness of the proof to
move on toward on−1 when defining the transformation of On, here we move on away from on−1 to
be consistent with the sign of ∂Xon for the sake of notational convenience.

12In Figure 16, both ∂
 and ω are exaggerated for illustrative purposes.
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From (83), (88), and (89) we have

∂|DO(u, v)|
∂Xon

= cos γ
∂Xv

∂Xon

− sin γ
∂Yv

∂Xon

=

(
cos γ

∂Xv

∂�
− sin γ

∂Yv

∂�

)
∂�

∂Xon

= (cos γ cosω − sin γ sinω)
∂�

∂Xon

= cos(ω + γ)
∂�

∂Xon

= cos θ
∂�

∂Xon

.(90)

Therefore, from (42) and (90), f = −λ∂|DO(u,v)|
∂Xon

= −λ cos θ ∂	
∂Xon

. Recall that ∂� was

defined to be ||vv2||, where v2 is the location of v when Xon increases by ∂Xon . Hence
∂	

∂Xon
> 0. Also note that ∂	

∂Xon
is determined by α and β. In other words, ∂	

∂Xon
is

independent of γ. Therefore, with α and β fixed, f(α, β, γ) is maximized when cos θ
is minimized, i.e., when θ is minimized or maximized for θ ∈ [−π, π]. Since θ = ω+γ,
where ω is independent of γ, θ is minimized when γ = 0 and is maximized when
γ = γ+. Therefore the maximum of f occurs when γ = 0 or when γ = γ+. In other
words,

f(α, β, γ) ≤ max{f(α, β, 0), f(α, β, γ+)},(91)

where γ+ = 3 sinα−α
4 + arcsin

(
α+sinα

4λ sin(α+sinα
4 )

)
.

We then analyze the occurrence of the maximum value of f(α, β, γ) w.r.t. β. We
have

∂f

∂β
=

∂(−λ(cos γ − cosα(cos(β − γ) + β sin(β − γ))))

∂β

= −λ
∂(cos γ − cosα(cos(β − γ) + β sin(β − γ)))

∂β

= λ cosα
∂(cos(β − γ) + β sin(β − γ))

∂β

= λ cosα(− sin(β − γ) + sin(β − γ) + β cos(β − γ))

= λβ cosα cos(β − γ),

where β − γ = ∠onvu. Since v is the exit-point of −→uv on the boundary of On, the
angle ∠onvu is in the range [−π/2, π/2]. In other words, −π/2 ≤ β − γ ≤ π/2 and
hence cos(β − γ) ≥ 0. We distinguish two cases:

1. π/2 ≤ α < π. In this case, cosα ≤ 0. Since cos(β − γ) ≥ 0, we have
∂f
∂β = λβ cosα cos(β − γ) ≤ 0 when β ≥ 0, and ∂f

∂β ≥ 0 when β ≤ 0. This
means that f is a nondecreasing function of β when β ≤ 0 and a nonincreasing
function of β when β ≥ 0. So f obtains its maximum value when β = 0, i.e.,

f(α, β, γ) ≤ f(α, 0, γ).(92)
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2. 0 < α < π/2. In this case, cosα ≥ 0. Since cos(β − γ) ≥ 0, we have
∂f
∂β = λβ cosα cos(β − γ) ≥ 0 when β ≥ 0, and ∂f

∂β ≤ 0 when β ≤ 0. From

(43), we have

(93)

f(α, β, γ)− f(α,−β, γ)

= −λ(cos γ − cosα(cos(β − γ) + β sin(β − γ)))

+ λ(cos γ − cosα(cos(−β − γ)− β sin(−β − γ)))

= λ cosα[(cos(β − γ) + β sin(β − γ))− (cos(−β − γ)− β sin(−β − γ))]

= λ cosα[cos(β − γ) + β sin(β − γ)− cos(β + γ)− β sin(β + γ)]

= λ cosα[cos(β − γ)− cos(β + γ) + β sin(β − γ)− β sin(β + γ)]

= λ cosα[−2 sinβ sin(−γ) + 2β cosβ sin(−γ)]

(by trigonometric identities)

= λ cosα[2 sinβ sin γ − 2β cosβ sin γ]

= 2λ cosα sin γ(sinβ − β cosβ).

