Constraints

Foreign Keys
Local and Global Constraints
Triggers

By Prof. Ullman @ Stanford

1

Constraints and Triggers

@A constraint is a relationship among data
elements that the DBMS is required to
enforce.

+ Example: key constraints.

@ 7riggers are only executed when a
specified condition occurs, e.g., insertion
of a tuple.

+ Easier to implement than complex constraints.

2

Kinds of Constraints

, or referential-integrity.
constraints.
+ Constrain values of a particular attribute.
constraints.
+ Relationship among components.
: any SQL boolean expression.

® & oo

3

Foreign Keys

@ Consider Relation Sells(bar, beer, price).

©® We might expect that a beer value is a
real beer --- something appearing in
Beers.name .

@ A constraint that requires a beer in Sells
to be a beer in Beers is called a /oreign -
key constraint.

Expressing Foreign Keys

€ Use the keyword REFERENCES, either:

1. Within the declaration of an attribute (only for
one-attribute keys).

2. As an element of the schema:
FOREIGN KEY (<list of attributes>)
REFERENCES <relation> (<attributes>)

& Referenced attributes must be declared
PRIMARY KEY or UNIQUE.

Example: With Attribute

CREATE TABLE Beers (
nane CHAR(20) PRI MARY KEY,
manf CHAR(20));
CREATE TABLE Sel I's (
bar CHAR(20) ,
beer CHAR(20) REFERENCES Beer s(nane),
price REAL);

Example: As Element

CREATE TABLE Beers (
nane CHAR(20) PRI MARY KEY,
manf CHAR(20));
CREATE TABLE Sel I's (
bar CHAR(20) ,
beer CHAR(20) ,
price REAL,

FOREI GN KEY(beer) REFERENCES
Beer s(nane)) ;

Enforcing Foreign-Key Constraints

@ If there is a foreign-key constraint
from attributes of relation R to a key
of relation S, two violations are
possible:

1. An insert or update to R introduces
values not found in S.

2. A deletion or update to S causes some
tuples of R to “dangle.”

Actions Taken --- (1)

@ Suppose R = Sells, S = Beers.

@ An insert or update to Sells that
introduces a nonexistent beer must be
rejected.

@ A deletion or update to Beers that
removes a beer value found in some
tuples of Sells can be handled in three
ways (next slide).

Actions Taken --- (2)

L : Reject the modification.

2. : Make the same changes in
Sells.
+ Deleted beer: delete Sells tuple.
+ Updated beer: change value in Sells.

3. : Change the beer to NULL.

10

Example: Cascade

@ Delete the Bud tuple from Beers:

+ Then delete all tuples from Sells that have
beer = '‘Bud’.

@ Update the Bud tuple by changing ‘Bud’
to ‘Budweiser’:

+ Then change all Sells tuples with beer =
‘Bud’ so that beer = ‘Budweiser".

1

Example: Set NULL

@ Delete the Bud tuple from Beers:

+ Change all tuples of Sells that have beer =
'‘Bud’ to have beer = NULL.

@ Update the Bud tuple by changing ‘Bud’
to ‘Budweiser’:
+ Same change.

12

Choosing a Policy

¥ When we declare a foreign key, we may
choose policies SET NULL or CASCADE
independently for deletions and updates.

@ Follow the foreign-key declaration by:

ON [UPDATE, DELETE][SET NULL CASCADE]
@ Two such clauses may be used.

@ Otherwise, the default (reject) is used.

13

Example

CREATE TABLE Sel I's (

bar CHAR(20) ,

beer CHAR(20),

pri ce REAL,

FOREI GN KEY(beer)
REFERENCES Beer s(nane)
ON DELETE SET NULL
ON UPDATE CASCADE

);

14

Attribute-Based Checks

@ Constraints on the value of a particular
attribute.

@ Add: CHECK(<condition>) to the
declaration for the attribute.

@ The condition may use the name of the
attribute, but any other relation or
attribute name must be in a subquery.

15

Example

CREATE TABLE Sel s (

bar CHAR(20) ,

beer CHAR(20) CHECK (beer IN
(SELECT nane FROM Beers)),

price REAL CHECK (price <= 5.00)

g

16

Timing of Checks

@ Attribute-based checks performed only
when a value for that attribute is inserted
or updated.

. : CHECK (price <= 5.00) checks
every new price and rejects the modification
(for that tuple) if the price is more than $5.

. : CHECK (beer | N (SELECT
name FROM Beer s)) not checked if a beer
is deleted from Beers (unlike foreign-keys).

17

Tuple-Based Checks

© CHECK (<condition>) may be added
as a relation-schema element.

@ The condition may refer to any
attribute of the relation.

+ But any other attributes or relations require
a subquery.

@ Checked on insert or update only.

18

Example: Tuple-Based Check

@ Only Joe’s Bar can sell beer for more than $5:
CREATE TABLE Sel I's (
bar CHAR(20),
beer CHAR(20),
price REAL,
CHECK (bar = 'Joe’’s Bar’ OR
price <= 5.00)

19

Assertions

@ These are database-schema elements,
like relations or views.

@ Defined by:
CREATE ASSERTION <name>
CHECK (<condition>);

@ Condition may refer to any relation or
attribute in the database schema.

20

Example: Assertion

@In Sells(bar, beer, price), no bar may
charge an average of more than $5.