Recall that cosα ≥ 0. By (28), 0 ≤ γ < π/2 and hence sin γ ≥ 0. By (27),
β ≤ sinα ≤ 1. If β ≥ 0, then 0 ≤ β ≤ 1, and within this range, one verifies
that sinβ−β cosβ ≥ 0. So when β ≥ 0, we have f(α, β, γ)− f(α,−β, γ) ≥ 0.
In other words,

f(α, β, γ) ≤ f(α, |β|, γ).(94)

As mentioned in the beginning of this case, we have ∂f
∂β ≥ 0 for β ≥ 0, and

from (27), 0 ≤ |β| ≤ sinα. Hence, we have

f(α, |β|, γ) ≤ f(α, sinα, γ).(95)

From (94) and (95),

f(α, β, γ) ≤ f(α, sinα, γ).(96)

Combining (91) with (92) and (96), we have

f(α, β, γ) ≤ max{f(α, β, 0), f(α, β, γ+)}(97)

≤
{
max{f(α, sinα, 0), f(α, sinα, γ+)} if 0 < α < π/2,

max{f(α, 0, 0), f(α, 0, γ+)} if π/2 ≤ α < π,

which yields inequality (44).

7.5. Verify inequalities (46), (47), (48), and (49). Let z = (α + sinα)/4.
Since 0 < z < π/4, we have 1 < z

sin z < 1.111. Furthermore,

dz

dα
=

d((α + sinα)/4)

dα
= 1/4 + cosα/4
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and

d( z
sin z )

dz
=

1

sin z
− z cos z

(sin z)2
≤ 1

sin z
− cos z

sin z
= tan(z/2) < 0.415.

Recall that

γ+ =
3 sinα− α

4
+ arcsin

(
α+ sinα

4λ sin(α+sinα
4 )

)
=

3 sinα− α

4
+ arcsin

( z

λ sin z

)
.

So ∣∣∣∣d(γ+)

dα

∣∣∣∣ ≤
∣∣∣∣∣3 cosα− 1

4
+

1

λ
√

1− ( z
λ sin z )

2

d( z
sin z )

dz

dz

dα

∣∣∣∣∣
≤ 1 +

∣∣∣∣∣ 0.415

λ
√
1− ( z

λ sin z )
2
(1/4 + cosα/4)

∣∣∣∣∣
≤ 1 +

∣∣∣∣∣∣ 0.415

λ
√
1− (1.111λ )2

(1/4 + 1/4)

∣∣∣∣∣∣
< 1.15.

Recall that

f(α, β, γ) = −λ(cos γ − cosα(cos(β − γ) + β sin(β − γ))).(98)

We have ∣∣∣∣df(α, 0, 0)dα

∣∣∣∣ = ∣∣∣∣d(−λ(1 − cosα))

dα

∣∣∣∣ = | − λ sinα| < 2.∣∣∣∣df(α, 0, γ+)

dα

∣∣∣∣ = ∣∣∣∣d(−λ(cos γ+ − cosα cos(−γ+)))

dα

∣∣∣∣
=

∣∣∣∣d(−λ cos γ+(1 − cosα))

dα

∣∣∣∣
≤ λ

(∣∣∣∣d(γ+)

dα
sin γ+(1 − cosα)

∣∣∣∣+ | sinα cos γ+|
)

≤ 1.8(1.15 + 1) < 4,

∣∣∣∣df(α, sinα, 0)dα

∣∣∣∣ = ∣∣∣∣d(−λ(1 − cosα cos(sinα) − cosα sinα sin(sinα)))

dα

∣∣∣∣
≤ λ(| sinα cos(sinα)| + |(cosα)2 sinα cos(sinα)|

+ |(sinα)2 sin(sinα)|)
≤ 1.8(1 + 1 + 1) < 6,
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dα

∣∣∣∣
=

∣∣∣∣d(−λ(cos γ+ − cosα cos(sinα− γ+)− cosα sinα sin(sinα− γ+)))

dα

∣∣∣∣
=

∣∣∣∣∣d(−λ(cos γ+ − cosα cos(sinα− γ+)− sin(2α)
2 sin(sinα− γ+)))

dα

∣∣∣∣∣
≤ λ

(∣∣∣∣d(γ+)

dα
sin γ+

∣∣∣∣+ ∣∣sinα cos(sinα− γ+)
∣∣

+

∣∣∣∣cosα sin(sinα− γ+)

(
cosα− d(γ+)

dα

)∣∣∣∣+ | cos(2α) sin(sinα− γ+)|

+

∣∣∣∣sin(2α)2
cos(sinα− γ+)

(
cosα− d(γ+)

dα

)∣∣∣∣)
< 1.8(1.15 + 1 + (1 + 1.15) + 1 + (1 + 1.15)/2) < 12.

Also∣∣∣∣∣d(sinα− α cosα− 2ϕ
3 − 2ϕ

3 cosα)

dα

∣∣∣∣∣ =
∣∣∣∣α sinα+

2ϕ

3
sinα

∣∣∣∣ ≤ π +
2ϕ

3
< 4,∣∣∣∣∣d(sinα− α cosα− 2ϕ

3 − 4ϕ
3 cosα)

dα

∣∣∣∣∣ =
∣∣∣∣α sinα+

4ϕ

3
sinα

∣∣∣∣ ≤ π +
4ϕ

3
< 4.

Therefore the Lipschitz constants are

∣∣∣∣dg1(α)dα

∣∣∣∣ =
∣∣∣∣∣d(sinα− α cosα− 2ϕ

3 − 2ϕ
3 cosα)

dα

∣∣∣∣∣+
∣∣∣∣df(α, 0, 0)dα

∣∣∣∣ < 4 + 2 < 16,

∣∣∣∣dg2(α)dα

∣∣∣∣ =
∣∣∣∣∣d(sinα− α cosα− 2ϕ

3 − 2ϕ
3 cosα)

dα

∣∣∣∣∣+
∣∣∣∣df(α, 0, γ+)

dα

∣∣∣∣ < 4 + 4 < 16,

∣∣∣∣dg3(α)dα

∣∣∣∣ =
∣∣∣∣∣d(sinα− α cosα− 2ϕ

3 − 2ϕ
3 cosα)

dα

∣∣∣∣∣+
∣∣∣∣df(α, sinα, 0)dα

∣∣∣∣ < 4 + 6 < 16,

∣∣∣∣dg4(α)dα

∣∣∣∣ =
∣∣∣∣∣d(sinα− α cosα− 2ϕ

3 − 2ϕ
3 cosα)

dα

∣∣∣∣∣+
∣∣∣∣df(α, sinα, γ+)

dα

∣∣∣∣ < 4 + 12 = 16.

Now we can use a simplified version of the Piyavskii algorithm [16] for Lipschitz
optimization to verify that gi(α) < 0, 1 ≤ i ≤ 4. Algorithm Bound(gi, s, t) will either
find a value gi(α) ≥ 0 in the given range or return an upper bound on the value of gi
in range [s, t] that is less than 0. For 1 ≤ i ≤ 4, we run Bound(gi, s, t) with s and t
set to be the appropriate lower and upper bound on the range of α, where gi(0) is set
to be limα→0 gi(α). We verify that indeed gi(α) < 0, 1 ≤ i ≤ 4. This completes the
verification of inequalities (46), (47), (48), and (49).
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Algorithm Bound(gi, s, t) for 1 ≤ i ≤ 4.

1. if gi(s) ≥ 0 or gi(t) ≥ 0 return max{gi(s), gi(t)}.
2. apex = max{gi(s), gi(t)}+ 16 ∗ (t− s)/2

3. if apex ≥ 0, do:
3.1. apex = max{Bound(gi, s, (s+ t)/2),Bound(gi, (s+ t)/2, t)}

4. return apex
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