CREATE ASSERTION NoRipoffBars CHECK (
NOT EXISTS (

Bars with an
average price
above $5

21

Example: Assertion

@ 1n Drinkers(name, addr, phone) and
Bars(name, addr, license), there cannot be
more bars than drinkers.

CREATE ASSERTI ON FewBar CHECK (

(SELECT COUNT(*) FROM Bars) <=
(SELECT COUNT(*) FROM Drinkers)
)i

Timing of Assertion Checks

@ In principle, we must check every
assertion after every modification to any
relation of the database.

@A clever system can observe that only
certain changes could cause a given
assertion to be violated.

. : No change to Beers can affect
FewBar. Neither can an insertion to Drinkers.

23

Triggers: Motivation

@ Assertions are powerful, but the DBMS
often can't tell when they need to be
checked.

@ Attribute- and tuple-based checks are
checked at known times, but are not
powerful.

@ Triggers let the user decide when to
check for a powerful condition.

24

Event-Condition-Action Rules

@ Another name for “trigger” is £CA rule,
or event-condition-action rule.

L 2 : typically a type of database
modification, e.g., “insert on Sells.”

L 2 : Any SQL boolean-valued
expression.

L 2 : Any SQL statements.

25

Preliminary Example: A Trigger

@ Instead of using a foreign-key
constraint and rejecting insertions into
Sells(bar, beer, price) with unknown
beers, a trigger can add that beer to
Beers, with a NULL manufacturer.

26

Example: Trigger Definition
CREATE TRIGGER BeerTrig ~ Theevent

REFERENCING NEW ROW AS NewTuple

FOR EACH ROW

WHEN (NewTuple.beer NOT IN
SELECT name FROM Beers

INSERT INTO Beers(name)
VALUES(NewTuple.beer); | Theaction

27

The condition

Options: CREATE TRIGGER

¥ CREATE TRIGGER <name>
9 Option:
CREATE OR REPLACE TRIGGER <name>

+ Useful if there is a trigger with that name
and you want to modify the trigger.

28

Options: The Event

@ AFTER can be BEFORE.

+ Also, INSTEAD OF, if the relation is a view.

« A great way to execute view modifications:
have triggers translate them to appropriate
modifications on the base tables.

@ INSERT can be DELETE or UPDATE.

+ And UPDATE can be UPDATE .. .ON a
particular attribute.

29

Options: FOR EACH ROW

@ Triggers are either “row-level” or
“statement-level.”

@ FOR EACH ROW indicates row-level; its
absence indicates statement-level.

® Row level triggers : execute once for
each modified tuple.

@ Statement-level triggers : execute once
for an SQL statement, regardless of
how many tuples are modified.

Options: REFERENCING

@ INSERT statements imply a new tuple
(for row-level) or new table (for
statement-level).

+ The “table” is the set of inserted tuples.

@ DELETE implies an old tuple or table.

@ UPDATE implies both.

@ Refer to these by

[NEW OLD][TUPLE TABLE] AS <name>

31

Options: The Condition

© Any boolean-valued condition is
appropriate.

@1t is evaluated before or after the
triggering event, depending on whether
BEFORE or AFTER is used in the event.

@ Access the new/old tuple or set of

tuples through the names declared in
the REFERENCING clause.

32

Options: The Action

@ There can be more than one SQL
statement in the action.
+ Surround by BEGIN . . . END if there is
more than one.
@ But queries make no sense in an
action, so we are really limited to
modifications.

Another Example

@®Using Sells(bar, beer, price) and a
unary relation RipoffBars(bar) created
for the purpose, maintain a list of bars
that raise the price of any beer by more
than $1.

The Trlgger The event —
only f:hanges
CREATE TRIGGER PriceTrii / DPEs
REFERENCING Updates let us
OLD ROW AS 000 —— tallé abouE ollde ’ Condition:
new e
NEW ROW AS nnn and new tuples 3 raise in

We need to consider price > $1

FOR EACH ROW [~ each price change
[WHEN(nnn.price > ooo.price + 1.00)]
INSERT INTO RipoffBars When the price change

. [~ is great enough, add
VALUES[[’II’H’I - bar}, the bar to RipoffBars
35

Triggers on Views

@ Generally, it is impossible to modify a
view, because it doesn't exist.

@ But an INSTEAD OF trigger lets us
interpret view modifications in a way
that makes sense.

@ Example: We'll design a view Synergy
that has (drinker, beer, bar) triples such
that the bar serves the beer, the drinker
frequents the bar and likes the beer.

36

Example: The View

Pick one copy of

CREATE VIEW Synergy AS / each attribute
SELECT] Likes.drinker, Likes.beer, Sells.bat

Natural join of Likes,
Sells, and Frequents a7

Interpreting a View Insertion

@ We cannot insert into Synergy - it is a
view.

@ But we can use an INSTEAD OF trigger
to turn a (drinker, beer, bar) triple into
three insertions of projected pairs, one
for each of Likes, Sells, and Frequents.

+ The Sells.price will have to be NULL.

The Trigger

CREATE TRIGGER ViewTrig

INSTEAD OF INSERT ON Synergy

REFERENCING NEW ROW AS n

FOR EACH ROW

BEGIN
INSERT INTO LIKES VALUES(n.drinker, n.beer);
INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer);
INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

END;

39

